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Introduction

The Conference on Natural Language Processing (“Konferenz zur Verarbeitung natürlicher
Sprache”, KONVENS) aims at offering a broad perspective on current research and developments
within the interdisciplinary field of natural language processing. It allows researchers from all
disciplines relevant to this field of research to present their work.

The 15th KONVENS “Bridging the gap between NLP and human understanding” took
place October 9–11, 2019, at Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany. It
was the first KONVENS in an annual schedule, following KONVENS 2018 in Vienna, Austria,
and preceeding KONVENS 2020 in Zürich, Switzerland. KONVENS 2019 was collocated with
the GermEval Workshop and a Statistics Tutorial.

The conference was organized by the Chair of Computational Corpus Linguistics led by
Prof. Dr. Stefan Evert.
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Abstract

We apply a pre-trained transformer based
representational language model, i.e.
BERT (Devlin et al., 2018), to named entity
recognition (NER) in contemporary and
historical German text and observe state
of the art performance for both text cate-
gories. We further improve the recognition
performance for historical German by un-
supervised pre-training on a large corpus of
historical German texts of the Berlin State
Library and show that best performance
for historical German is obtained by unsu-
pervised pre-training on historical German
plus supervised pre-training with contem-
porary NER ground-truth.

1 Introduction

The transformer (Vaswani et al., 2017) is a recent
neural network architecture that has been used as
the central building block of representational lan-
guage models such as GPT (Radford et al., 2018) or
BERT (Devlin et al., 2018). These representational
models can either be utilized to derive features that
serve as input for other models such as a long short
term memory (LSTM) and/or a conditional random
field (CRF) or they can be directly trained on some
supervised task. In this paper, we follow the lat-
ter approach and train a pre-trained BERT model
directly for named entity recognition (NER) tasks.

In contrast to contemporary German, historical
German texts pose multiple challenges on a poten-
tial algorithm because their language is less stan-
dardized and their digital representation has been
typically obtained by optical character recognition
(OCR) that has been shown to be error prone in this
particular scenario (Federbusch et al., 2013).

In the experiments presented below, we evaluate
the performance of BERT on two contemporary
German NER data sets as well as on three different

historical German NER corpora (see Sec. 5). We
get best results for historical German by applica-
tion of unsupervised pre-training on a large historic
german text corpus plus supervised pre-training us-
ing contemporary German NER ground-truth. In
contrast best results for contemporary German are
obtained without unsupervised pre-training. The
large historical German text corpus that is used for
unsupervised pre-training has been extracted from
the digital collections of the Berlin State Library
(Staatsbibliothek zu Berlin/SBB).

The software used in the experiments is provided
for download 1.

2 Background

The SBB is digitizing its copyright-free holdings
and makes them publicly available online in various
formats for direct2 or automated3 download. As
part of an on-going process, a growing amount
of OCR-derived full-texts of the digitized printed
material is provided in ALTO4 format but is mainly
used for internal use cases such as full-text indexing
and other information retrieval tasks.

However, OCR of historic documents is signi-
ficantly more difficult than OCR of modern texts
due to the large variety of fonts, layouts, mixed
languages, and non-standardized orthography of
printed texts from before 1850. As a consequence,
texts generated by standard OCR contain a high
amount of word errors. Similar challenges have
been described by (Lopresti, 2009) and (Alex and
Burns, 2014) who have noted that the quality of
text analysis is directly tied to the level of noise in
a document. Additional difficulties are caused by
the historic language (Piotrowski, 2012).

Despite these obstacles, natural language pro-
cessing – and NER in particular – strongly con-

1https://github.com/qurator-spk/sbb ner
2https://digital.staatsbibliothek-berlin.de
3https://digital.staatsbibliothek-berlin.de/oai
4https://www.loc.gov/standards/alto/
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tribute to an improvement of the user experience
as they leverage supportive means for exploration
and search within large text corpora. Furthermore,
a growing research interest from the Digital Hu-
manities in text and, e.g., data mining for historical
social network analysis relies on the extraction of
named entities from the digitized and OCR-derived
full-text collections.

First experiences with NER for historical texts
at the SBB were obtained in the Europeana News-
papers project where a CRF (Finkel et al., 2005)
was trained on manually labeled OCR texts of his-
toric newspapers (Neudecker et al., 2014). This ap-
proach was superseded in the Oceanic Exchanges
project where (Riedl and Padó, 2018) achieve state
of the art results for historic German by combining
a bidirectional long short term memory (biLSTM)
with a CRF as top layer and transfer learning.

The work presented in this paper aims towards a
versatile approach that performs decently on texts
of different epochs, i.e. contemporary and histori-
cal, without requirement of intense parameter tun-
ing with respect to particular target corpora.

The paper is structured as follows: The next
section outlines the relevant work in the context of
the presented approach. Section 4 describes four
data sets that are used in the three experiments
presented. In particular, it presents the data of the
Berlin State Library that has not been published so
far. Then, Section 5 gives a brief description of the
technical details of the experiments. The outcome
of the experiments is discussed and interpreted in
Section 6. The paper concludes with an outlook on
future work.

3 Related Work

(Grover et al., 2008) designed a rule-based system
for recognizing person and place names in digitized
records of British parliamentary proceedings from
the late 17th and early 19th centuries and report
F1–scores from 70.35 to 76.94 percent.

(Packer et al., 2010) compare the performance of
a dictionary-based extractor, a regular expression
rule-based extractor, a Maximum Entropy Markov
Model (MEMM) and a CRF on historical OCR-
processed documents with a mean word error rate
of 56 percent, revealing that a voting-based ensem-
ble method can boost F1–scores from 60.7 to 68
percent.

For a corpus of historic French newspapers, (Gal-

ibert et al., 2012) report F1–scores between 55.2
and 68.9 percent for two stochastic and one rule-
based system by including noisy entities in the
annotations.

In the Europeana Newspapers project,
(Neudecker et al., 2014) measure F1–scores
of 46.6 to 73.27 percent with a CRF trained on
annotated noisy OCR from historic newspapers
in Dutch, French, and German. F1–scores up to
60 percent are obtained for a dataset of Finnish
OCR-treated newspapers from the 19th and early
20th century with a rule-based system (Kettunen
et al., 2016) and the Finnish Semantic Tagger,
a lexicon-based semantic tagger (Kettunen and
Ruokolainen, 2017).

A supervised machine learning system (Nouvel
et al., 2011) has been shown to improve F1–score
up to 76.1 percent (Ehrmann et al., 2016). This
result was improved furthermore by (Riedl and
Padó, 2018) where transfer learning from the Ger-
man Europeana Newspapers data enabled the biL-
STM+CRF classifier to reach a top F1–score of
78.56 percent (see Table 2).

To conclude, (Schweter and Baiter, 2019) re-
cently employed BERT features for NER resulting
in F1—scores from 75.31 to 79.14 percent while
their best models that have been trained on news-
paper data of corresponding time epochs deliver
F1—scores from 77.51 to 85.32 percent (see also
Table 3).

4 Datasets

4.1 Europeana Newspapers Historic German
Datasets

The Europeana Newspapers NER corpus was de-
rived from historical newspapers that have been
processed by an OCR and subsequently annotated
(Neudecker, 2016). Therefore, that corpus con-
stitutes a good match for the kind of material ad-
dressed in this paper. It comprises data sets for
historical Dutch, French, and German where the
German data has been sourced from newspapers
from 1926 from the Dr Friedrich Tessmann Library
(LFT), newspapers from 1710 to 1873 from the
Austrian National Library (ONB), and newspapers
from 1872 to 1930 from the Berlin State Library
(SBB).
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4.2 CoNLL 2003 German Named Entity
Recognition Ground Truth

The German data used in the CoNLL 2003 task
(Tjong Kim Sang and De Meulder, 2003) has been
taken from a German newspaper, the Frankfurter
Rundschau, from 1992. The CoNLL set posesses
two different test sets, i.e. TEST-A and TEST-B.
We use both in the experiments only for testing
(DE-CoNLL-TEST).

4.3 GermEval Konvens 2014 Shared Task
Data

The GermEval dataset (Benikova et al., 2014) has
been sourced from sampling German Wikipedia
and various online newspapers. The GermEval
dataset posesses a training, a development and a
test set. The development set has not been used at
all in the experiments.

4.4 Distribution of Entities
The distribution of labeled entity tokens within the
different NER ground truth data sets is shown in
Table 1.

LOC ORG PER Size

DE-CoNLL-TEST 0.025 0.033 0.037 103387
DE-CoNLL-TRAIN 0.025 0.020 0.022 206931
GermEval-TEST 0.028 0.021 0.027 96499
GermEval-TRAIN 0.028 0.022 0.027 452853
LFT 0.062 0.037 0.067 70259
ONB 0.066 0.007 0.115 28012
SBB 0.022 0.010 0.019 47281

Table 1: Distribution of entity tokens amongst different
training sets and frequencies of entity tokens across different
training sets.

4.5 Digital Collections of the Berlin State
Library (DC-SBB)

At the time of the writing of this paper, the dig-
ital collections of the SBB contain 153,942 digi-
tized works from the time period of 1470 to 1945
(see Figure 1). Up to now, 28,909 works have
been OCR-processed resulting in 4,988,099 full-
text pages.

We applied a sequence of filter steps in order
to exclude pages that do not contain german text,
have very bad OCR results or contain content that
is unlikely to be continuous text.

For each page with OCR text, we predicted its
language by means of the langid tool (Lui and
Baldwin, 2012). Figure 2 illustrates the number
of pages per language limited to the most frequent

Figure 1: Distribution of publication dates in the digital
collections of the Berlin State Library (DC-SBB).

languages. For 19,669 works, the language is con-
sistent over all pages as can be seen from the his-
togram of detected languages per work that is given
in Figure 3. Due to this consistency for the vast
majority of all works, we consider the per page lan-
guage detection provided by langid as sufficiently
reliable means to filter out non-german pages. Ad-
ditionally, we take into account only pages with a
confidence score of the German language detection
greater than 0.999999.

Fulltexts of pages where the OCR did not work
at all, for instance pages that contain hand-written
parts, tend to look like random character sequences.
In order to exclude these “broken” pages from the
data, we computed the distribution of the per-page
character entropy rate over all pages. Figure 4
depicts the distribution of the per page character
entropy rate in the DC-SBB. We excluded all pages
with a character entropy rate below the 0.2 per-
centile or above the 0.8 percentile of that distribu-
tion from the dataset.

As a consequence of these filter steps, 2,333,647
pages of unlabeled historical German text remain
and form the DC-SBB dataset. The full dataset
is available freely online (Labusch and Zellhöfer,
2019).

5 Experiments

In the scope of the three presented experiments, the
BERT model is trained directly with respect to the
NER by implementation of the same method that
has been proposed by the BERT authors (Devlin et
al., 2018). During training, the maximum sequence
length is set to 128.

Throughout all experiments, we use the Adam
optimizer algorithm with decoupled weight decay
(Loshchilov and Hutter, 2019) where the weight

3



Figure 2: Number of pages per language as detected by
langid for the most common languages.

Figure 3: Number of detected languages by langid per DC-
SBB document (documents with >5 languages are omitted).

decay is set to 0.03. We apply a linear learning
rate schedule where warm-up and cool-down of the
learning rate take 40% of the performed training
steps. We set the target learning rate to 3∗10−5 and
use a batch size of 32 during all the experiments.
We carried out 7 training epochs if not noted other-
wise.

Accumulative gradient descent for both super-
vised and unsupervised learning is applied due to
hardware limitations that would otherwise enforce
a smaller batch size. Instead of the original BERT
implementation, all experimental runs rely on an
equivalent PyTorch implementation provided by
(Hugging Face, 2019) since accumulative gradient
descent cannot be easily carried out using the cur-
rent Tensorflow (< 2.0) implementation of BERT.

5.1 BERT-Base Multi-Lingual Cased Model

In the first batch of experiments, we explore the
NER performance of the baseline model as it has
been provided by Google 5. We use their BERT-

5https://github.com/google-
research/bert/blob/master/multilingual.md

Figure 4: Distribution of the per page character entropy rate
of the documents in the DC-SBB dataset. The 0.2 and 0.8
percentiles have been marked with a vertical line.

Base multi-lingual cased model that has been pre-
trained on 104 languages. It has 12 transformer
blocks where each transformer block has 768 layers
with 12 attention heads and uses a vocabulary size
of 119,547. The entire model has about 110 million
parameters. The left F1-column of Table 2 shows
the results of the BERT-Base model for different
combinations of training and test sets.

5.2 BERT-Base Model with Pre-Training on
DC-SBB

In this experimental run, we study the impact of
unsupervised pre-training with respect to the NER
performance on historical and contemporary data.
Therefore the multi-lingual BERT-Base model is
pre-trained unsupervisedly on the DC-SBB dataset
(see Sec. 4.5). The unsupervised pre-training task
is composed of the “Masked-LM” and “Next Sen-
tence Prediction” tasks that have been proposed in
(Devlin et al., 2018).

The pre-training of the base model has been run
for approximately 500 hours on a single NVIDIA
2080 GPU which is equivalent to 5 epochs. Dur-
ing pre-training, the batch size is set to 128, the
learning rate is set as in the NER task training and
a weight decay of 0.01 is used. The middle F1-
column of Table 2 shows results of the BERT-Base
model being pre-trained on the DC-SBB data for
different combinations of training and test sets.

5.3 5-fold Cross Validation and Comparison
with State of the Art Approaches

Since the NER performance varies heavily for dif-
ferent train/test set combinations and in order to
make our results comparable to results in (Riedl
and Padó, 2018) and (Schweter and Baiter, 2019),
we run a third batch of experiments where a 5-fold
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cross validation is performed for the three historical
German corpora.

In this run, the impact of pre-training on the
model performance under cross validation is eval-
uated. We apply unsupervised pre-training on the
DC-SBB data as well as supervised pre-training
on contemporary NER ground truth. In case of
supervised pre-training, 7 training epochs are run
again with the same learning parameters described
above. Finally, unsupervised and supervised pre-
training are combined where unsupervised is done
first and supervised second. The corresponding
cross validation results are shown in Table 3.

6 Discussion

The NER ground truth sets that have been used
in the experiments described above are diverse in
terms of size and with respect to the frequencies of
the entity classes as Table 1 summarizes.

While the contemporary data sets GermEval and
CoNLL show similar frequencies of entity classes,
the frequencies of entities within the historical data
sets LFT, ONB, and SBB deviate significantly. The
SBB set comes closest to the contemporary sets in
terms of entity frequencies.

Futhermore, there is far more contemporary
ground truth available than for historical texts. The
amount of ground truth also varies significantly
among the various historical datasets.

