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Abstract

OntoLex-Lemon has become a de facto stan-
dard for lexical resources in the web of data.
This paper provides the first overall descrip-
tion of the emerging OntoLex module for Fre-
quency, Attestations, and Corpus-Based Infor-
mation (OntoLex-FrAC) that is intended to
complement OntoLex-Lemon with the neces-
sary vocabulary to represent major types of
information found in or automatically derived
from corpora, for applications in both language
technology and the language sciences.

1 Background

The OntoLex-Lemon vocabulary has become
the dominant vocabulary for modelling machine-
readable dictionaries on the web of data, i.e., by
means of RDF. And indeed, publishing lexical re-
sources in RDF has a number of advantages, includ-
ing the ease of integration of dictionary information
not only with ontologies and knowledge graphs
(this was the original domain of application), but
also with other lexical data.

Figure 1 illustrates the OntoLex-Lemon core
vocabulary. Primary data structures are ontolex:
LexicalEntry (lexeme), ontolex:Form
(word form), ontolex:LexicalSense (word

Figure 1: OntoLex-Lemon core module

sense), and ontolex:LexicalConcept
(lexicalization-independent concept), so that lexi-
cal entries can be described, but also fine-grained
differences in meaning and surface form.

While these aspects are advanced, stable and
widely used, there is no complete module described
in the current literature that enables interoperabil-
ity and integration between lexical and textual re-
sources and the distributional semantics of words,
lexical senses and concepts, and collocation prop-
erties. By employing the usage of L(L)OD (Linked
Linguistic Open Data) technologies, we describe
the consolidation of OntoLex-FrAC (Frequency,
Attestation, and Corpus Information), an OntoLex-
Lemon model that (1) addresses the requirements
of corpus-based lexicography (frequency and col-
location information) and digital philology (link-
ing lexical resources with corpus data), and (2)
provides a standard for encoding, storing, and ex-
changing vector representations of words along
with their lexical concepts, senses, and lemmas.

2 Core Concepts

So far, the development of FrAC has been con-
ducted in a bottom-up fashion, where uses cases
were analyzed and sub-vocabularies for different
phenomena have been proposed. This includes fre-
quency and attestations (Chiarcos et al., 2020), em-
beddings and similarity (Chiarcos et al., 2021) and
collocations (Chiarcos et al., 2022). We comple-
ment these efforts with a top-down perspective, and
we suggest three top-level classes to structure the
model as a whole. In addition to that, we provide
an OWL2/DL ontology to formalize the vocabu-
lary. Restructuring the module entails a number
of minor revisions regarding naming and scope of
properties and classes, however, we aimed to stay
faithful to the original definitions while integrating
them into a more coherent overall picture.

https://www.w3.org/2016/05/ontolex/
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The FrAC vocabulary is about information from
or derived from corpora that can be included in
machine-readable dictionaries and other forms of
lexical or ontological resources, i.e., information
about lexical forms (which can be counted), lex-
ical entries (which can be illustrated with attesta-
tions or corpus examples), lexical senses or lexi-
cal concepts (which can be found as annotations
in corpora). For these, FrAC introduced a gen-
eralization over the OntoLex core elements (and
any other entity FrAC-related information is to
be expressed about), and introduced the notion of
frac:Observable, i.e., a lexical unit that can
be observed in natural language, e.g., in a corpus.
The corpus class was a another vocabulary element
introduced with FrAC, and it is understood here in
the more general sense of structured (collections
of) primary data.1 In addition to representing the
primary data itself, it can also provide the total
number of tokens in the corpus frac:total.