Table 2 shows the NER performance in terms of
the F1–score obtained with different training/test
combinations using either the original BERT-Base
model or a BERT-Base model that has been pre-
trained on the DC-SBB set. (Riedl and Padó, 2018)
present a comprehensive evaluation of CRF and
bidirectional long short term memory (biLSTM)
with CRF layer approaches for NER in contem-
porary and historical German, relying on a partial
utilization of the ground truth data that is consid-
ered in this work. The authors use character em-
beddings together with different pre-trained word
embeddings as input features of the biLSTMs. For
those training/test pairs that have corresponding
results in (Riedl and Padó, 2018), their best result
is listed in the rightmost F1-column of Table 2.

Interestingly, unsupervised pre-training on DC-
SBB data worsens BERT performance in the case
of contemporary training/test pairs while the per-
formance improves for all experiments that test
on historical ground truth with one exception
(CoNLL/LFT). Please note that the same training

BERT multi-
lingual-cased (Riedl

and
Padó,
2018)

pre-train: none DC-SBB none

train test F1 F1 F1

CoNLL CoNLL 84.5 82.6 82.99
LFT 52.9 52.0 49.28
ONB 56.1 56.6 58.79
SBB 67.6 68.3 -

GermEval GermEval 88.6 86.7 82.93
LFT 54.2 54.8 55.99
ONB 60.0 62.6 61.35
SBB 63.1 65.1 -

GermEval +
CoNLL

CoNLL 80.2 79.4 -

GermEval 88.0 85.7 -
LFT 55.1 55.2 -
ONB 58.6 60.1 -
SBB 64.1 65.1 -

LFT ONB 71.5 75.9 65.53
SBB 54.4 56.9 -

LFT+SBB ONB 72.5 75.7 -
ONB LFT 59.4 61.5 49.35

SBB 51.3 54.6 -
ONB+LFT SBB 54.0 55.5 -
ONB+SBB LFT 61.9 62.7 -
SBB LFT 53.9 54.9 -

ONB 63.4 66.0 -

Table 2: BERT NER-performance on different combinations
of training and test sets. For all training/test pairs the same
number of training epochs has been executed and the same
learning parameters have been used.

Left (pre-train none): NER-performance of the non-
modified multi-lingual BERT-Base model as provided by
Google5.

Middle (pre-train DC-SBB): NER-performance of the
multi-lingual BERT-Base model that has been pre-trained for
5 epochs on the DC-SBB data with objective “Masked-LM”
and “Next Sentence Prediction” as proposed in (Devlin et al.,
2018) prior to the NER supervised training.

Right (Riedl and Padó, 2018): NER-performance as
published in (Riedl and Padó, 2018) where multiple state-
of-the art CRF only and biLSTM + CRF approaches using
different character and word embeddings have been evaluated.

Pre-training on DC-SBB improves results for historical Ger-
man datasets, independently on the type of NER-ground-truth
used for supervised training whereas the original BERT-base
model provides better results on contemporary German test
sets.
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BERT multi-lingual-cased (Riedl and
Padó, 2018)

(Schweter
and Baiter,
2019)

5-fold cross
validation on

pre-train precision recall F1 F1 F1

SBB DC-SBB + GermEval + CoNLL 81.1 ±1.2 87.8 ±1.4 84.3 ±1.1 - -
DC-SBB + CoNLL 81.0 ±2.1 87.6 ±1.8 84.2 ±1.9 - -
DC-SBB + GermEval 80.6 ±1.8 87.4 ±1.3 83.8 ±1.2 - -
CoNLL 81.0 ±1.9 86.6 ±2.2 83.7 ±1.5 - -
GermEval 79.7 ±1.8 87.2 ±0.8 83.3 ±1.1 - -
GermEval + CoNLL 79.9 ±2.1 86.4 ±1.7 83.0 ±1.9 - -
DC-SBB 79.1 ±2.6 86.7 ±0.7 82.7 ±1.3 - -
none 79.1 ±3.6 85.0 ±1.1 81.9 ±2.2 - -

ONB Newspaper (1703-1875) - - - - 85.31
DC-SBB+GermEval + CoNLL 81.5 ±1.8 87.8 ±1.4 84.6 ±1.5 - -
DC-SBB + GermEval 81.6 ±2.5 87.5 ±1.6 84.5 ±1.8 - -
DC-SBB + CoNLL 81.7 ±2.8 87.5 ±1.9 84.5 ±2.3 - -
DC-SBB 81.8 ±2.3 87.1 ±2.1 84.3 ±2.0 - -
GermEval 80.8 ±2.1 85.4 ±1.2 83.0 ±1.4 78.56 -
GermEval + CoNLL 80.0 ±1.5 84.7 ±1.6 82.3 ±1.5 - -
CoNLL 79.1 ±2.5 84.5 ±2.1 81.7 ±2.2 76.17 -
none 78.0 ±2.4 84.1 ±1.9 80.9 ±2.0 73.31 -

LFT Newspaper (1888-1945) - - - - 77.51
DC-SBB + CoNLL 70.0 ±2.6 81.0 ±0.7 75.1 ±1.5 - -
DC-SBB + GermEval 69.9 ±3.0 81.1 ±1.0 75.1 ±1.8 - -
DC-SBB 70.0 ±3.5 80.8 ±1.4 75.0 ±2.1 - -
DC-SBB + GermEval + CoNLL 69.8 ±3.0 80.8 ±0.9 74.9 ±2.0 - -
GermEval 68.9 ±2.7 79.3 ±1.4 73.7 ±1.9 74.33 -
GermEval + CoNLL 69.1 ±2.6 78.8 ±1.3 73.6 ±1.5 - -
none 68.8 ±3.4 79.2 ±1.5 73.6 ±2.2 69.62 -
CoNLL 68.4 ±3.1 79.1 ±1.3 73.3 ±2.1 72.9 -

Table 3: 5-fold cross validation results for different historical German NER corpora where different pre-training steps have
been applied to the BERT model. For all experiments the same number of training epochs and the same learning parameters have
been used. Results in (Riedl and Padó, 2018) and (Schweter and Baiter, 2019) have been obtained for some 80/20 training/test
split.

None: Model as published by Google5.

DC-SBB: Model unsupervisedly pre-trained on DC-SBB.

CoNLL: Model supervisedly pre-trained on CoNLL training set.

GermEval: Model supervisedly pre-trained on GermEval training set.

DC-SBB + GermEval + CoNLL: First unsupervised pre-training for 5 epochs on the DC-SBB data. Second super-
vised pre-training on the joined GermEval and CoNLL NER ground truth.

The NER-performance under cross-validation can be significantly improved by combination of unsupervised and su-
pervised pre-training. DC-SBB+GermEval+CoNLL pre-trained models show close to state-of-the-art performance on all three
historical datasets using exactly the same training parameters and number of training epochs.
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data leads to significantly different performances
on varying test sets.

The original BERT model performs better than
the biLSTM+CRF models in the case of con-
temporary training/test combinations. The pre-
trained BERT model performs better than the biL-
STM+CRF models in the case of the majority
of historical training/test combinations except the
CoNLL/ONB and GermEval/LFT pairs.

The impact of the diversity of the ground truth
data sets makes it difficult to assess the actual per-
formance of the BERT models on the historical
data based on the results shown in Table 2 alone.
In order to further study and clarify the experi-
mental outcomes, another sequence of experiments
was performed to evaluate the NER performance
on the historical data under cross validation. The
corresponding results are shown in Table 3. As
above, the corresponding best results from (Riedl
and Padó, 2018) are listed, if available, though their
results have not been obtained under cross valida-
tion but for a fixed training/test split. (Schweter
and Baiter, 2019) present a recent study of NER in
historical German. They use a combined biLSTM
+ CRF model together with varying combinations
of character embeddings, contextualized string em-
beddings (Akbik et al., 2018), pre-trained word em-
beddings, and BERT-layer features. We included
their best results that have been obtained for a fixed
train/test split on the LFT and ONB data set in the
rightmost column of Table 3.

As illustrated by Table 3, various degrees of pre-
training successively improve the performance of
the BERT model. In case of the ONB and LFT
data unsupervised pre-training alone (DC-SBB)
provides the biggest part of improvement. Addi-
tional supervised pre-training adds only a small
improvement. In case of the SBB ground truth,
which is more similar to the contemporary data,
supervised pre-training contributes more to the per-
formance improvement.

BERT outperforms the biLSTM + CRF ap-
proaches that have been evaluated in (Riedl and
Padó, 2018) but the results are still worse than some
of the results reported in (Schweter and Baiter,
2019). Their best results rely on a pre-training
scheme that is adapted to the final target domain
whereas in our experiments the pre-training scheme
DC-SBB + GermEval + CoNLL provides very
good cross-validation performance for the three
historical German sets SBB, ONB, and LFT while

utilizing the same set of learning parameters.

7 Conclusion and Future Work

The historical texts of the SBB digital collections
originate from a broad period of time ranging from
1470 to 1945. A long term goal is to reliably con-
duct NER in this large text corpus in order to im-
prove the user experience for researchers interact-
ing with the library’s digitized holdings. Hence, a
versatile approach is required that can deliver de-
cent recognition performance for texts of different
time epochs and a variety of text categories.

Our results show that an appropriately pre-
trained BERT model delivers decent recognition
performance in a variety of settings and even pro-
vides state of the art performance in many cases
without extensive fine-tuning and optimization re-
quirements. This outcome encourages further re-
finement and an extension of the methodology that
has been evaluated in the presented experiments.

In the scope of this paper, we started all our ex-
periments from the BERT-Base model. An increase
of the model size is expected to improve the results
further (Devlin et al., 2018). Therefore, we plan to
re-run the experiments using BERT-Large which
requires even more computation time.

In particular, the unsupervised pre-training on
the DC-SBB set is computationally demanding. So
far, we performed only 5 training epochs though
further improvement in the unsupervised tasks
“Masked-LM” and “Next Sentence Prediction” is
still possible according to the trend of the loss. We
plan to compensate for some of the additional com-
putational demand by better and more GPU hard-
ware that is currently installed at the SBB.

We think that there is a lot of performance to
gain for historical text by adding more historical
ground-truth data. Therefore, we plan to add more
historical ground-truth data in the near future also
in cooperation with the SoNAR project (Interfaces
to Data for Historical Social Network Analysis and
Research).

To end with, we plan to significantly reduce the
level of noise in the source OCR texts by means of
re-processing the digitized documents with LSTM
OCR software specifically trained on historical
texts and through the application of unsupervised
OCR post-correction methods based on neural net-
works and finite-state-transducers being developed
in the OCR-D project (Neudecker et al., 2019).
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Abstract

We present the first systematic supervised
learning approach for the extraction of
opinion sources and targets on German lan-
guage data. A wide choice of different
features is presented, particularly syntac-
tic features and generalization features. We
point out specific differences between opin-
ion sources and targets. Moreover, we ex-
plain why implicit sources can be extracted
even with fairly generic features. In or-
der to ensure comparability our classifier
is trained and tested on the dataset of the
STEPS shared task.

1 Introduction

While there has been much research in sentiment
analysis on typical text classification tasks, such
as subjectivity detection, polarity classification and
emotion classification, there has been notably less
work on opinion role extraction. This particularly
also concerns research done on languages other
than English. In opinion role extraction, we distin-
guish between opinion source extraction, where the
entities expressing an opinion are to be extracted,
and opinion target extraction, where the task is to
extract the entities or propositions at which senti-
ment is directed. For example, in (1) the sentiment
expression criticizes has as its source Switzerland
and as its target North Korea.

(1) [Switzerland SOURCE] criticizes [North Korea TARGET].
(2) [The opposition SOURCE] claims [that the health service

is getting fewer resources TARGET].

In this work, we address opinion role extraction
on German data. Research on this specific task and
language has been kicked off by the shared task on
Source, Subjective Expression and Target Extrac-
tion from Political Speeches (STEPS) with its two
editions from 2014 (Ruppenhofer et al., 2014a) and
2016 (Ruppenhofer et al., 2016). Our experiments

are carried out on these data since, to the best of
our knowledge, they are the only publicly available
labeled data comprising annotation for opinion role
extraction on German of sufficient size from which
to train a classifier. These data also allow us to
directly compare our work to systems that have
participated in this shared task.

In this paper, we assume that the underlying
sentiment expression which evokes opinion source
or opinion target has already been identified. De-
coupling role extraction from the identification of
sentiment expressions seems reasonable to us since
previous research has focused on subjectivity detec-
tion, i.e. the detection of sentiment expressions in
context. The latter task is also considerably easier
in which generic and resource-poor features yield
good results. Even STEPS acknowledged this by
offering a subtask where sentiment expressions are
already provided and thus researchers may focus
solely on opinion role extraction.

The contributions of this paper are that we
present the first in-depth study to what extent differ-
ent features are relevant for the task of opinion role
extraction on German data. Since we present work
on German language data this means that there ex-
ist fewer NLP tools and/or tools of lesser quality.
We will examine which tools actually help. While
most previous approaches only focused on the ex-
traction of either sources or targets, we consider
both entity types and highlight notable differences
between these tasks. We also critically assess the
amount of training data that is currently available.
Finally, we conduct an evaluation against previous
participations in the STEPS 2016 shared task to
demonstrate the effectiveness of our approach.

We acknowledge that deep learning methods
have recently received considerable attention in
the NLP community. However, in this work we
follow a more traditional feature-based approach
employing supervised learning. The reason for this
is that in the area of opinion role extraction, the
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usage of deep learning methods has only produced
moderate results (Katiyar and Cardie, 2016). A ma-
jor caveat of deep learning methods is their reliance
on distributional word representations (e.g. word
embeddings). Opinion role extraction, however,
is a task which relies on various types of linguis-
tic information which are more expressive than
the most robust word embeddings, such as syntac-
tic dependency relations. Moreover, the amount
of available training data for German is notably
smaller than what is available for English (approxi-
mately by a factor of 10). This makes our setting
fairly unfavourable for deep learning which usually
outperforms traditional supervised approaches only
if large amounts of labeled data are available.

2 Related Work

Like our proposed classifier, most previous ap-
proaches for opinion role extraction are supervised
classifiers employing features from various infor-
mation sources. They include surface-level infor-
mation (Choi et al., 2005; Wiegand and Klakow,
2010), syntactic information (Choi et al., 2005;
Kessler and Nicolov, 2009) and even information
from semantic role labeling (Bethard et al., 2006;
Kim and Hovy, 2006; Johansson and Moschitti,
2013). While particularly the latter type of infor-
mation is very predictive for this task, we cannot
apply it on our setting, since we are not aware of
any robust semantic-role labeler for German.

Most previous research on opinion role extrac-
tion either only addressed opinion sources (Choi et
al., 2005; Wiegand and Klakow, 2010; Johansson
and Moschitti, 2013) or opinion targets (Kessler
and Nicolov, 2009; Jakob and Gurevych, 2010). In
this work, we look at both tasks. Thus we can show
that there is a notable difference between these two
tasks which also means that different classifier pa-
rameters and feature sets are required for those two
different subtasks.

So far, work on opinion role extraction has
mostly been carried out on English data. There
has been some work on Chinese and Japanese as
part of the NTCIR Opinion Analysis Task (Seki et
al., 2007). Work on German that addresses both
opinion source and target extraction has exclusively
been carried out as part of the STEPS 2014 and
2016 shared tasks. There were few submissions
made to the latter shared tasks. The systems pre-
sented can be divided into 3 different types:

• rule-based approaches: Wiegand et al.

(2014) present a system that works on extrac-
tion rules defined on sentiment expressions.
The system applies heavy normalization of
syntactic parse trees so that simple extraction
rules cover a wide range of different sentences.
Wiegand et al. (2016) is an extension of that
system in which further components, such as
a module to detect grammatically induced sen-
timent, are added. Despite only fairly generic
extraction rules, this approach produced fairly
good results.

• translation-based approaches: Wiegand et
al. (2014) also present a second system which
is a supervised learning system trained on the
MPQA corpus which has been automatically
translated into German. That approach no-
tably suffers from the bad translation quality.

• supervised approaches: Both Kriese (2016)
and Wiegand et al. (2016) present a supervised
classifier. While Kriese (2016) proposes mod-
els that build on path bundles derived from a
constituency parse tree, Wiegand et al. (2016)
examine an SVM trained on various features
including features from syntactic parses. The
results are not very conclusive as no proper
feature ablation studies are carried out.

Our work substantially extends previous super-
vised systems as we use more features (e.g. gen-
eralization features, features derived from a con-
stituency parse tree, subcategorization features).
Moreover, we optimize various parameters and fea-
tures on some development set. Thus we ensure
that the features and classifiers are used in their
best possible configuration. Finally, we conduct
various experiments examining different feature
subsets. These experiments are vital in order to
make general conclusions regarding which type of
information is really required for this task.

3 Data & Annotation

For our experiments we employ the labeled datasets
from the STEPS 2014 shared task (Ruppenhofer et
al., 2014b) and the STEPS 2016 shared task (Rup-
penhofer et al., 2016) comprising 605 and 580 sen-
tences, respectively. For STEPS 2016, the STEPS
2014 dataset was revised in order to be compati-
ble with the new annotation scheme introduced for
STEPS 2016. We use this revision of the STEPS
2014 dataset. The advantage of using datasets from
the revised annotation scheme is that this scheme
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Property Freq
number of sentences 1185
average length of sentence 21
sentiment expressions 4646
sentiment expr. with neither source nor target 753
number of sources 3402
number of targets 3378
proportion of development set 10%

Table 1: Statistics of the dataset.

has been shown to produce a sufficiently high inter-
annotation agreement (Ruppenhofer et al., 2016).

Since both datasets are fairly small, we merged
them and conduct our experiments on the union
of both datasets. Table 1 provides some descrip-
tive statistics of our resulting dataset. 10% of the
dataset were reserved as development data. On this
data, we optimized various features and parameters
of our classifier (§7.1).

4 Classifier and Instance Space

We pursue a supervised learning approach and de-
cided in favor of using SVMs. As a tool, we em-
ploy SVMlight (Joachims, 1999). We consider the
extraction of sources and targets as two completely
separate tasks.

Both sources and targets always relate to a
specific sentiment expression which evokes them.
Therefore our instance space comprises tuples of
sentiment expression and candidate opinion source
phrase for sources, and sentiment expression and
candidate target phrase for targets (Table 2). As
a candidate source phrase, we consider all noun
phrases (NPs) and preposition phrases (PPs) from
the sentence in which the given sentiment expres-
sion occurs, while for targets, we consider any con-
stituent of a sentence to be an candidate. This
difference can be explained by the fact that only
persons qualify as a source (hence NPs and PPs)
while targets represent a more heterogeneous class
of entities. For example, in (1) it is an NP repre-
senting a country while in (2) it is a complement
clause representing a proposition.

5 Implicit Opinion Sources

A considerable number of opinion sources in our
dataset are implicit. That is, there is no constituent
in the relevant sentence that represents this opinion
source. Instead the opinion source is the speaker
of the utterance. For example, in (3) the sentiment
expression offensichtlich (obvious) has no explicit
source.

(3) [Die Gründe dafür TARGET] sind offensichtlich.
([The reasons for that TARGET] are obvious.)

The likelihood of an opinion source being im-
plicit very much depends on its sentiment expres-
sion. For example, a word such as obvious will
predominantly have an implicit source. Table 3
shows the distributions of the different source types
according the part of speech of their sentiment ex-
pressions. There is clearly a correspondence. For
example, of all parts of speech the likelihood of
implicit sources is highest with adjectives.1 A clas-
sifier that takes into account the part of speech of
sentiment expressions is already able to make good
guesses as to the presence or not of an explicit
source (for example by predicting all opinion ad-
jectives as having an implicit source and all opinion
nouns having an explicit source). Further, the lexi-
cal knowledge of sentiment expressions as a feature
will also be beneficial. For example, we found that
more than one third of the verbal sentiment ex-
pressions having implicit sources are evoked by
verbs conveying so-called grammatically-induced
sentiment (Wiegand et al., 2016). This concerns
sentiment that is conveyed by certain modalities
(4)-(5).

(4) [Deshalb müssen wir diesen Prozess stärker ankurbeln.
TARGET]
([That is why we must to crank this process up. TARGET])

(5) [Sie sollten hier ein Signal setzen. TARGET]
([You should send a clear message here. TARGET])

Such sentiment is evoked by frequently occur-
ring auxiliary and modal verbs, such as werden
(will) or sollen (should). Even on comparatively
small training corpora, such as ours, this informa-
tion can be directly learned. That is, no manual
lexicon is required for detecting such cases of sen-
timent as the precision of those verbs to predict an
implicit source on our dataset is about 94%.

In order to enable our supervised learner to pre-
dict implicit sources, we simply need to adjust the
instance space for opinion sources. In addition
to explicit constituents from the sentence (see dis-
cussion above), we also add a dummy instance
with an empty candidate source phrase. These in-
stances will represent implicit sources. Indeed our
exploratory experiments on the development set,
as shown in Table 4, confirmed that just adding
dummy instances for sources with our full feature

1We found that the actual proportion of implicit sources
on that part of speech is actually even higher, since many
sentiment adjectives having an explicit source actually turned
out to be verbs erroneously tagged as adjectives.
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Role Instance Candidate Phrases
source <sentiment expr., candidate phrase> all NPs, PPs and an empty dummy phrase for implicit sources (§5)
target <sentiment expr., candidate phrase> all phrases of a sentence

Table 2: Instances for opinion sources and targets (the sentiment expression is always given).

Adj Noun Verb
Source Freq Perc Freq Perc Freq Perc
explicit 154 27.2 1411 80.1 1164 71.1
implicit 412 72.8 350 19.9 472 28.9

Table 3: Parts of speech of implicit sources.

w/o Implicit Instances w Implicit Instances
Prec Rec F1 Prec Rec F1
56.6 27.6 37.1 55.8 49.7 52.6

Table 4: Impact of implicit sources instances.

set (that includes the above features describing the
part of speech and the lemma of the sentiment ex-
pression) drastically increases extraction perfor-
mance for source extraction.

6 Feature Design

Our feature set is too large for us to be able to per-
form an evaluation on each individual feature. In-
stead, we group our features according to 5 mean-
ingful dimensions and evaluate them. In the fol-
lowing, we discuss those dimensions. Our com-
plete feature set is heavily based on features em-
ployed for opinion role extraction in English. For
more motivation of our feature set, we therefore
refer the reader to previous work, particularly by
Choi et al. (2005) and by Kessler and Nicolov
(2009).

The first dimension groups our features accord-
ing to the linguistic representation on which they
are based. For instance, there are features that en-
code some semantic information, others describe
syntactic or just surface-based information.

The second dimension is the focus of the feature.
We distinguish between features that describe the
individual linguistic entities involved in role extrac-
tion, that is, the sentiment expression or the can-
didate source/target phrase; features that describe
their relation; and features that describe further
context (i.e. features that focus on words other than
the sentiment expression or candidate phrase).

Our third dimension divides the feature set into
simple and complex features. By complex features,
we understand features that require the usage of
some lexical resource or a computationally inten-
sive NLP tool (here we consider every tool more

complex than a part-of-speech tagger).
The fourth dimension states whether a feature

generalizes some lexical information or not. The
generalization may be produced in a data-driven
way (e.g. Brown clustering (Brown et al., 1992))
or with the help of some lexical resource (e.g. Ger-
maNet (Hamp and Feldweg, 1997)).

The final dimension groups our feature set ac-
cording to the information source it uses. By infor-
mation source, we define the resource or NLP tool
that is used in order to extract a particular feature.
Table 5 lists all features we use and also character-
izes them according to each dimension.

For part-of-speech tagging we used TreeTagger
(Schmid, 1994), for constituency parsing the Berke-
ley Parser (Petrov et al., 2006), for dependency
parsing ParZu (Sennrich et al., 2009), for named-
entity recognition, we used the tagger by Faruqui
and Padó (2010). The Brown clusters were in-
duced with the help of SRILM (Stolcke, 2002).
We induced 1000 clusters from the HGC corpus2.
As a subcategorization lexicon, we used IMSLex
(Fitschen, 2004).

7 Experiments

7.1 Parameter Optimization
Before we examine the different feature subsets, we
need to optimize some feature and classification
parameters. For these experiments, we always test
a classifier on the development data. The classifiers
are trained on the remaining data. We now list
these optimized settings:

• Best level of generalization for GermaNet hypernyms
(we do not just consider the direct hypernyms but also
higher-up ancestors): for both sources and targets we
consider hypernyms up to their third ancestors.

• Best cut-off value for length of part-of-speech se-
quences: 5 for sources; all sequences for targets.

• Best cut-off value for length of constituency paths: 5
for sources; 10 for targets.

• Best cut-off value for length of dependency relation
paths: 5 for sources; 5 for targets.

• Best cost-parameter that adjusts the classifier to the
imbalanced class distribution: j=5 for sources; j=6
for targets. (In opinion role extraction, like all entity
extraction tasks, the entities to be extracted represent a

2http://www.ims.uni-stuttgart.de/
forschung/ressourcen/korpora/hgc.html
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Dimensions
Feature Representation Focus Simplicity Generalizing Info. Source
head of sentiment expr. word individual simple no lexical unit
head of candidate phrase word individual simple no lexical unit
context as bag of words word context simple no lexical unit
Is candidate phrase first phrase
of sentence?

surface individual simple no other

orientation of candidate phrase
in relation to sentiment expr.

surface relation simple no other

distance between candidate
phrase and sentiment expr.

surface relation simple no other

cluster id of head of sentiment
expr.

semantic individual complex yes Brown clustering

cluster id of head of candidate
phrase

semantic individual complex yes Brown clustering

cluster ids of context words semantic relation complex yes Brown clustering
named entity of candidate
phrase

semantic individual complex yes named-entity tagging

synset id(s) of head of sentiment
expr.

semantic individual complex yes GermaNet

synset id(s) of head of candidate
phrase

semantic individual complex yes GermaNet

GermaNet word class of head of
sentiment expr.

semantic individual complex yes GermaNet

GermaNet word class of head of
candidate phrase

semantic individual complex yes GermaNet

GermaNet word class of words
in context

semantic relation complex yes GermaNet

pos of head of sentiment expr. syntactic individual simple no pos tagging
pos of head of candidate phrase syntactic individual simple no pos tagging
pos sequence between candidate
phrase and sentiment expr.

syntactic relation simple no pos tagging

subcategorization frame accord-
ing to subcat. lexicon

syntactic individual complex no subcat. lexicon

number of arguments on subcat-
egorization frame according to
subcat. lexicon

syntactic individual complex no subcat. lexicon

phrase label of candidate phrase syntactic individual complex no constituency parsing
tuple of phrase label of candi-
date phrase and pos of head of
sentiment expr.

syntactic relation complex no constituency parsing

pos-tuple of head of candidate
phrase and head of sentiment
expr.

syntactic relation simple no constituency parsing

subcategorization frame derived
from constituency tree

syntactic individual complex no constituency parsing

number of arguments in subcat-
egorization frame derived from
constituency tree

syntactic individual complex no constituency parsing

constituency label path between
heads of candidate phrase and
sentiment expr.

syntactic relation complex no constituency parsing

length of constituency label
path between heads of candidate
phrase and sentiment expr.

syntactic relation complex no constituency parsing

subcategorization frame derived
from dependency tree

syntactic individual complex no dependency parsing

number of arguments on subcat-
egorization frame derived from
dependency tree

syntactic individual complex no dependency parsing

dependency relation path be-
tween heads of candidate phrase
and sentiment expr.

syntactic relation complex no dependency parsing

length of dependency relation
path between head of candidate
phrase and sentiment expr.

syntactic relation complex no dependency parsing

Table 5: Features and their categorization along 5 dimensions.
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Figure 1: Optimizing the cost parameter.

minority class. This typically results in datasets with
very imbalanced class distributions.)

We exemplify the importance of this optimiza-
tion on the cost-parameter. Figure 1 shows the
different F-scores of different cost-parameters for
both source and target extraction on the develop-
ment set. Clearly, the default value (i.e. j = 1)
would only produce poor results of the classifier.

7.2 Comparison of Different Feature Groups

Given the optimal configurations determined in
§7.1, we now examine the different feature groups
on a 10-fold crossvalidation. We report macro-
average precision, recall and F(1)-score.

Table 6 shows the performance of the individual
foci and their combinations. This analysis shows
that the most important focus is the set of relational
features. Adding other features only yields mild
increases in performance. The table also shows
that regarding the other foci, there is a notable
difference between the tasks. While for extraction
of sources, both individual and context provide
some decent F-score, on the extraction of targets
they are not useful at all. While it is difficult to
explain this behaviour for the context features, we
found some intuitive explanation for the behaviour
of the individual features. Opinion sources are per
definition a very restricted set of entities sharing
specific semantic properties. That is, only persons
or groups of persons qualify as opinion sources.
Therefore, a personal pronoun or the mention of
a proper name (notice that our individual features
capture this type of information), will already have
a relatively high prior probability of representing
a source. Targets, on the other hand, represent a

Source Target
Subset Prec Rec F1 Prec Rec F1
individual 48.2 41.2 44.4 5.4 0.2 0.3
relational 59.5 49.8 54.2 47.5 40.1 43.5
context 44.7 33.1 38.0 38.2 4.1 7.4
ind.+rel. 59.4 51.6 55.2 48.8 40.1 44.0
ind.+cont. 48.3 44.7 46.4 31.6 12.7 18.0
rel.+cont. 56.4 47.4 51.5 47.8 38.8 42.9
all 56.0 54.0 55.0 49.1 39.9 44.0

Table 6: Comparison of different foci.