The different FrAC sub-vocabularies then de-
fined different concepts that define the relation be-
tween observables and the corpus (or anyURI) ob-
ject. A novel contribution of our paper is that we
introduce a generalization over these FrAC-specific
classes. In analogy with frac:Observable,
we refer to this as frac:Observation. An ob-
servation in this understanding is any information
found in, based on or created from a corpus, and
the observations supported by the FrAC vocabu-
lary are corpus frequency, attestation, collocation,
similarity and embeddings. We consider aggregate
observations (frequency, collocations, embeddings,
similarity clusters) to be observations in their own
right, as long as their characteristics are solely de-
fined by the underlying data. FrAC observations
have a number of common properties:
(1) rdf:value: value of an observation, with
characteristics depending on the specific observa-
tion class.
(2) dc:description: human-readable charac-
terization of the methods involved in the obser-
vation. FrAC does not provide a vocabulary for
provenance – if such information is to be provided,
we recommended to use Prov-O (Lebo et al., 2013)

1In this more general sense, ‘corpus’ is also used in neigh-
boring fields such as law (e.g., for Justinian’s Corpus Juris
Civilis) or archeology (e.g., for the Corpus Vasorum Antiquo-
rum, a database of Greek vases). FrAC corpus thus comprises,
but is not restricted to the sense of ‘text corpus’ (or speech
corpus), i.e., a structured and/or electronically available and/or
linguistically annotated collection of texts (or multimedia con-
tent).

(3) frac:corpus link from the observation to
the structured data from which the observation was
created.

3 FrAC Observations

We propose four main classes as subclasses of
frac:Observation, i.e., frequency, attesta-
tion, collocations, embeddings, and similarity as
summarized in Fig. 2.

Figure 2: Revised FrAC vocabulary with the
top-level classes frac:Observable, frac:
Observation and frac:Corpus

3.1 Attestation
For attestation, the linking of lexical resources
with corpus evidence, we distinguish three primary
fields of application, i.e., lexicography (the use of
references to corpora by a lexicographer to furnish
evidence with reference to examples for the exis-
tence of a given lexical phenomena at a certain
time period), language technology (linking a lex-
icon with the corpus from which information is
derived), and corpus linguistics (linking a corpus
[excerpt] with the lexical units or semantic annota-
tions it provides). FrAC attestations are designed to
support the different requirements in a unified way.
FrAC defines frac:Attestation as an exact
or normalized quotation or excerpt from a source
document that exhibits a particular lexical entry,
form, sense, lexeme or features such as spelling
variation, morphology, syntax, collocation, regis-
ter. An attestation should have a quotation or an
attestation gloss and must define a locus object to
identify the source of this material.

In the revised FrAC model, the attestation gloss
– originally an independent property – is mod-
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elled as rdf:value. In its usage in lexicogra-
phy, the attestation gloss differs from the quota-
tion (frac:quotation) as it may include ad-
ditional (human-readable) metadata about siglia,
lines or versions that the actual primary data it
refers to (the quotation) might not display. Sim-
ilarly, the locus object (originally any URI as an
object of frac:locus) is modelled as a corpus
(frac:Corpus object of the frac:corpus
property). This is in line with the fact that
FrAC is underspecified as to the exact nature of
frac:corpus objects, i.e., whether they repre-
sent the URI that resolves to the corpus that con-
tains the lexical unit attested, or whether they rep-
resent the relevant excerpt of a corpus that contains
the lexical unit, or whether they represent a meta-
data entry that stands in for a corpus which might
not even exist in electronic form.

Any observable can be linked with its attestation
by means of frac:attestation, defined as a
subproperty of a more general frac:citation
property – which posits no constraints on its
range and which has been introduced to accom-
modate the needs of lexicographers who want
to include attestations from secondary sources
(Khan and Boschetti, 2018). The object of
frac:citation is thus any URI, but for objects
other than attestations, FrAC users are encouraged
to follow any of the existing vocabularies for bib-
liographic data in RDF (Saur, 1998; Peroni and
Shotton, 2012).

Figure 3: Attestations in the American Heritage Dictio-
nary (accessed 2022-05-17)

Figure 3 shows a sample entry from the (online)
American Heritage Dictionary (AHDictionary) of
the English Language, and the attestation for its
second sense can be modelled as follows:
:le_falter_vi

a ontolex:LexicalEntry ;
ontolex:sense :ls_falter_vi_2 .

:ls_falter_vi_2
a ontolex:LexicalSense ;
rdfs:comment "To speak hesitatingly,

..." ;
frac:attestation [

a frac:Attestation ;
rdf:value "faltered in reciting the

poem" ] .

While this attestation does not point to a corpus,

the original 1969 edition of the dictionary uses the
Brown corpus as a basis for its attestations, and for
an example that would have come from the Brown
corpus, we could give the link to the relevant sub-
sections of the corpus in its online edition provided
by SketchEngine.

... a frac:Attestation ;
frac:corpus <https://app.

sketchengine.eu/#concordance?
corpname=preloaded%2Fbrown_1&
keyword=falter&showresults=1> ;

rdf:value "faltered in reciting the
poem"

3.2 Frequency

The frequency distribution of linguistic elements is
one of the most fundamental corpus-based statistics.
In general, frequency information is critical to cor-
pus studies, linguistic analysis, and NLP. We can
distinguish between absolute and relative frequen-
cies. Relative frequencies are generally normalized
and computed as frequencies per a pre-defined num-
ber of linguistic elements. The FrAC module con-
siders both absolute and relative frequency in order
to facilitate different necessities. However, in terms
of modelling, the focus is on absolute frequencies
that are defined in relation to a particular corpus.
The frac:CorpusFrequency class gives the
absolute number of attestations, i.e., rdf:value,
of a single frac:Observable considering a
specific language resource, i.e., frac:corpus.
Auxiliary filter conditions can be added to extend
the frac:CorpusFrequency class with views
of different sub-corpora.

An example is to restrict the subcorpus
to a particular period. By means of OWL
restrictions, a corpus-specific subclass of
frac:CorpusFrequency can be created, say,
my:XYZCorpusFrequency for which values
for dc:description, frac:corpus and
other parameters are defined as fixed. If then,
the object of frac:frequency is defined as a
my:XYZCorpusFrequency, these values do
not have to be repeated, but are, instead, inherited
from the class definition. As an example for
frequency, we again, resort to the Brown corpus as
provided by SketchEngine:

:BrownCorpusFreq
rdfs:subClassOf
frac:CorpusFrequency ,
[ a owl:Restriction ;
owl:onProperty frac:corpus ;
owl:hasValue <https://app.

sketchengine.eu/#concordance?

https://ahdictionary.com/word/search.html?q=faltered
https://ahdictionary.com/word/search.html?q=faltered
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corpname=preloaded%252Fbrown_1>
] .

For falter, the number of hits returned by
querying SketchEngine can be modelled as a
:BrownCorpusFreq in FrAC, then:
:le_falter_vi

frac:frequency
[ a :BrownCorpusFreq ;
rdf:value "6" ] .

When re-defining corpus frequency as a
frac:Observation, no semantic changes
are necessary, except that rdf:value and
frac:corpus are inherited now rather than de-
fined for corpus frequency.

3.3 Collocation
A collocation is an expression containing two or
more juxtaposition words that statistically appear
together more frequently than by chance. The in-
dividual words of a collocation are characterized
by the property of limited compositionality with
each other, since they are predictable and, when
they occur together, e.g. in the case of multi-word
expressions, compound nouns, etc., they can have
meanings that are different from their meanings
when they occur alone or in other word combina-
tions. Thus, some words can be freely combined
with each other, others tend to combine only with
certain words. They are word combinations that
lie in a range between free and fixed. Collocation
analysis is used in natural language processing, es-
pecially in automatic machine translation, in text
generation, e.g. to make the output text as natural
as possible, and to avoid untypical word combina-
tions (Manning and Schütze, 1999; Evert, 2008).

In FrAC, collocations are modeled as an
aggegate (rdfs:Container) of frac:
Observables. Fixed word order collocations
are defined using rdf:Seq) as a sequence, while
variable word order collocations are defined using
rdf:Bag as an ordered set. Collocations obtained
by quantitative methods are characterized by
their method of creation (dc:description),
first word (frac:head), collocation strength
(rdf:value), and the corpus used to create
them (frac:corpus). Furthermore, collo-
cations share these characteristics with other
types of contextual relations. In previous FrAC
proposals, these were thus inherited from the
abstract class frac:ContextualRelation
for the relation between two or more lexical
elements. In our revised FrAC vocabulary,

Figure 4: Collocation analysis for the head word large
and the collocation (a) large amount of data over the
Brown corpus according to Kjellmer (1994) as given by
Johansson (1998, p.339)

frac:ContextualRelation has been
superseded by frac:Observation. A FrAC
collocation is thus an aggregate (bag or sequence)
of observables based on their co-occurrence within
the same context window and characterized the
head word of the collocation (frac:head)
and the collocation score (frac:cscore) in a
particular source corpus (frac:corpus).