Source Target
Subset Prec Rec F1 Prec Rec F1
all 56.0 54.0 55.0 49.1 39.9 44.0
-clustering 55.7 52.4 54.0 49.0 39.6 43.8
-GermaNet 57.0 51.6 54.1 49.9 40.6 44.7
-depend. 55.4 53.0 54.2 45.3 37.3 41.2
-constit. 55.1 49.7 52.3 46.1 35.4 40.0
-subcat 56.3 53.7 55.0 49.1 39.8 44.0
-pos 55.8 52.6 54.2 49.5 38.5 43.3
-named ent. 56.0 53.6 54.8 49.2 40.0 44.1
-other 56.1 52.3 54.1 50.6 39.1 44.1
-lexical 60.1 51.4 55.7 49.1 40.3 44.3
-dep.-const. 52.2 47.6 49.8 39.6 32.6 35.8

Table 7: Ablation experiments.

much more heterogeneous group. They may be
entities of various semantic types, they may even
be represented by propositions (cf. (1) and (2)).
This explains why targets are more dependent on
relational features. That is, they can be more easily
identified by their relationship towards the existing
sentiment expression. For example, in both (1)
and (2), the target is an object of its sentiment
expression.

Table 7 shows some ablation experiments in
which we remove one information source at a time.
This gives us an indication of how unique the in-
dividual information sources are in terms of the
information they contribute to the prediction of
sources and targets. Only few information sources
seem to carry unique information. The most no-
table exceptions are dependency and constituency
parse information. On target extraction, we notice a
notable drop in performance if either of those types
of features are removed. We also removed both of
these information sources at the same time to show
that dependency and constituency information are
not only important but are also complementary to
each other.

Table 8 compares the performance of the dif-
ferent linguistic representations. The results are
in line with the previous experiments. Word-level
features are much more predictive for sources than
for targets. Virtually all those features are individ-
ual features, so the explanation that we provided
in Table 6 also applies here. Although word-level,
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Subset Source Target
word 42.7 6.9
word+semantic 45.3 17.1
word+surface 47.2 24.4
word+semantic+surface 48.0 26.4
word+syntactic 53.6 44.2
word+surface+syntactic 53.6 44.1
all 55.0 44.0

Table 8: F-Scores of different linguistic representa-
tions.

Source Target
Subset Prec Rec F1 Prec Rec F1
simple 53.6 46.4 49.8 40.7 34.7 37.5
complex 59.9 49.7 54.3 50.3 29.9 37.5
all 56.0 54.0 55.0 49.1 39.9 44.0

Table 9: Simple and complex features.

semantic and surface features can be effectively
combined, the most notable boost in performance
is obtained when syntactic features are added. This
is in line with our ablation experiments (Table 7)
where we found that constituency and dependency
parsing, in other words, syntactic features carry the
most distinct information for this task.

Table 9 compares simple and complex features.
Again, we observe notable differences between
source and target extraction. While the two feature
groups are on a par on target extraction, on source
extraction the complex features are stronger. The
combination of the feature groups is more effective
on target extraction than on source extraction.

Table 10 shows the impact of generalization of
both tasks. There is no clear indication that the
generalization features actually help. Particularly
on the extraction of targets these features are not
useful at all. We explain the latter results by the
fact that the generalizations are basically general-
izations of the individual features and we pointed
out in the discussion of Table 6 that those features
seem to not be predictive for targets. A generaliza-
tion of a completely unrelated feature is very likely
to be not predictive either.

7.3 Learning Curve

The amount of labeled training data that is available
to us (i.e. about 1,200 sentences) is still very small.

Source Target
Subset Prec Rec F1 Prec Rec F1
plain 57.5 51.2 54.2 49.5 40.1 44.3
generalizat. 47.1 39.3 42.9 4.1 0.2 0.3
all 56.0 54.0 55.0 49.1 39.9 44.0

Table 10: The impact of generalization.
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Figure 2: Learning curve on gold standard.

Because of this, we computed a learning curve in
order to estimate in how far increasing the amount
of labeled training data would affect classification
performance. Figure 2 displays a learning curve.
While for sources, the curve clearly indicates that
a larger amount of labeled training data is likely
to increase classification performance, for targets
the curve seems to be almost saturated. We already
argued above that the extraction of targets is consid-
erably more difficult than the extraction of sources.
Presumably, source extraction would benefit from
more labeled training data since then the classifier
could get more evidence of which nouns or noun
phrases are likely opinion sources and which are
not. We strongly assume that due to the semantic
heterogeneity of targets, such features are not ef-
fective no matter what amount of training data is
available. With regard to relational/syntactic fea-
tures, the current amount of labeled training data
may be sufficient since there are only a handful of
meaningful syntactic relationships holding between
a sentiment expressions and either of its sources or
targets (e.g. subject, object etc.).

7.4 Comparison against Previous Classifiers

Finally, we evaluate our classifier with the full fea-
ture set against other systems that participated in
the STEPS 2016 shared task. In order to produce a
meaningful comparison, unlike our previous exper-
iments, we train our classifier only on the training
data from that shared task.3 Table 11 shows the per-
formance of the different classifiers. Overall, our
proposed supervised system produces the best per-

3This explains why the performance of our proposed sys-
tem is slightly lower than in the previous experiments.
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Figure 3: Illustration of opinion target covering more than one constituent.

Figure 4: Illustration of opinion target covering
exactly one constituent.

formance. While on the extraction of sources, we
notably outperform all other classifiers, on the ex-
traction of targets, the rule-based system from Saar-
land University (Wiegand et al., 2016) is on the par
with our classifier. This classifier is able to recog-
nize instances of opinion targets that our system is
unable to recognize. It concerns cases of so-called
grammatically induced sentiment (§5). In such
cases, the target typically is an entire (sub)clause.
In the output of a constituency parser, these clauses
often correspond to more than one constituent as
illustrated in Figure 3. However, our classifier al-
ways assumes one constituent per source and tar-
get each as illustrated in Figure 4. Therefore, our
approach is unable to correctly extract the above
targets. In future work, we would like to combine
that classifier with ours in order to hopefully obtain
even a higher classification performance.

7.5 Error Analysis

Unfortunately, it is outside the scope of this paper
to provide an in-depth error analysis. However, we
could identify the output of syntactic parsing as a
major source of error. We established in our eval-
uation that syntactic features are most predictive.
Given that completely correct syntactic analyses
on our data are rare it comes as no surprise that

Source
System Prec Rec F1
Saarland University (supervised) 59.4 38.3 46.6
Saarland University (rule based) 59.9 28.6 38.7
Potsdam University (supervised) 36.2 30.0 32.9
proposed system 58.0 44.0 50.3

Target
System Prec Rec F1
Saarland University (supervised) 42.6 31.7 36.3
Saarland University (rule based) 69.2 28.9 40.8
Potsdam University (supervised) 37.3 22.2 27.8
proposed system 48.1 35.0 40.5

Table 11: Comparison with systems of the STEPS
2016 Shared Task.

the overall classification performance we achieve
is still comparatively low.

8 Conclusion

We presented a supervised learning approach for
opinion role extraction for German. We found that
there are notable differences between the extraction
of opinion sources and opinion targets. Opinion
targets are more difficult to handle. Even with com-
parably simple features, opinion sources can be
extracted. For both tasks, information describing
the relation between the given sentiment expres-
sion and the candidate opinion role, particularly
the information drawn from syntactic parses, is
most important. Generalization features do not
increase classification performance much. Even
though our feature set is not specifically tailored
to implicit opinion sources, we are able to detect a
considerable proportion. Our best classifier outper-
forms the best classifier which participated in the
STEPS 2016 shared task. With regard to opinion
target extraction, it performs on a par with the best
previously reported classifier.
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Abstract

We present a descriptive analysis on the
two datasets from the shared task on
Source, Subjective Expression and Tar-
get Extraction from Political Speeches
(STEPS), the only existing German dataset
for opinion role extraction of its size. Our
analysis discusses the individual properties
of the three components, subjective expres-
sions, sources and targets and their rela-
tions towards each other. Our observations
should help practitioners and researchers
when building a system to extract opinion
roles from German data.

1 Introduction

While there has been much research in sentiment
analysis on typical text classification tasks, such
as subjectivity detection, polarity classification and
emotion classification, there has been notably less
work on opinion role extraction. This particularly
concerns research done on languages other than
English. In opinion role extraction, we distinguish
between opinion source extraction, where the enti-
ties expressing an opinion, i.e. the opinion sources,
are to be extracted, and opinion target extraction,
where the task is to extract the entities or proposi-
tions at which sentiment is directed, i.e. the opinion
targets. For example, in (1) the subjective expres-
sion criticizes has as its source Switzerland and as
its target North Korea.

(1) [Switzerland SOURCE] criticizes [North Korea TARGET].
(2) [The opposition SOURCE] claims [that the health service

is getting fewer resources TARGET].

In this paper, we address opinion role extraction
on German data. Research on this specific task and
language has been kicked off by the shared task
on Source, Subjective Expression and Target Ex-
traction from Political Speeches (STEPS) with its
two editions from 2014 (Ruppenhofer et al., 2014a)

and 2016 (Ruppenhofer et al., 2016). We present
a descriptive analysis of the two datasets from this
shared task that serve as a gold standard for opin-
ion role extraction on German. Our aim is not to
produce a classifier to automatically extract opin-
ion sources and targets. Instead, we look into the
properties of this gold standard in order to guide re-
searchers and practitioners who intend to build such
a classifier. Our analysis should largely influence
the choice of classifiers, particularly the underlying
feature set that describes potential opinion roles.

The focus of our analysis is on the structure of
the opinion frame (§3), i.e. the linguistic structure
that relates opinion source and target to its subjec-
tive expression. For each of these three linguistic
components (subjective expression, opinion source
and opinion target), we look at their individual
linguistic forms and also their (syntactic) relation
towards each other. Since STEPS consists of two
datasets, i.e. the editions from 2014 and 2016, we
also compare in how far the observed properties be-
tween the two different datasets differ. Given that
each dataset individually is very small (i.e. only
about 600 annotated sentences) the combination of
the two datasets is a desirable step when building
a classifier for opinion role extraction. Only if the
two datasets are compatible to a large degree, can
they be used for building a single application.

For general accessibility, we will always pro-
vide English examples when German and English
follow the same linguistic pattern. Since, to the
best of our knowledge, this is the first descriptive
corpus-based study for opinion role extraction in
general, we believe that our insights may be rele-
vant to research beyond the German language.

Syntactic information plays a significant role in
opinion role extraction, particularly, dependency
relations. In this work, we consider dependency
parses produced by ParZu (Sennrich et al., 2009).
We consider this parser since it is also the depen-
dency parser which the organizers of STEPS em-
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ploy in the release of their dataset.

2 Related Work

So far, work on opinion role extraction has mostly
been carried out on English data, especially the
MPQA corpus (Wiebe et al., 2005), the standard
corpus for fine-grained sentiment analysis. There
has also been a related shared task on the topic: the
Sentiment Slot Filling track (SSF) that was part of
the Shared Task for Knowledge Base Population
of the Text Analysis Conference (TAC) (Mitchell,
2013). For Japanese and Chinese some compara-
ble data have been created as part of the NTCIR
Opinion Analysis Task (Seki et al., 2007; Seki et
al., 2008; Seki et al., 2010).

To the best of our knowledge, the only descrip-
tive analysis of opinion role extraction was pre-
sented by Ruppenhofer et al. (2008). The major
difference to our work is that Ruppenhofer et al.
(2008) enumerate linguistic phenomena involved in
opinion role extraction without reference to some
existing datasets. Since we examine a labeled cor-
pus, our main contribution is that we quantify the
linguistic phenomena involved.

For German sentiment analysis, there exist quite
a few different corpora ranging from sentiment
aspect classification (Säger et al., 2016; Wojatzki et
al., 2017) to much more fine-grained tasks, such as
attitude classification (Klenner et al., 2017). Apart
from STEPS, however, there only exists the MLSA
corpus (Clematide et al., 2012) with annotation
of both opinion holders and targets on German
text. The annotation scheme of STEPS was mainly
inspired by Layer 3: Expression-level Annotation
of MLSA. (The same researchers who annotated
that layer of MLSA also created the two STEPS
datasets.) The reason we conduct our study on the
STEPS corpus rather than on the MLSA corpus is
that the two STEPS corpora totaling about 1,200
sentences are significantly larger than the MLSA
corpus with only 270 sentences.

3 Opinion Frames

In STEPS, opinion roles are represented as opinion
frames. An opinion frame is a triple <subjective
expression, opinion source, opinion target>. The
subjective expression is a word or phrase which
conveys some opinion, its source is the entity that
expresses that opinion, and its target is the entity or
proposition towards which that opinion is directed.
In this paper, subjective expressions will always

Figure 1: Illustration of an opinion frame.

be indicated by bold type font in examples and
abbreviated by the acronym SE in the prose.

Each opinion frame has exactly one SE and at
most one source and target each. In other words,
there can be opinion frames without a source (3),
without a target (4) or without both (5).

(3) I don’t understand this interest [in weapons TARGET].
(4) [Peter SOURCE] was so unhappy that he immediately left

the party.
(5) Altruism is not a very common thing in our society.

4 IGGSA-STEPS: Shared Task on
Source and Target Extraction from
Political Speeches

For our experiments we employ the labeled datasets
from the Shared Task on Source and Target Extrac-
tion from Political Speeches. In that shared task,
German language speeches from the Swiss par-
liament were annotated with opinion frames. In
German, there exists no comparable dataset of sim-
ilar size for opinion role extraction. The data have
been annotated in TIGER/SALSA XML (Erk and
Padó, 2004), a format originally devised for rep-
resenting frame-structures from FrameNet (Baker
et al., 1998). This representation format combines
syntactic constituency parses with some semantic
annotation. Like FrameNet-frames, opinion frames
represent semantic structures that build upon syn-
tactic structures. Figure 1 illustrates the structure
of a typical opinion frame.

There are two editions of the shared task (Rup-
penhofer et al., 2014b; Ruppenhofer et al., 2016).
For STEPS 2016, the STEPS 2014 dataset was re-
vised in order to be compatible with the new anno-
tation scheme introduced for STEPS 2016. We use
this revision of the STEPS 2014 dataset. Another
advantage of using the dataset from the revised
annotation scheme is that it has been shown to pro-
duce a sufficiently high interannotation agreement
(Ruppenhofer et al., 2016).

Table 1 displays some general statistics of the
two datasets. The table already indicates that there
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freq
property STEPS 2014 STEPS 2016
no. of sentences 605 581
avg. no. of tokens in sentence 22.58 24.08
no. of subjective exprs. (SEs) 2105 2166
avg. no. of SEs in sentence 3.58 3.94
no. of opinion frames 2228 2417
no. of sources 997 1064
no. of targets 1608 1770

Table 1: Statistics of the two STEPS datasets.

are no significant differences in the frequency of
the different major constructions between STEPS
2014 and STEPS 2016.

5 Subjective Expressions (SEs)

The first step in opinion role extraction is to deter-
mine which words represent SEs. Table 2 provides
some statistics about this linguistic entity. The
most notable observation is that many SEs are sin-
gletons. (This ratio does not change much even if
we merge the two datasets STEPS 2014 and STEPS
2016.) This is highly relevant for building a classi-
fier to detect SEs. If most SEs only occur once in a
gold standard, then they can hardly be learnt from
this data directly. Instead, some form of sentiment
lexicon listing SEs should be used. However, by
computing the coverage of the SEs in the standard
sentiment lexicon for German, the PolArt lexicon
(Klenner et al., 2009), we found that only a small
proportion (i.e. 25%) is actually covered.

With about 19% of the vocabulary, multiword ex-
pressions (MWEs) represent a considerable share
in the set of SEs. About 75% are MWEs that con-
sist of exactly 2 tokens, which, in most cases, are
phrasal verbs, e.g. tritt ab (stands down), denkt
nach (considers). Compared to idioms, e.g. in
den sauren Apfel beißen (to bite the bullet), which
due to their free word order in German can have
many different surface realizations (Wiegand et al.,
2016a), phrasal verbs are relatively easy to detect.

Table 3 lists the distribution of the different
parts of speech among the SEs. To our surprise,
nouns are the most frequent type of SEs. One typi-
cally associates sentiment with adjectives (e.g. bad,
nice) or verbs (e.g. adore, hate) and, therefore, one
would expect a higher proportion of these parts of
speech. The high frequency of subjective nouns can
be explained by the fact that many of these nouns
are nominalized adjectives (e.g. badness) and nom-
inalized verbs (e.g. hatred). Additionally, many
subjective nouns are some form of compound, e.g.
Bombenattentat (bombing attack) or Expertenmei-

dataset types singletons MWEs
STEPS 2014 1115 805 213
STEPS 2016 1110 769 214

Table 2: Statistics of subjective expressions (SEs).

dataset verb adj noun adv other
STEPS 2014 270 206 418 18 227
STEPS 2016 280 207 405 27 224

Table 3: POS-Distribution of SEs (types are
counted).

nung (expert advice). Wiegand et al. (2016b) state
that every other sentence in STEPS 2014 contains
a noun compound.1 A noun compound (Bombe-
nattentat) typically consists of two constituents,
a modifier (Bombe) and a head (Attentat). Noun
compounds are very productive. In principle, noun
heads may combine with a large number of differ-
ent noun modifiers (e.g. Bombenattentat, Selbst-
mordattentat, Flugzeugattentat, Sprengstoffatten-
tat, Säureattentat etc.) This results in a large num-
ber of different compounds in STEPS (please keep
in mind that in Table 3, we count types and not to-
kens). Each of these compounds only occurs once
or twice on average which explains the high num-
ber of noun types, particularly singleton nouns in
STEPS.

In order to detect SEs automatically and given
the large number of sparse noun compounds on
both datasets, some form of noun normalization
would be advisable. Only the head of a noun com-
pound is relevant for detecting SEs, i.e. Attentat
(attack) in Bombenattentat (bombing attack). We,
therefore, anticipate a higher coverage of match-
ing SEs in a sentiment lexicon by reducing noun
compounds to their heads.

If one pursues a lexicon-based approach to detect
SEs, not only is a lexicon sought that has a good
coverage, one should also keep the reliability of
the entries in mind. Table 4 compares the precision
of an oracle lexicon, i.e. a lexicon comprising all
words being labeled at least once as an SE expres-
sion in either of the two editions of STEPS, with
the precision of the words in the PolArt sentiment
lexicon. (We evaluate here on the concatenation
of STEPS 2014 and STEPS 2016. In the follow-
ing sections, we always merge the distributions of
STEPS 2014 and STEPS 2016 whenever there was
not sufficient space and we did not observe any
significant difference between the two datasets.)

1We also confirm a similar proportion in STEPS 2016.
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lexicon Prec
union of words being labeled as SE at least once 72.1
PolArt lexicon 89.9

Table 4: Precision of different lexicons.

(a) sources

(b) targets

Figure 2: Distribution of phrase labels.

Although the PolArt sentiment lexicon has a low
coverage of SEs in STEPS, the entries that match
that lexicon are fairly reliable. A lexicon with a
full coverage of SEs (as our oracle lexicon) would
not solve the problem of detecting SEs, as a large
proportion of SEs are ambiguous words. One addi-
tionally would have to devise a subjectivity word-
sense disambiguation (Akkaya et al., 2009) once a
word within a sentence has been matched with that
lexicon. The task would be to decide whether an
ambiguous word, such as alarm is used in a sub-
jective sense, as in (6), or in a non-subjective one,
as in (7). If no reliable disambiguation is possible,
a sentiment lexicon may still be a good solution
because of its high precision.

(6) When he heard that particular news, his alarm grew
even more.

(7) Our new smoke detector is malfunctioning. The alarm
went off twice yesterday although there was no smoke.

6 Inherent Properties of Opinion Roles

We now examine properties of opinion sources and
targets. We start by looking at inherent properties.
Figure 2 compares the phrase label distribution of
opinion sources and targets. Typically, both source
and target exactly match one phrase node in the
constituency parse tree representing the sentence
(Figure 1). We introduce a phrase label Complex
by which we subsume all cases in which an opin-
ion role does not match exactly one constituent.
A large fraction of those instances will be parse
errors.2

Figure 2 shows that sources and targets have no-
tably different phrase labels. Opinion sources are
mostly noun phrases (NP) or personal pronouns.
This result is quite intuitive. Opinion sources can
only be persons or groups of persons as other types
of entities typically do not have any specific senti-
ment. The fact that prepositional phrases are also
frequent can be explained by passive constructions
(9) in which the opinion source is realized as a
prepositional phrase rather than an NP which is the
case in the more canonical active constructions (8).

(8) [Peter SOURCE] loves [Mary TARGET]
NP.

(9) [Mary TARGET] is loved [by Peter SOURCE]
PP.

Opinion targets, on the other hand, are much
more heterogeneous. Targets do not have to be en-
tities. They can also represent entire propositions.
This explains why other constituents, such as (com-
plement) sentences (10) or verbal phrases (11), are
also frequently labeled as targets.

(10) [Peter SOURCE] thinks [that Mary should work harder
TARGET]

S.
(11) [Peter SOURCE] wants [to go shopping TARGET]

VP.

It is also surprising that the second most fre-
quent phrase label is Complex. By manually in-
specting these cases, we found that in most of
them there was an error in the parse. Targets rep-
resenting entire propositions are typically much
longer phrases (i.e. they comprise more tokens)
than source-phrases representing simple entities.
Figure 3 illustrates the different token lengths of
sources and targets. It confirms that sources tend to
be shorter than targets. The long phrases that rep-
resent targets, such as sentences or verbal phrases,

2The constituency-parse trees in STEPS have been auto-
matically generated by the Berkeley parser (Petrov and Klein,
2007). In case of parsing errors, the annotators were instructed
to label those spans of text that they thought represent the cor-
rect span. This often meant that one opinion role was assigned
more than one phrase node in the constituency-parse tree.
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Figure 3: Distribution of phrase length.

are also much more likely to be affected by parsing
errors.

7 Opinion Roles and Their Relation
towards SEs

We continue our examination of opinion roles by
looking at the relation between opinion roles to the
SEs they evoke. We start by looking into syntactic
relationships.

Table 5 lists the 5 most frequent dependency-
relation paths observed between the individual
opinion roles and the SEs they evoke. The table
lists the paths for subjective verbs, adjectives and
nouns each. It suggests that some dependency-
relation paths are predictive for either sources or
targets. For example, for subjective verbs, sources
are often realized as subjects (↑subj) while targets
are realized as accusative objects (↑obja), as illus-
trated by (12). For subjective attributive adjectives,
one can very reliably predict targets by looking for
the noun that modifies them (↓attr) as illustrated
by (13).

(12) [Mary SOURCE]
subj likesverb [Peter’s new flat TARGET]

obj.
(13) I just saw a beautifulattr

adj [rainbow TARGET].

However, there are also relation paths that are am-
biguous. The most notable example is the geni-
tive modifier of subjective nouns (↑gmod) which
is the most frequent dependency relationship con-
necting both opinion sources (14) and targets (15).
This analysis proves that opinion roles cannot be
extracted exclusively on the basis of dependency-
relation paths.

(14) Das entsprach auch der Sichtweisenoun [der meisten
Bürger SOURCE]

gmod .
(This was also the view of most citizens.)

(15) Er hob die Einfachheitnoun [des Ansatzes TARGET]
gmod

hervor.
(He emphasized the simplicity of that approach.)

ratio [%]
pos relation path sources targets freq
verb ↑subj 81.2 18.8 479

↓aux ↑subj 67.9 32.1 324
↑obja 7.7 92.3 221
↑pp 12.6 87.4 87
↑objd 21.2 78.8 52

adj ↓attr 1.3 98.7 235
↓pred ↑subj 30.9 69.1 55
↓aux ↑subj 69.2 30.8 26
↓adv ↑subj 33.3 66.7 21
↑pp 66.7 33.3 12

noun ↑gmod 38.4 61.6 199
↑pp 15.2 84.8 79
↓obja ↑subj 68.9 31.1 74
↑det 76.9 23.1 65
↑attr 48.0 52.0 25

Table 5: Ambiguity of dependency-relation paths
between sources and targets.

One major obstacle in processing German text
is the high degree of errors in automatic syntactic
parse analyses. The longer a sentence is the more
likely errors in syntactic parsing occur. This cer-
tainly is an issue with STEPS 2014 and STEPS
2016 since both datasets contain long sentences
(between 22 and 24 tokens on average, see also
Table 1). The ParZu parser may fail to produce a
fully connected dependency tree for long sentences.
Instead only a set of partial trees are produced. In
that case, there is often no dependency-relation
path available that connects opinion roles with the
SEs they evoke.

For all pairs of <opinion role, SE> where the
members of the pair are separated by a specified to-
ken distance, Figure 4 shows the proportion of pairs
for which there is no connecting dependency path
available in the output of ParZu. The figure shows
that the longer the token distance is the higher the
proportion of pairs are that have no dependency-
relation path. Even for pairs with a short token
distance, there is still a considerable number of
pairs for which there is no dependency-relation
path. All in all, this analysis underlines that errors
in the syntactic parse output will have an impact on
classification performance.

As an alternative to syntactic dependency-
relation paths, we also examine whether the order
of pairs <opinion role, SE> is predictive for this
task. Unlike syntactic information, information
about the sequential order of two constituents is
not dependent on the output of a syntactic parser.
Table 6 displays the ratio of different orders. The
table shows that there may be certain correla-
tions between certain orders. For example, the
source mostly precedes subjective verbs or adjec-
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Figure 4: Connecting paths between opinion role and SE for different token lengths.

STEPS 2014 STEPS 2016
order verb adj noun verb adj noun
<source, SE> 81.7 91.1 62.0 83.4 97.6 55.9
<SE, source> 18.3 8.9 38.0 16.6 2.4 44.1
<target, SE> 67.5 24.2 32.1 66.8 36.5 30.9
<SE, target> 32.5 75.8 67.9 33.2 63.5 69.1

Table 6: Order of opinion role (i.e. source or target)
and SE (in percentage).

tives. However, in the case of targets, these cor-
relations are less pronounced. The general lack
of a predictive sequential order can be explained
by the fact that depending on tense or sentence
type, the order between different constituents may
vary. For instance, the canonical order for subjec-
tive verbs <SE, opinion target> as can be observed
in a present tense main clause (16) changes if that
sentence is shifted into present perfect (17) or a
subordinate clause (18).

(16) Peter hasstverb [Julia TARGET]
ob ja.

(Peter hates Julia.)
(17) Er hat schon immer [Julia TARGET]

ob ja gehasstverb.
(Peter has always hated Julia.)

(18) ... weil Peter [Julia TARGET]
ob ja hasstverb.

(... because Peter hates Julia.)

However, in all of these cases, the dependency
relation between subjective expression and opinion
target remains the same (↑obja). This example
illustrates that, in principle, syntactic dependency
relations are more expressive than sequential order.

8 Frame Structure Configurations

According to the definition of opinion frames (§3),
the presence of both source and target is not oblig-
atory. We want to examine how often the opinion
frame structure deviates from the canonical form

in which both source and target are present. Table
7 lists the frequency of different frame structure
configurations. The table clearly shows that both
in STEPS 2014 and STEPS 2016 there is a signif-
icant number of frames that do not include both
source and target. This observation is quite impor-
tant since it suggests that joint modelling of opinion
source and target using simple constraints of the
type an opinion frame has to comprise exactly one
opinion source and one opinion target would not
work.

In Table 7, we also observe that partial frames
with only a target are much more frequent than the
frames with only a source. We ascribe this large
amount to the so-called implicit sources. Implicit
sources are sources without a concrete surface real-
ization (19). They typically represent the speaker of
the utterance in which the opinion frame is evoked.
Strictly speaking, therefore, frames with such a
source are not partial frames. These frames just
lack an explicit source, that is, a constituent in the
sentence in which the SE occurs which has been
annotated as an opinion source. Whether an SE
comes with an explicit or implicit source largely
depends on the SE itself. In other words, it is a
lexical property of SEs. For English, Wiegand et al.
(2016c) developed methods to distinguish whether
an SE is more likely to have explicit or implicit
sources. While SEs with a tendency for implicit
sources are called speaker-views SEs, SEs with
a tendency for explicit sources are referred to as
actor-views SEs. Most of these methods should be
largely reproducible on German language data.

Apart from opinion frames with implicit sources,
there may, of course, also be opinion frames lack-
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STEPS dataset
frame structure 2014 2016
frames with source and target 845 850
frames with only source 152 214
frames with only target 763 920
frames with neither source nor target 468 433

Table 7: Distribution of different frame structures.

ing both an explicit and implicit source. An exam-
ple of the latter type is (20). It does not contain an
explicit source and from the context it is clear that
it is not the speaker of the utterance either since
the speaker (represented by I) explicitly distances
themselves from the interest in weapons. There-
fore, the exact source remains unspecified.

(19) [The reasons for voting to leave the EU TARGET] are
obvious.

(20) I don’t understand this interest [in weapons TARGET].