Collocations are frac:Observables, they
can also be given an frac:attestation,
frac:embedding or frac:frequency. Us-
ing the embeddings, we can determine nested
collocation by computing a similarity met-
ric (e.g., cosine similarity). The collocation
score (frac:cscore) is a subproperty of
rdf:value that provides a specific corpus de-
pendent collocation score. In FrAC we de-
fine multiple symmetric and asymmetric colloca-
tion metrics as sub-properties of frac:cscore,
e.g., frac:rel_freq for the relative frequency
(asymmetric), frac:pmi for the pointwise mu-
tual information (symmetric), frac:chi2 for
Person’s Chi-square test (asymmetric), etc. For
asymmetric collocations scores the frac:head
property is used to identify the elements’ order.

As an example for collocation analysis over the
Brown corpus, we refer to the classical work by
Kjellmer (1994), who provides (candidate) colloca-
tions along with different scores in a tabular format
(Fig. 4). Kjellmer’s work differs from more recent
works in collocation analysis in that he focuses on
absolute frequencies rather than designated collo-
cation scores. For this kind of data, it is sufficient
to resort to frac:CorpusFrequency (resp.,
designated subclasses such as :Inclusive-
BrownFrequency, with fixed values for
frac:corpus and dc:description), and as
collocations are both observations and observables,
this is possible in FrAC:
:coll_laod

a frac:Collocation, rdf:Seq ;
rdf:_1 :le_large ; # lexical
rdf:_2 :le_amount ; # entries
rdf:_3 :le_of ;
rdf:_4 :le_data ;
frac:head :le_large ; # head
frac:frequency # frequencies

https://app.sketchengine.eu/#concordance?corpname=preloaded%252Fbrown_1&showresults=1&keyword=falter
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[ a :InclusiveBrownFrequency ; rdf:
value "2" ] .

More conventional scores can be expressed with
the designated subproperties of frac:cscore
(or, if this is unambiguous, rdf:value).

3.4 Embeddings Subclasses

In the context of FrAC, the notion of embedding
has been understood in a sense established in math-
ematics. An embedding is a structure-preserving
projection (mapping) from a given domain into a
numerical representation. The most popular ex-
ample of embeddings in language technology is a
more restricted form of embeddings in that sense,
i.e., the topological space of the resulting embed-
dings is represented by fixed-size vectors (resp.,
tensors as aggregates of such vectors), but as there
are other forms of numerical representations that
serve similar or identical functions, FrAC intro-
duces a more general class of frac:Embedding
along with a specific sub-class of embeddings
frac: FixedSizeVector to for embed-
dings as typically found in NLP. Other embed-
ding subclasses are frac:BagOfWords (for
unweighted or weighted bags of words), and
frac:TimeSeries (for sequences of fixed-size
vectors). Both representations are similar to em-
beddings in the NLP sense in that they represent a
projection into a numerical feature space and that
the primary function of this projection is to provide
distance measurements. For bags of words, these
are represented by confidence scores for weighted
bag of words models (or booleans for unweighted
bags of words) for every word in the vocabulary (at
least, this would be a possible mathematical inter-
pretation; in practice, such data is not represented
as a vector, but as a hashtable – or, for unweighted
bags of words, a set –, so that only words with
positive scores are listed). Mathematically, bags
of words could also be described as infinite-size
embeddings (if the vocabulary is not completely
known in advance), and indeed, earlier methods for
dimensionality reduction motivated embeddings as
a compact form of bags of words (Schütze, 1992,
with slightly different wording).