Figure 5 compares the distribution of frames
without source and frames without target across
SEs with different parts of speech. While for verbs,
we observe fewer frames that exclude either source
or target, we observe that for nouns and adjec-
tives partial frame structures are much more fre-
quent. (This also matches our previous examples
(3)-(5).) Particularly, most frames without a tar-
get are evoked by subjective nouns. The fact that
mostly adjectives and nouns are likely to form par-
tial opinion frames might be explained with the
help of subcategorization. Although the subcatego-
rization frames of verbs and nouns can be similarly
complex (for instance, both the subjective verb in
(21) and the subjective noun in (22) have two argu-
ments), for verbs the realization of its arguments
is usually obligatory in order to make a sentence
grammatical (cp. (21) with (23)). For nouns (and
adjectives follow similarly), however, it is quite
often the case that they come with fewer arguments
than their valency suggests (24). The fewer argu-
ments a subjective expression has, the more likely
partial frames are to be evoked. (24) contains a
partial frame lacking a target.

(21) [Mary SOURCE]
subj lovesverb [PeterTARGET]

obj.
(22) Everyone knew about [Mary’s SOURCE]

gmod lovenoun [to
PeterTARGET]

pobj.
(23) ?[Mary SOURCE]

subj lovesverb.
(24) In public, only few people talk about [Mary’s

SOURCE]
gmod lovenoun.

9 Inferred Sources

Most opinion roles are syntactic dependents of the
SE by which they are evoked. For instance, the

Figure 5: POS-Distribution of partial frames.

source of like in (25) is its subject. In STEPS, there
is a special subset of sources, referred to as inferred
sources. By that we understand sources that are not
associated with any of the syntactic dependents of
its SE (26). (In (26), the SE impressive has only one
syntactic dependent which is its subject.) These
sources are called inferred since from the subcat-
egorization frame of the SE, we cannot conclude
their presence. This makes them more difficult to
detect than normal sources.

(25) [Mary SOURCE]
subj likesverb [Peter’s new flat TARGET]

obj.
(26) [Mary INFERRED SOURCE] said [Peter’s new flat

TARGET]
subj was impressiveadj.

26% of the opinion sources in STEPS 2014
and STEPS 2016 have been flagged as inferred
sources by the annotators. Since this is a substan-
tial amount, we want to investigate whether we
can further characterize this subset of sources. If
we look at the distribution of parts of speech of
the SEs evoking inferred sources (Figure 6), we
find that there is a notable difference to the general
part-of-speech distribution of SEs. While the pro-
portion of nouns remains fairly constant, there is a
disproportionately high amount of inferred sources
with subjective adjectives. For SEs being verbs, the
proportion of inferred sources, on the other hand,
is fairly low.

We assume that the valency of the individual
SEs is responsible for that distribution. The pro-
totypical (subjective) adjective has one syntactic
argument, for example, a subject (27) which is its
target. There is no argument position for the opin-
ion source and therefore, the source is the implicit
speaker of the utterance.3 However, if this SE is

3The source in this sentence is not unspecified, since im-
pressive in (27) comes with all its obligatory syntactic argu-
ments, i.e. its subject. According to Wiegand et al. (2016c)
more than 90% of all subjective adjectives are speaker-view
words, i.e. these are subjective expressions that tend to have
implicit sources.
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Figure 6: POS-Distribution of SEs with inferred
sources.

further syntactically embedded, as in (26), there
may be some explicit source but it is inferred. For
subjective verbs, unlike subjective adjectives, there
is a syntactic argument in their subcategorization
frame, typically their subject, as in (25), that is
associated with their opinion source. Therefore,
fewer inferred sources occur with subjective verbs.

(27) [Peter’s new flat TARGET]
subj is impressiveadj.

10 Multiple Frame Evocation

There are SEs that evoke more than one opinion
source and target. In STEPS this is modeled by
allowing the same SE to evoke more than one single
opinion frame. For example, the verb force can
evoke three different opinion frames at the same
time as illustrated by (28)-(30). (28) describes
the view that James has some request to someone.
(29) describes the view of James towards walking
the dog. Finally, (30) represents Alice’s negative
sentiment towards walking the dog (if she did not
have that sentiment, James would not need to force
her to do so).

(28) [James SOURCE] forced [Alice TARGET] to walk the dog.
(29) [James SOURCE] forced Alice [to walk the dog TARGET].
(30) James forced [Alice SOURCE] [to walk the dog TARGET].

12% of the SEs in STEPS evoke more than one
opinion frame. Figure 7 shows the distribution of
multiple frame evocation across SEs with different
parts of speech. The statistic shows that by far most
SEs evoking multiple frames are verbs. This can
be explained by the fact that verbs have the most
complex subcategorization frames (e.g. in (28)-(30)
force has three different syntactic arguments). We
assume that the more syntactic arguments a SE has
in a sentence, the more likely there is some multiple
frame evocation.

Figure 7: POS-Distribution of SEs with multiple
frame evocation.

11 Conclusion

We presented a descriptive analysis of the STEPS
2014 and 2016 datasets, a resource for building
and evaluating opinion role extraction systems in
German. We found that the linguistic properties
of the two datasets are very similar which means
that they can be usefully merged into one resource.
A large proportion of subjective expressions are
nouns including noun compounds. The majority of
subjective expressions are singletons. We assume
that in order to increase the coverage of subjective
expressions in lexical resources, such as as senti-
ment lexicons, more effectively, some noun nor-
malization that reduces compounds to their heads
may be helpful. Opinion sources and targets differ
very much from each other. Opinion sources tend
to be realized as (short) noun phrases, while opin-
ion targets are long phrases of various types. For
both opinion sources and targets there is a small set
of characteristic dependency relationships towards
the subjective expression they evoke. Conceptu-
ally speaking, dependency relationships are more
predictive than sequential order. However, reli-
able syntactic information is difficult to produce
since parsers for German are fairly error prone.
STEPS includes a substantial number of inferred
sources. Those subjective expressions that come
with inferred sources have more often few syntactic
arguments, such as adjectives. Subcategorization
frames also play a role when it comes to partial
opinion frames. Subjective expressions with very
complex subcategorization frames, such as verbs,
typically come with complete opinion frames un-
like adjectives and nouns, which more often evoke
partial opinion frames. There is also a significant
number of subjective expressions that evoke mul-
tiple frames, however, this phenomenon is largely
restricted to subjective verbs.
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Abstract

The proficiency level of the learner is an
important factor in various educational
settings. In order to find the adequate
language difficulty level, we classify texts
written by language learners of German
into proficiency levels A, B and C, as
defined by the CEFR (Common European
Framework of Reference for Languages),
based on linguistic features extracted
from the texts. Working on a combined
data set of previously-used corpora, we
use both data- and theory-driven feature
sets, and determine the best-performing
features. Our model achieves an accuracy
of 82%, and the best-performing feature set
contains features from all the theoretical
groups, while all groups alone perform
significantly above the random baseline.

1 Introduction

An important concept in the field of educational
systems is Automatic Text Scoring (ATS), which
automates the process of scoring texts by using
NLP techniques. A special case of ATS is
Automatic Proficiency Assessment (APA), which
aims at scoring texts written by language learners
according to a proficiency scale; in Europe, this is
defined by the Common European Framework of
Reference for Languages (CEFR). With the help of
APA, educators can more easily find appropriate
reading materials and students can get immediate
feedback on their performance. Furthermore,
perhaps we can also get closer to a more practical
definition of the CEFR levels by way of linguistic
feature extraction.

In the scope of this project, we have developed
an APA system that classifies diverse German texts
written by language learners into levels A, B and
C of the CEFR. Level A (elementary), includes

CEFR levels A1 and A2, Level B (intermediate),
consists of levels B1 and B2 and level C (advanced)
is composed of levels C1 and C2. We implement
a wide range of linguistic features, which are
described in Section 3.

2 Related Work

The earliest large-scale APA systems for German
have been developed in the work of Hancke (2013)
(see also Hancke, Vajjala and Meurers (2012)).
She implements lexical, morphological, syntactic
and language model features, building on work
from different languages as well as different but
highly related fields, such as Second Language
Acquisition and Readability Assessment. Her
feature sets are theoretically well-motivated and
exhaustive. One aspect of her work that we think
can be improved concerns the size and imbalance
of the data set, the MERLIN (Wisniewski et al.,
2011). While we also include it in our study, we
overcome some of the problems by using a larger
and balanced data set. Hancke achieved 72.5%
accuracy working on 5 classes, A1–C1, and our
overall goal is to build on and expand her research
with new analyses.

As for other authors who work on German
readability, Vajjala (2013) tests readability features
on German text books in her PhD thesis, using
the readability features developed by Hancke et al.
(2012). Lavalley and Kay (2014) use children’s
writing as their data and work with embellishment
clues (adjectives and adverbs) as features. Nietzio
et al. (2012) work with texts written for mentally
challenged people, and use sentence length and
complexity features. Brück and Hartrumpf (2007)
work with legal texts and semantic features. Zesch
et al. (2015) use English and German texts to
test which features are independent of the specific
writing tasks or prompts. One very recent piece
of work is by Weiss and Meurers (2018), who use
media texts for children and adults with the goal
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of implementing a linguistically broad readability
model for German. Their features are from the
fields of lexicon, syntax, morphology, discourse,
language use and human processing.

Among studies of texts written by learners of
other languages, the majority – as can be expected
– has focused on English. Yannakouadis (2011)
works on grading texts written by learners of
English with lexical features, part of speech (POS)
tags, syntax features, length features and error rate.
Treffers et al. (2018) study the correlation between
lexical diversity and CEFR levels. Briscoe et al.
(2010) analyze machine learning methods better
suited for the task, using n-grams, parse rules, word
length and error measures. It is also important
to consider the possible end users of this line of
research, namely educators, students, and readers.
With that in mind, Chen and Meurers (2016)
provide a publicly available platform for automatic
complexity feature extraction and visualization.

3 Methods

3.1 Overview

In our work, we have implemented a wide range
of features based on Hancke’s thesis (2013), but
using a bigger data set (see Section 4). While one
of our goals is to develop a classification system,
what we think is even more important is a thorough
discussion of the performance of the feature space,
and see how it relates to Hancke (2013), which
is the only other piece of work discussing similar
features in a similar setting.

We work with texts written by learners of
German and implement a supervised classification
model according to the CEFR categories A, B
and C as labels. In order to train the model, we
have experimented with different machine learning
algorithms, such as Decision Trees, Logistic
Regression and Support Vector Machines (SVM)
with different configurations. We have decided to
use a Linear SVM as it performed best given our
data set. This was an expected outcome, as SVMs
perform well in various classification settings,
both inside and outside NLP. Other researchers in
the field of automatic readability and proficiency
assessment also found them to give the best
results (Hancke, 2013; Pilán et al., 2016; Zesch et
al., 2015; Weiss and Meurers, 2018)

We have used the implementation of scikit-learn
(Pedregosa et al., 2011) with its default settings.
Since SVMs are sensitive to the distribution of

the data, we have balanced our data set. We end
up working with 612 texts for each level, so our
data set consists of 1836 texts altogether. When
we present accuracy scores, they are based on a
10-fold cross-validation.

We use two different kinds of feature groups:
data- and theory-driven. We have made this
distinction because of the different approaches
inherent in each. Namely, our theory-driven
features are hand-engineered; we are checking for
specific linguistic units or ratios we have theorized
to predict proficiency. As for data-driven features,
we are looking at the data as a whole, analyzing
what we find by a given feature extraction
method, without any concrete hypotheses. Our
data-driven features are n-grams, parse rules,
and grammatical tags, while our theory-driven
features can be categorized into traditional, lexical,
frequency, morphological, syntactic, and error
measure sets. While this distinction is our own
contribution, the specific features in the groups
are mostly re-implementations of the features
from Hancke’s thesis (2013). The following is a
general description of the sets, pointing out some
important differences from her work.

3.2 Theory-driven Feature Sets

• Traditional Features predate advanced
machine learning techniques. They are based
on surface-level features, such as the average
number of characters per word. While Hancke
(2013) only works with text length, and the
average number of words and syllables, we
experiment with a wide range of traditional
formulae, such as the Flesch reading-ease
score or the SMOG score.

• Lexical Features measure the range and
variety of vocabulary used in a text by a
writer. A traditional measure is the type-token
ratio (TTR). As the TTR is sensitive to text
length, various mathematical corrections of
the original formula have been proposed,
such as the root TTR, corrected TTR, log
TTR, Uber Index and Yules K. More recent
attempts to account for this problem include
for instance the hypergeometric distribution
diversity (HD-D) (McCarthy and Jarvis, 2007)
and the measure of textual lexical diversity
(MTLD) (McCarthy and Jarvis, 2010). It is an
interesting counterpoint to mention the work
of Treffers-Daller et al. (2018), who claim that
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basic measures explain more variance in the
CEFR levels of language learners’ texts than
the HD-D and MTLD, provided text length
is kept constant across texts. Other lexical
features are lexical density, measuring the
ratio of lexical words to all words and lexical
variation with respect to specific syntactic
categories.

• Frequency features are based on the general
idea that words that are more common in one
language are acquired more easily and earlier
by language learners. However, research
also shows that especially L2 language
learners often start with infrequent, more
specific words (Crossley et al., 2011). We
used a list with the number of occurrences
of words in movie subtitles compiled by
Brysbaert et al.(2011) to calculate the mean
log( f requency) and the standard deviation of
the log( f requency). The list was selected as
subtitles are a common and easily available
means of portraying everyday language.
Hancke (2013) does not explain the choice
of her binning method, so we chose equal
width binning with 14 bins to determine
whether words in certain frequency bands are
characteristic of a specific level of text.

• Morphological Features are often realized
through use of several linguistic features
such as gender, case markers, verb tense
markers, prefixes and suffixes. German is
considered to be a morphologically rich
language due to its three genders (masculine,
feminine, neuter), four cases (nominative,
genitive, dative, accusative), verb prefixes
(both separable, such as auf-, and inseparable,
such as ver-), and word compounding. In
order to extract morphological features from
the data set, we used the RFTagger (Schmid
and Laws, 2008). For compound word
detection, the CharSplit module for German
was implemented (Tuggener, 2016).

• Syntactic Features measure the complexity
of the dependency and parse tree structure of
the text, based on Hancke (2013). She adapts
these from various sources and fields and also
adds some German-specific concepts to the
feature set, such as the number of infinitival
phrases with zu, or the ratio of passive
constructions. For parse tree complexity,

examples include the length of production
units measured by average length of sentences
and clauses, the number of clauses per
sentence, or ratios of dependent clauses,
coordinating conjunctions, and complex
nominals per clause and sentence. In addition,
we have also included the ratio of separated
verb prefixes. As for dependency features,
a representative feature is for instance the
maximum and average number of words
between a head and a dependent in a text.

• Error Measures As we are dealing with
data written by learners of the language, we
have implemented a spell check that also
counts the number of misspelled and corrected
words. We use this number to calculate the
ratio of misspelled words and total number
of words. Implicitly the error measures are
part of some of our other feature groups as
well, for instance the RFTagger uses the tag
FM (’foreign word’) for words it does not
recognize as German, and in our application,
many of those would actually be misspelled
words.

3.3 Data-driven Feature Sets
• Parse Rule Features Following Hancke

(2013), Briscoe et al. (2010), and
Yannakoudakis et al. (2011), we build a
feature vector out of Parse Rule frequencies
for each text. An example would be ’NP ART
NN’ standing for a Noun Phrase consisting
only of an article and a noun.

• N-grams are a theoretically simple yet
powerful set of features to extract from
unstructured data, which are used in a wide
variety of NLP tasks, as the words used in a
text intuitively convey a lot of information
about its makeup. In the field of automatic
test scoring, Yannakoudakis et al. (2011)
and Briscoe et al. (2010) have worked with
them. While unigrams are powerful, they
are not capable of handling phrases, but it
is easy to improve them by adding bi- and
trigrams to the feature sphere. In this project,
we implemented word, lemma, character and
POS n-grams.

• Grammatical tags are extracted with the
RFTagger. Some examples are the type
of particles (answer, degree, negation,
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zu, separated verb particle) or the type
of conjunctions (comparative, coordinating,
subordinating with finite clause, subordinating
with infinitive). Note that Hancke (2013) does
not work with n-grams or grammatical tags.

4 Dataset

In order to overcome the limited availability of
appropriate data, we use a combined data set built
from five different sources: MERLIN (Wisniewski
et al., 2011), Falko (Reznicek et al., 2012), KanDeL
(Vyatkina, 2016), CLEG13 (Maden-Weinberger,
2013) and data from online sources for learners
of German.1 While all data sets contain different
annotations, for the purposes of this project, only
the CEFR level of the learner and the raw text
were considered. As for the reading materials, we
have decided to include them, as according to Pilán
et al. (2016), textbook data can be beneficial for
proficiency assessment in the event of a lack of data
from the same domain.

The MERLIN corpus consists of texts written
in an exam setting, which are assigned levels
A1-C2 of the CEFR by trained human examiners.
KanDeL is a collection of texts written by students
from the US, who are enrolled in a basic German
language program. The Falko corpus consists
of text summaries written by C1-C2 learners of
German and essays written by upper intermediate
and advanced learners in various international
institutions. Learners who scored more than 80
points on the C-test were hand-selected to form part
of our C-level instances. The CLEG13 texts are
essays, summaries and critical commentaries, and
were written by students from the UK and labelled
according to the year group of students into three
groups. In the first two, students are assumed to be
at levels B1 and B2, while the third consists of C1
learners.

See a summary of the combined data set in
Table 1.

We are aware that the labels A, B and C do not
necessarily signify the exact same level within the
subcorpora. We have studied the levels’ official
description (Council of Europe, 2001) and the
human-graded essays, and noticed that there can
be significant differences inside one level. Thus,
we believe that the categories are wide enough to

1german.net/reading/, lingua.com/german/reading/,
www.cornelsen.de/shop/capiadapter/download/get/

allow for the potential differences caused by the
non-uniform labeling methods.

5 Results and Discussion2

5.1 Theory-driven features

When calculating all our theory-based features,
we arrive at a total of 129. See Fig. 1 for a
PCA (Principal Component Analysis) graph of
the data set. PCA is a method for dimensionality
reduction of data by retaining as much variance
(information) as possible. It is easy to note that
while A and C are neatly separated, level B is
more interspersed throughout the graph. This
result is intuitively plausible: While it is easier
to give a casual definition for a beginner or an
advanced speaker, the intermediate level, by its
very definition, is a less well-defined category in
between the two.

Figure 1: PCA with our theory-driven features

Our results are not directly comparable to any of
the literature we have encountered, mostly due to
the different class labels used. Hancke (2013), our
main background literature, classifies according
to A1-C1 on the MERLIN data set. We have
re-implemented a large part of her best performing
features, which she calls Best34 (Hancke, 2013,
p. 56). She achieves 72.5% accuracy and we
achieve 69% in the same setting. Our assumption
is that the difference is due to the different spell
checker we use, as the MERLIN data is very noisy
compared to our other data sources. Hancke (2013)
uses Google Spell Check3, which was not publicly

2One can argue that there is a conceptual overlap between
the theory- and data-driven feature sets. However, the two
feature sets are kept distinct throughout the experiments so it
should not affect the results.

3https://code.google.com/p/google-api-spelling-java/
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Level A Level B Level C
CLEG13 416 (172,876) 315(146,545)

FalkoSummaries 107 (40,787)
FalkoEssay 159 (84,519)
FalkoWHIG 92 (56,513)

KanDeL 185(29,635)
MERLIN 363(22,576) 624 (103,986)
Reading 64 (10,390) 41 (8,642)

Total 612(62,601) 1,081(285,504) 673(328,364)

Table 1: Number of texts (and tokens) in the subcorpora

Feature set Data Set Classes Acc.
Best34 MERLIN A1-C1 72.5

Best34 by us MERLIN A1-C1 69
Our best MERLIN A1-C1 70
Our best Combined A-C 82

Table 2: Results

available at the time of our project. Using our best
features on the same data in the same setting, we
achieve an accuracy of 70%. For a comparison, see
a list of our best features in Table 3 and Best34
in Hancke (2013, p. 56). Testing on our newly
created dataset, the model achieves a 82% accuracy,
and most importantly, it very rarely misclassifies
A for C, or vice versa. The verification of this
statement is shown in the confusion matrix in
Figure 2. The figure also shows that the model
makes the highest number of incorrect predictions
when classifying level B. See a more detailed error
analysis in section 5.3, and a summary of the results
in Table 2.

Figure 2: Confusion matrix presenting the
classification results on a test set.

As for the analysis of our feature groups, when
tested alone, traditional features, lexical features,
morphological features and syntactic features

achieve an accuracy above 70%, with morphology
being the best group. The reason for that might
be that German is a morphologically complex
language, and also that some of our morphology
features capture the complexity of other fields as
well. For instance the different verb forms, while
morphologically different, also represent syntactic
complexity. Even the spelling error features alone
achieve an accuracy that is significantly better than
the random baseline of 0.33.

When performing an iterative feature
elimination, we arrive at around 40 features
that perform approximately equally as well as
our whole feature set. Additional features do not
increase the classification accuracy significantly.
The 40 best consist of 5 traditional, 8 lexical, 2
frequency, 5 spelling error, 14 morphological and
6 syntactic features.

These features are similar to Hancke’s(2013)
best-performing group, with the main difference
being that she does not work with the traditional
readability features, and we are not using language
model features. See the features that performed
best in this project in Table 3.

It is interesting to note that all of our spelling
error features are in the best group, signaling that
analysis of the errors the writer makes is a good
direction for future additions to the feature set.
While working with the data, we have noticed that
the frequency of spelling errors noticeably changes
across corpora. Ideally, the setting in which the text
was written should also be taken into account, as
the MERLIN texts which contain the most spelling
errors were written in an exam setting, while other
corpora also include homework assignments.

Inside the syntax group, we can see that the
general complexity features perform well, e.g.,
average number of words between the head and
a dependent, average clause length, number of
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Group Features
Traditional SMOG, average number of characters per word, number of polysyllables, FOG
Lexical Lexical Diversity

Yule’s K, Uber Index, HDD, MTLD
Lexical Density and Variation
adverb variation, modifier variation, verb variation, corrected verb variation

Frequency bin 0, bin 6, mean frequency
Error spelling errors, spelling errors with correction, capitalization errors, umlaut

spelling errors, real spelling errors
Morphological number of articles, ratio of compound nouns to noun, number of 1st person tags,

number of past tense tags, ratio of nominative to nouns, number of nominatives,
ratio of -keit suffix to nouns, number of past participle verbs, ratio of participles
to verbs, number of singular tags, ratio of dative nouns to nouns, number of
second person tags, ratio of verbs per sentence, ratio of 1st person to finite verbs

Syntactic Dependency
average number of words between head and dependent, average number of
dependents per noun excluding modifiers
Parse Tree Complexity
average clause length, average number of dependent clauses per clause, average
number of non-terminals per sentence, average number of interrogative clauses
per sentence

Table 3: Best-performing features

non-terminals, or the ratio of dependent clauses
per clause. From the more specific features we can
see that NP complexity is relevant.

As for morphology, we can see that both
compounds and derivational features (nouns
ending with the suffix -keit), as well as inflections
appear in the best-performing features. Certain
verb forms, like past tense, participles, 1st and 2nd
person have a correlation with proficiency. The
inflection of nouns is also relevant, and the number
of datives and nominatives divides the data best.

One can see that a lot of the features are
dependent on sentence length, e.g. the traditional
readability measures SMOG and FOG, number
of polysyllables or most of the lexical features.
The degree to which sentence length influences
the classification level is up for debate. While it
is true that it is theoretically possible to produce
a short but complex or a long but simple text, in
real life scenarios text length and complexity or
proficiency very often go hand in hand. Exploring
this correlation further is a direction for further
research.

5.2 Data-driven features

We have experimented with word, lemma,
character and POS n-grams. For words and

lemmas, instead of a simple count, a tf-idf (term
frequency-inverse document frequency) weighting
method is used, with the goal of scaling down the
effect of features that occur very frequently and are
thus not informative, for instance the. We set the
length of n-grams to 3 to avoid the problem of data
sparsity. We have iteratively experimented with the
number of features that gives the best accuracy.

According to, for instance, the findings of Zesch
et al. (2015), when analyzing the task-dependency
of features, n-grams are highly task-dependent.
Thus, as expected, our n-gram model performs
rather poorly when trained on one subdataset and
tested on another. See Fig. 3 to observe how closely
n-grams are related to the data set and specific tasks
that the learners were writing about: Words such
as Kansas show up since one corpus is written
by students from Kansas, as well as Feminismus
(’feminism’), as that was one of the essay topics.
Some features are more generalizable, for instance
ich (’I’) is an important feature for A level text,
which relates to the communicative skills needed
for beginner levels, i.e., they are expected to be
able to talk about their immediate surroundings.
In fact, all of the words support this observation.
Inside the negative coefficient group, we can see the
complementiser dass (’that’), showing a syntactic
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feature; low-level learners are likely to not use
dependent clauses.

Figure 3: Important word n-grams

POS-unigrams, while producing a low, 59%
accuracy, do present some interesting observations.
For level A, some of the most predictive features
are the presence of FM (foreign material), probably
due to misspellings, VFIN (finite verbs), or INT
(interjections). The VINF (infinitival verb) shows
up in the features for levels B and C, as they are part
of more complex verb structures, and the use of a
PROADV (pronominal adverb) or VPP (participle
verb) signals a level C.

See Table 4 for the accuracies of our different
n-gram features. Trained on a specific task, they
could achieve really high accuracy and we notice
interesting observations looking at their results,
however, they generalize poorly. Note that the
cross-dataset accuracy is binary.

N-gram #Feat. Accuracy Cross-data
Word 10,000 0.756 0.66

Lemma 5,000 0.748 0.63
Char. 20,000 0.881 0.55
POS 5,000 0.835 0.65

Table 4: Accuracy of n-gram features

The parse rules (PR) are extracted by the
Stanford Parser. In order to reduce computational
complexity and increase relevance, we have

excluded rules that appear fewer than 10 times
in the data set. With this we arrived at 1222
parse rules. The length of the parse rules can be
anything greater than or equal to two. We have
achieved the best accuracy with 200 PR features,
which was 0.766 +/- 0.056. See Table 5 for some
of the best-performing PR features and possible
interpretations. The best accuracy we have reached
is 77% with 500 PR features. We notice that
the data-driven features support and validate
our theoretical feature engineering. NP and PP
complexity seems to be important in classification,
as is the use of conjunctions and zu-infinitives.
The table is intended as an illustration of possible
interpretation of some rules with high importance.
For an exact understanding of the PR features, the
TIGER Treebank (Smith, 2003) can be consulted.

Interpretation Parse rules
NP complexity NP PIAT NN

NP ADJA NN
NP ART NN NP ART NN

PP complexity PP APPR ART ADJA NN
PP APPR NN

Conjunctions CNP NN KON NN
CAP ADJA KON ADJ

Adj. and adv. AVP ADV ADV
AP ADV ADJD

Zu-Infinitive VZ PTKZU VVINF

Table 5: Important Parse Rules and their
interpretation

Prediction using the 85 grammatical tags of
the RFTagger gave an accuracy of 79 (+/-4) %.
The tags name, masculine, full verb, noun and
coordinating conjunction are the best predictors for
level A; attributive adjectives, personal pronouns,
prepositions, and degree particles signal B level
texts the strongest, while C level texts are best
recognizable by colons, interrogatives, adverbs,
negations and definite articles, according to the
model. The presence of the word zu (in English
corresponding to ’for’, ’to’ or the intensifier ’too’)
is the clearest sign of a text not being A level. We
can conclude that in the case of this data-driven
feature set as well, many of the features the
system found to be important are the same as those
we manually created. Some additional features,
such as different kinds of articles, pronouns, or
particles can be added to the model for future
experimentation.
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5.3 Error analysis

In order to think about directions for improving our
classifier in the future, we have performed an error
analysis on incorrectly classified sentences.

As we are dealing with a 3-way classification,
the biggest error the classifier can make is a miss
of two levels, e.g. classifying A instead of C.
Running a classification 10 times and observing
and analyzing these errors, we can state that the
number is very low, ranging between 0 and 3 at
each trial. An example sentence from one of these
texts is Dieser Film handelt die amerikanische
revolutionäre Zeiten während der frühen Monate
Jahres 1776 , die auch ihm seine Name gibt. (This
film is about the American Revolutionary Times
during the early months of 1776, which also gives
it its name.) The text is part of the KanDeL
data set, which includes both in-class assignments
and homework. Our assumption is that the text
was written as a homework assignment, so the
writer could put time and effort into performing
beyond their expected proficiency level. When
observing the feature values for the text compared
to the mean values for A texts, not only does it
surpass them in the surface-level categories, but
also in categories such as average number of words
between head and dependent. Another example
of misclassification is when there is not enough
information in the text, for instance the A level
text LIEBER JENS, GLÜCKWUNSCH (’DEAR
JENS, CONGRATULATIONS’) gets classified
as C by our classifier. Due to its length, the
relatively long term Glückwunsch or the high TTR
are possibly given too much weight as many of
the other features would be zero. Another text that
showed up multiple times in this non-exhaustive
experiment was a C-level text from the CLEG
data that was classified as A. On closer inspection,
comparing the feature values to the mean, the
problem is the surface-level features, like number
of syllables or SMOG. The implications of these
findings is that the traditional readability formulas
are not without their problems, which we are aware
of. However, excluding them completely from the
calculation is not the best option, as they show up
in the most distinctive features.