Time series data is another form of infinite-size
embeddings, but here, it is an infinite-size series
of finite-size vectors. In language technnology, a
stream of text, mapped to word embeddings, is
such a structure – but normally not stored. A lex-
icographically more relevant use case is in sensor

data, e.g., for the recording of gestures for sign
languages. Such recordings can then be compared
with each other using techniques such as dynamic
time warping (Gold and Sharir, 2018), and then be
the basis for automated clustering, etc.

3.5 Word and Concept Embeddings

In FrAC, any observable can be assigned an embed-
ding. This includes lexical form, lemmas (lexical
entries), word senses (lexical senses), lexical con-
cepts and other entities, multi-word expressions (as
lexical entries) and groups of observables (FrAC
collocations). This also partially answers the ques-
tion on why embeddings (esp., fixed-size vectors
for NLP embeddings) are a necessary data struc-
ture for FrAC. In many use cases, word embeddings
are created on the fly and not shared across differ-
ent applications – but as their creation involves a
non-deterministic element, they cannot be easily
compared across languages or corpora. For this
reason (and because, historically, the creation of
embeddings from large-scale corpora was a matter
of weeks or months of processing), applications
often use precompiled embeddings for either sub-
sequent fine-tuning or directly. As far as word
embeddings are concerned, it does – again – not
seem to be necessary to represent these in RDF.
The typical structure of an embedding file is a table,
with the first column representing the token, the fol-
lowing columns representing the embedding with
one value per cell. As long as applications refer to
the same embedding file with the same parameters
(same length, same tokenization, same normaliza-
tion for strings [e.g., lowercasing], same vector
normalization function – e.g., to the spans of either
[0, ..., 1] or [−1, ..., 1] –, same underlying corpus
data), they will operate in the same embedding
space, and with libraries such as TextTorch (Torch-
Text, 2022) or repositories like HuggingFace (Wolf
et al., 2020), there is an established infrastructure to
retrieve identical word embeddings using standard
identifiers. However, this can nevertheless be prob-
lematic, especially if different applications retrieve
their embeddings from different sources. While
the retrieval of, say, GloVe embeddings (Penning-
ton et al., 2014) via TextTorch or via the original
provider should lead to the same result, this cannot
be automatically validated as neither source pro-
vides machine-readable metadata – nor is there any
transparent relation between both methods of ac-
cess unless TextTorch code is manually inspected.
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RDF metadata can help here to resolve ambigui-
ties. And ambiguities exist, and will intensify with
the adoption of current techniques and data in new
programming languages and future ecosystems. A
classical example are the infamous ‘Collobert &
Weston embeddings’ which is a term applied to
two different and unrelated sets of embeddings also
known as ‘SENNA embeddings’ on the one hand
and ‘Turian embeddings’ on the other (Collobert,
2011).

Another objective to provide embeddings in
RDF is that the basic table format in which em-
beddings are shared is insufficient if these embed-
dings are detached from the definition of the ele-
ments they are assigned to. An important category
here are embeddings of lexical concepts and lexi-
cal senses as derived, for example, from underlying
word embeddings, and thus residing in the same
feature space, e.g., the classical AutoExtend em-
beddings (Rothe and Schütze, 2017) whose synset
identifiers are ambiguous as to which WordNet
version they refer to. While this can be solved
with using persistent URIs as synset identifiers, for
lexical resources for which no publicly accessible,
resolvable or persistent URIs can be provided, an
alternative solution is to bundle embeddings and
the underlying knowledge graph into a data struc-
ture from which both the graph and the embeddings
can be accessed, and FrAC provides the vocabulary
to provide that from the RDF perspective.

3.6 Contextualized Embeddings

Another aspect in which static word embeddings
have been superseded by more recent developments
is the rise of transformer architectures operating
with subsymbolic embeddings and the processing
of text spans rather than static lexemes. Contex-
tualized embeddings for a phrase, a lexical unit
or another observable can be represented in FrAC
as (a property of the) attestation of the observable
in a corpus: frac:attestationEmbedding
assigns an attestation an embedding. For encod-
ing multiple contextual embeddings for a particular
lexical entry, say, tree, it is necessary to create one
attestation with one attestation embedding prop-
erty. If possible, the attestation object should be
linked to the respective passage in the corpus, but
in the spirit of the open world assumption in RDF
semantics, this information is optional, so that a
minimal encoding of contextual embeddings in a
lexical resource can use the following template:

:le_tree a ontolex:LexicalEntry ,
frac:Observable ;

frac:embedding [
a frac:FizedSizeVector;
dc:extent "50";
rdf:value "[ 0.0001, ... ]" ];

frac:attestation [
frac:attestationEmbedding [

a frac:FixedSizeVector;
dc:extent "50";
rdf:value "[ 0.5352, ... ]" ] ].

From the perspective of a corpus, both contex-
tualized and context-free embeddings can be en-
coded correspondingly. If we use the CoNLL-
RDF vocabulary for identifying tokens in a corpus
(FrAC can be used with any vocabulary for this pur-
pose, e.g., Web Annotation or NIF), and the token
doc:s1_5 has already been defined, then, it can
just be linked with the attestation:
... frac:attestation [

frac:corpus doc:s1_5;
frac:attestationEmbedding

[ ... ] ] .

For the token doc:s1_5, we can now easily
retrieve various kinds of embeddings:
doc:s1_5 ^frac:corpus ?att.
?att frac:attestationEmbedding

?contextualEmbedding .
?att ^frac:attestation

[ a ontolex:LexicalEntry;
frac:embedding ?entryEmbedding ].

doc:s1_5
^frac:corpus/^frac:attestation
[ a ontolex:LexicalForm;
frac:embedding ?formEmbedding ].

doc:s1_5
^frac:corpus/^frac:attestation
[ a ontolex:LexicalSense;
frac:embedding ?senseEmbedding ].

doc:s1_5
^frac:corpus/^frac:attestation
[ a ontolex:LexicalConcept;
frac:embedding ?conceptEmbedding ].

These partial queries operate on separate attes-
tations for every kind of observables. However,
the model is generic enough to also follow indirect
links: Using OntoLex core data structures, a sense
attestation can server as an anchor to retrieve em-
beddings for lexical sense, but also lexical concept
or lexical entry: For the Brown corpus, a concrete
application can be seen in the SemCor corpus (Fell-
baum et al., 1997), a layer of semantic annotation
(WordNet senses), and with the following query we
can retrieve AutoExtend synset embeddings and
contextualized sense embeddings:
SELECT ?contextualEmbedding

?synsetEmbedding
WHERE {
?att frac:attestationEmbedding [
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rdf:value ?contextualEmbedding ] .
?att ^frac:attestation ?sense.
?sense

a ontolex:LexicalSense;
ontolex:isLexicalizedSenseOf
?synset.

?synset a ontolex:LexicalConcept;
frac:embedding/rdf:value

?synsetEmbedding .

Such data can then be used, for example, to train
a mapping from contextual embeddings to synset
embeddings.

In their earlier formulation of the FrAC vocab-
ulary, frac:Embedding had the following at-
tributes: (1) dc:extent dimensionality of em-
beddings (for fixed-size vectors), or the num-
ber of data points per observation (in time se-
ries data) (2) rdf:value value of the embed-
dings, according to the examples, this should be
a JSON literal, e.g., an array (of floats) or a
hashtable of keys (e.g., context words) and nu-
merical weights. (3) dc:description human-
readable description of embedding type and param-
eters (4) frac:corpus URI of the underlying
corpus data

With the revised upper model, embedding
inherits rdf:value, dc:description and
frac:corpus from frac:Observation.
As part of the generalization, the restriction of
rdf:value to JSON literals is abandoned – and
this may, indeed, conincide with external require-
ments to the FrAC vocabulary, as it seems easier
at times to encode embeddings (fixed size vectors
or bags of words) just as plain strings, as such data
can be more easily created from existing resources.

3.7 Similarity

Similarity relates to computing the strength of the
semantic relationships between different elements,
e.g., forms, lexemes, and phrases. There are vari-
ous similarity metrics, but in the FrAC context, sim-
ilarity is obtained through a numerical description
of the contexts for each of the analysed elements,
i.e., their embeddings (Sect. 3.4).

In FrAC, similarity is represented using
the frac:Similarity class, an aggre-
gate (set, or bag) of FrAC observables, that
represents a relation between two or more
embeddings (frac:Embeddings). In
the revised FrAC model, the earlier frac:
ContextualRelation superclass of frac:
Similarity from which its properties
were inherited has been replaced by frac:

Observation, no further renaming necessary.
FrAC similarity can be applied to both similarity
relations (sets of two observables) and similar-
ity clusters (sets of two or more observables)
characterized by a single value.

The value of a similarity is an rdf:value
calculated according to the employed Embedding
model, e.g., the number of shared dimensions – in
a bag-of-word model. This value is published to-
gether with its corresponding metadata, (2) one
or more source corpora, i.e., frac:corpus, (2)
the description of the comparison method, i.e.,
dc:description.

We can use frac:Similarity for different
scenarios, two being exemplified in FrAC, i.e., the
similarity between two words, and similarity clus-
ters. Similarity clusters are useful in computational
linguistics for tasks that rely on cognate recogni-
tion and language similarity. When applied to a
particular corpus, similarity cluster offers a gener-
alization score over all the pairs of similes. This
generalization method can use different approaches,
e.g., the minimal similarity between all members
in the cluster, or a score given by the clustering
algorithm. The used approach must be explained
in dc:description.

A very simple example for Similarity is cosine
similarity, as can be calculated between fixed size
vectors. Using the AutoExtend embeddings, the
cosine similarity between any two lexical concepts
can be modelled as follows:

:ls_abc a ontolex:LexicalSense ;
frac:embedding :ls_abc_embedding .

:ls_xyz a ontolex:LexicalSense ;
frac:embedding :ls_xyz_embedding .

[ dc:description
"cosine similarity" ]
a frac:Similarity, rdfs:Bag ;
rdfs:member :ls_abc_embedding ,

:ls_xyz_embedding ;
rdf:value "0.0036" .

4 Consolidation and Outlook

The revised FrAC vocabulary proposed in
this paper introduces the novel class frac:
Observation as a generalization over different
kinds of phenomena that can be observed from
or derived from corpus data and that are relevant
for lexical resources. With small changes to previ-
ously proposed vocabulary elements, this revised
top-level structure can be seamlessly applied to use
cases and sample data featured in previous publica-
tions on FrAC.
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The following changes have been proposed:
(1) merge the frac:locus property of
frac:Attestation into frac:corpus; (2)
extend the understanding of frac:Corpus /
range of frac:corpus to cover any piece of
structured (collections of) primary data, including
parts thereof; (3) merge frac:quotation and
rdf:value; (4) abandon previous restrictions
on the range of rdf:value; and (5) merge
frac:ContextualRelation with the newly
created class frac:Observation

Aside from inheriting common characteristics
from a newly created generalization, we claim that
this model is equivalent in expressivity to the cur-
rent formulation of FrAC as available from the
public draft of the vocabulary. but that it features
a more systematic structure in that the common
pattern exhibited for modelling the different types
of observations and corpus-derived information is
now explicitly encoded in the model, making the
overall model both easier to describe, more com-
pact and easier to formalize in RDFS semantics.

We illustrate the applicability of this model to a
number of examples, mostly with reference to the
Brown corpus. We argue that with this in formation,
it becomes possible for the first time to encode both
the majority of lexical information derived from the
Brown corpus in a unified way, and to thus integrate
those resources on a technical level. With FrAC,
all these different aspects can be encoded in RDF
and this representation can be the basis to define
interoperable APIs for different web services, APIs
or applications to produce, consume or integrate
such data. At the moment, the state of the art in this
area is probably best represented by the proprietary
SketchEngine APIs, whose responses are, however,
do not come with any guarantees for long-term sta-
bility or reproducibility. Furthermore, a number of
aspects are not well-supported by SketchEngine:
This includes, for example, the online reference
to individual attestations (SketchEngine only pro-
vides resolvable URIs for query responses, but not
for the individual matches), or the retrieval of em-
beddings (provided by SketchEngine but only as
data dumps, not integrated in the API). Another
possible application is to provide dumps of corpus-
derived information (of attestations, embeddings,
collocations, similarity clusters or frequency lists)
along with the associated lexical graph.

As it provides uniform data structures on the
basis of web standards, FrAC represents the fun-

dament to develop consistent access protocols for
the unified access, public exposure, exchange and
integration of heterogeneous data as currently pro-
vided, for example, via the Linguistic Linked Open
Data cloud (Chiarcos et al., 2011; Declerck et al.,
2020), libraries such as NLTK (Bird, 2006) or via
portals such as HuggingFace (Lhoest et al., 2021).
At the same time, FrAC accomodates the needs
of digital lexicography and the language sciences,
and has partially been motivated by applicability to
philological data (Chiarcos et al., 2020) and multi-
media content (Chiarcos et al., 2011). As a result of
applying OntoLex and FrAC, resources developed
in lexicography become accessible and re-usable in
the context of language technology, and resources
and solutions developed in language technology
become applicable to lexicographic and linguistic
data and research challenges.

The second novel contribution of this paper
is that we provide an OWL2/DL ontology as
formalization of the revised FrAC vocabulary.
This allows to automatically validate FrAC data,
to detect inconsistencies and to perform reason-
ing (inferences) over FrAC data. In particular,
types (classes) of observations and observables
can be automatically (RDFS-)inferred from do-
main and range constraints of properties such
as frac:frequency, frac:attestation,
frac:embedding, etc., so that this infor-
mation is in fact optional in data exchange.
Likewise, formal OWL2/DL axioms allow
users to define application-specific subclasses of
frac:CorpusFrequency, etc., so that these
can be used as a short hand for specific bundles of
observations with frac:corpus, rdf:value,
dc:description and other properties that con-
strain the corpus under consideration or that define
hyperparameters used in the extraction process.

It is important to note that – to the best of our
knowledge – no RDF vocabulary of similar scope
was in existence prior to FrAC, and that the inte-
gration with OntoLex facilitates a relatively wide
application across different disciplines and research
networks. It is less certain whether there are com-
parable pre-RDF vocabularies in existence. We
mentioned the SketchEngine API and exchange
formats, but as far as open (community) standards
are concerned, we are not aware of any related work
of similar scope. Nevertheless, aspects of corpus-
driven lexicography have been addressed in the
Lexical Markup Framework (Romary et al., 2019,

https://github.com/ontolex/frequency-attestation-corpus-information/blob/master/index.md#overview
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for attestation) and the TEI guidelines (Burnard,
2013, for collocation), but we are not aware of
any formal standard for embeddings or machine-
readable similarity scores. By extending OntoLex
with a designated module for frequency, attestation
and corpus-based information in lexical resources,
we are thus breaking novel ground.
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was partially funded through the OPTIM Research
project (POCU grant no. 62461/03.06.2022, SMIS
code 153735). Moreover, the authors would like to
thank Maxim Ionov, Anas Fahad Khan, and Julia
Bosque-Gil for contributing to the development
of OntoLex-FrAc as well as to all OntoLex-FrAC
contributors.

References
Steven Bird. 2006. Nltk: The natural language toolkit.

In Proceedings of the COLING/ACL 2006 Interactive
Presentation Sessions, pages 69–72.

Lou Burnard. 2013. The evolution of the text encoding
initiative: from research project to research infras-
tructure. Journal of the Text Encoding Initiative, (5).

Christian Chiarcos, Thierry Declerck, and Maxim Ionov.
2021. Embeddings for the lexicon: Modelling and
representation. In Proceedings of the 6th Workshop
on Semantic Deep Learning (SemDeep-6), pages 13–
19.

Christian Chiarcos, Katerina Gkirtzou, Maxim Ionov,
Besim Kabashi, Anas Fahad Khan, and Ciprian-
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