The question of errors by one level is more
complicated. We can conclude that texts from the
CLEG data set are mostly classified higher than
their label. This might be unintuitive as in the
case of CLEG, the labels are actually the level the

students are supposed to be at a certain academic
year, and not dependent on any test score or essay
grade. Working with the data, we have already
noticed that CLEG level B is closer to the level
C from other sources. Texts from the MERLIN
data are the most commonly misclassified in both
directions. We assume that level A texts often get
misclassified because of the lack of information
they contain. We also have to note that our classifier
at the moment does not take the flow or cohesion of
texts, or correct word choice, into account, which
would probably be vital when dealing with such
a short text; looking at the feature vector, we see
that such a text tricks our classifier in terms of
surface-level and lexical features which are highly
correlated with text length.

6 Conclusion

With the help of our classifier and the data set,
the writing level of language learners can be
found with a reasonably high accuracy. We
found that linguistic features correlate with CEFR
proficiency levels and can perform reasonably
well in a classification scenario. Moreover, with
our detailed description of the performance of
different features, we hope to have come closer to
a tool that helps educators obtain a more practical
list of what is expected from learners at certain
levels. In the case of German, our target language,
morphological features appear to be especially
important. Some syntactic and lexical features are
also given a high weight by the machine learning
algorithm.

By constructing a larger and more balanced
data set, we report 82% accuracy, a significant
improvement over our models performance on
just the MERLIN texts, which reached 70%.
For further investigation, the most important
factor is the data set itself. With enough
data, we can also try running the model on
the full CEFR scale from A1-C2, instead of the
three-level classification currently being performed.
Additional improvements to the data preprocessing
can also be incorporated into our current pipeline,
such as experimenting with different German spell
checkers and sentence boundary detection methods.
As for the feature groups, data from other fields,
such as semantic or pragmatic information, are not
included in the scope of this project; this additional
information would also be worth testing. In other
cases, a more fine-grained feature division could
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be helpful, for instance, analyzing different error
categories.

It is also important to note that the feature
sets, while tailored for German, are not
language-specific per se. The data-driven features
are all language-neutral and as for the theory-driven
ones, traditional, lexical, frequency, and error
measures are also not tied to the language of
the text. As German is a morphologically rich
language, it is unsurprising that morphological
features perform well for classification, which
may not be the case for other, morphologically
less rich languages. As for syntactic features,
most features are related to the dependency or
parse tree structure and thus, also language neutral.
However, a few features, such as the number of
passive constructions, or specific infinitival phases
we would not expect to contribute to the results
greatly in other languages. Testing cross-language
performance is a promising direction for future
research, as well.

References
T. Briscoe, B. Medlock, and O. Andersen. 2010.

Automated assessment of ESOL free text
examinations. Technical report, University of
Cambridge Computer Laboratory.

M. Brysbaert, M. Buchmeier, M. Conrad, A. Jacobs,
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Abstract

Lemmatization is a central task in many
NLP applications. Despite this importance,
the number of (freely) available and easy to
use tools for German is very limited. To fill
this gap, we developed a simple lemmatizer
that can be trained on any lemmatized cor-
pus. For a full form word the tagger tries
to find the sequence of morphemes that is
most likely to generate that word. From
this sequence of tags we can easily derive
the stem, the lemma and the part of speech
(PoS) of the word. We show (i) that the
quality of this approach is comparable to
state of the art methods and (ii) that we can
improve the results of Part-of-Speech (PoS)
tagging when we include the morphologi-
cal analysis of each word.

1 Motivation

In the following we present a simple approach to
lemmatization of German texts and compare the re-
sults with a number of other easily available tools.

The motivation was twofold: while lemmatiza-
tion seems to be a core task in analyzing text, in
most standard Python packages like Stanford’s Nat-
ural Language Toolkit (NLTK), no lemmatization
for German is available. Mainly for teaching un-
dergraduate students we wanted to have a simple
tool, that gives linguistically correct lemmata for
all words and is also easy to use and install on a
Python notebook server. In the second place, we
wanted to investigate, whether a careful splitting
of a word into a stem and suffix can improve the
treatment of unknown words in a standard trigram
PoS tagger, in which the PoS otherwise is guessed
on the base of the final letters of a word.

Lemmatization is a core task in analyzing text.
Nevertheless it did not receive as much attention
as e.g. PoS tagging. Rule based systems can reach

a very high accuracy for morphological analysis.
However, existing systems are not always available
and the construction of a lexicon and morphologi-
cal rules is a very tedious task. In practice therefor
often simple heuristic rules or a dictionary lookup
are used, even if the quality of the tools is not
even known. Especially for information retrieval
the quality of lemmatization seems not to be very
important and some studies suggest that any form
of heuristic stemming, mixing up inflectional and
derivational morphology can be used (Kettunen et
al., 2005; Moral et al., 2014) though some other
studies contradict these findings (Braschler and
Ripplinger, 2004).

In the following we present an approach to mor-
phological analysis based on computing the most
likely sequence of morphemes for a given word. In
section 2 we present the details of this method. In
subsection 2.4 we show how we can use the results
in a PoS tagger. In section 3 we discuss related
work and alternative approaches and finally, sec-
tion 4 compares the results on lemmatization and
PoS tagging.

2 Method

Given a word w = a1 . . .an we try to find the most
likely sequence of morpheme tags s = t1 . . . tk that
generates w. We cannot use a standard Hidden
Markov Model and the Viterbi algorithm to find
the most likely sequence s since we do not have
a segmented list of output observations. However,
the solution presented here is very similar to a Hid-
den Markov Model and the computation of the
most likely tag sequence is almost identical to the
Viterbi Algorithm. We define the most likely tag
sequence s that generates w as

max
k,s∈T k

k

∏
i=3

p(ti | ti−2ti−1) · p(alimi |ti) (1)

where T is the set of all tags, 0 ≤ li ≤ mi ≤ n for
each i and w = al3m3 · . . . ·alkmk .
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Since here every state is dependent on two pre-
vious states we call the model second order model
and we have to add two start states to every se-
quence. We also add a final state that generates
the empty string to each tag sequence. We add one
final state for each PoS tag. This will allow us, to
compute the most likely tag sequence for each PoS.

Using dynamic programming we can find the
optimal tag sequence efficiently. Using a first order
model, for a string w = a1 . . .an we define the prob-
ability that a prefix a1 . . .a j of w is tagged with a
tag sequence in which the last tag is t as

ϑ(t, j) = max
r,s,i

(ϑ(s, i) · p(ai j | t) · p(t | s)) (2)

for each t ∈ T and 2≤ j≤ n where s∈ T , 2≤ i≤ j,
ai j denotes the substring ai . . .a j from w and

ϑ(t,1) = p(t | START). (3)

The equation can easily be extended for a second
order model but the becomes slightly more com-
plicated. When we compute ϑ(t, j) we get the
well-known Trellis diagram. When we extend the
algorithm with a backpointer, we can easily find
the optimal tag sequence for a given word.

Consider e.g. the word Sorgen, that can either
be the plural of the noun Sorge, the infinitive of
the verb sorgen, or a finite form of the same verb.
Now, for each of the corresponding final states
we can compute the most likely tag sequence that
generates the word sorgen. In our data we thus find
the following tag sequences:

sinf = None, START,VV, SUF_INF,END_VVINF

sfin = None, START,VV, SUF_FIN,END_VVFIN

snn = None, START,NN, SUF_NN,END_NN

The probability that the sequence snn generates the
word is computed as follows: p(Sorgen,snn) =
p(NN | None, START) · p(SUF_NN | START,NN) ·
p(END_NN | NN, SUF_NN) · p(‘sorge’ | NN) ·
p(‘n’ | SUF_NN) = e−1.60854 · e−1.46985 · e0.0 ·
e−7.82129 ·e−1.43789 = e−12.33757. Similarly, we find
p(sorgen,sfin) = e−10.77681 and p(sorgen,sinf) =
e−10.63024.

Since there could be several sequences generat-
ing sorgen and ending in END_NN, the probability
p(Sorgen,snn) is not the probability that the word
is generated by a noun sequence. To compute that
probability we would need an equivalent of the for-
ward algorithm, that computes the sum of all proba-
bilities leading to one state instead of the maximum.

However, in practice alternative paths turn out to
be completely nonsense (since the model is highly
over generating) or extremely unlikely (and thus
do not change anything).

Given the large amount of training data for
words, and the fact that for each substring we can
assume that it is generated by one of the open
class morphemes, we do not need any interpola-
tion or smoothing and use the trigram probabilities
directly.

Finally, we use also case information and multi-
ply the found probability with the probability that
a word of the found class is capitalized or not.

2.1 Unknown Words

For each string we can assume that it is an unseen
instance of an open morpheme class. Currently we
defined by hand, which classes are the open classes,
but this also can quite easily be guessed from the
number of hapax legomena in each class.

For a morpheme m = a1 . . .an we can estimate
the probability that an unseen morpheme is gener-
ated by a given morpheme tag using the probability
that a morpheme ending on a given suffix is gen-
erated by that class. We compute these suffixes
probabilities on infrequent morphemes, assuming
that morphemes not observed in the test data are
more similar to infrequent than frequent to mor-
phemes. If not enough observations are available
for suffixes of length n we use the probabilities for
suffixes of length n− 1. To compute the proba-
bilities of the shorter suffixes we exclude all mor-
phemes ending on one of the longer suffixes for
which we had enough observations. E.g. if we use
the probability p(noun | ung), for bigrams we use
p(noun | ng and not ung) rather than p(noun | ng).

For longer unknown words we need to be sure,
that an analysis using several known morphemes
is preferred over the analysis as one unknown mor-
pheme. Especially long nouns should be much
more likely to be a noun compound, consisting of
two or more known stems than being a completely
unseen stem. Thus we also use the probability
p(n | t) that a morpheme of length n is generated
by t. We compute this probability on infrequent
morphemes again. Finally, we use the probability
phap(t) that the tag produces a hapax legomenon.
Thus we approximate the probability of an unseen
morpheme m = a1 . . .an given a tag t as

p(m | t)≈ p(an−2an−1an | t) · p(n | t) · phap(t). (4)
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2.2 Generating training data
The most critical part in the development of the
analyzer is the generation of training data. We
generate the training data from the Tiger Corpus
(Brants et al., 2002). Here we find a lemma and a
PoS for each word form. The basic idea now is to
split the word form in the stem, that can easily be
derived from the lemma, and prefixes and suffixes.
E.g. the word geplant with lemma planen and stem
plan can be split up in ge, plan and t. For the affixes
we assign tags based on the given PoS. Thus, in the
present example we generate
[ ( ’ ge ’ , ’PREF_PP ’ ) , ( ’ p l a n ’ , ’VV’ ) , ( ’ t ’

, ’SUF_PP ’ ) , ( ’ ’ , ’END_VVPP ’ ) ]

In many cases we end up with much more compli-
cated sequences. We restrict the decomposition
of words to inflectional morphology except for
noun compounds, comparatives and superlatives of
adjectives and adjectives derived from participles.
Thus we have sequences like
[ ( ’ a u f ’ , ’PTKVZ ’ ) , ( ’ ge ’ , ’PREF_PP ’ ) , ( ’

s c h r e c k ’ , ’VV’ ) , ( ’ t ’ , ’SUF_PP ’ ) , ( ’
’ , ’END_VVPP ’ ) ]

[ ( ’ a m t i e r ’ , ’VV’ ) , ( ’ end ’ , ’PRESPART ’ ) ,
( ’ en ’ , ’SUF_ADJ ’ ) , ( ’ ’ , ’END_ADJA ’ ) ]

[ ( ’ ordnung ’ , ’NN’ ) , ( ’ s ’ , ’FUGE ’ ) , ( ’ k r ä
f t ’ , ’NN_VAR’ ) , ( ’ en ’ , ’SUF_NN ’ ) , ( ’
’ , ’END_NN’ ) ]

We use several language dependent heuristic rules
to split up each word. In German the stem often
is not a part of the surface form. In most of these
cases we can find a variant of the stem by search-
ing a substring that starts and ends with the same
consonants. E.g. for the word jüngeren (younger)
with stem jung (young) we find:
[ ( ’ j üng ’ , ’ADJ_VAR ’ ) , ( ’ e r ’ , ’ADJ_COMP ’ )

, ( ’ en ’ , ’SUF_ADJ ’ ) , ( ’ ’ , ’END_ADJA ’ ) ]

In addition now the substitution jüng/jung will be
stored for the adjective class. These substitutions
will be used later to reconstruct the stem and lemma
of an analyzed word.

In total we used 52 final tags (i.e. tags encoding
the PoS of a word and not corresponding to any
morpheme) and 75 real morpheme tags.

The morpheme classes obtained in this way are
very rough and result in a massively overgenerating
model. E.g. for some verbs the past participle is
formed without the prefix ge. Thus the model
allows the morpheme tag SUF_PP without having
seen the morpheme PREF_PP before and inde-
pendent of the verb, since no distinction is made
between verb classes needing the prefix and those

that do not have this prefix in the past participle.
Thus even a form like lauft could be analyzed as
[(’lauf’, ’VV’), (’t’, ’SUF_PP’),
(”, ’END_VVPP’)]. However, it turns out that
for analyzing there is only a limited number of
cases, where this causes problems.

2.3 Lemmatization

Once the most likely sequence of tags is found, a
small set of rules is used to generate the correct
lemma. These rules mainly deal with the genera-
tion of an infinitive from a stem and with the appli-
cation of the stored substitutions for irregular stems
and stems with Ablaut (vowel gradation).

2.4 Part of Speech Tagging

The usual way to analyze German or English is to
start with part-of-speech tagging and then to ana-
lyze each word according to the found PoS. It is
now tempting to investigate, whether the other way
around works as well: instead of using observed
probabilities we could use the probabilities as com-
puted by the morphological analysis. To be precise:
we computed p(w, t) for a word and a tag before. In
a standard trigram tagger (see e.g. Brants (2000))
we need the probability p(w | t). This probabil-
ity can be computed easily by using the fact that
p(w | t) = p(w,t)

p(t) .
The approach has the advantage that we get

much better statistics for inflectional variants of
infrequent words. On the other hand we lose a lot
of information on specific word forms. For some
words only certain forms are frequently used, and
others are infrequent or even not existent. E.g. the
noun Ärger (trouble, annoyance) does not have a
plural form. Consequently, the form ärgere only
can be a verb form (from ärgern, to annoy). Using
the morphological analysis described above, we
will nevertheless find an analysis as noun as well.

In the following we will use two variants: in the
first variant we use only the probabilities computed
by the morphological analysis. In the second vari-
ant we will use the observed probabilities and use
the morphological analysis for words that were not
observed in the training data. Here we treat words
seen once and twice as unseen words as well.

We base the transition probabilities on trigram
statistics over tags. Here we use linear inter-
polation to avoid zero probabilities and set the
smoothed probability p∗(tn | tn−2tn−1) = 0.95 ·
p(tn | tn−2tn−1)+0.04∗ p(tn | tn−1)+0.01 · p(tn).
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2.5 Implementation
We implemented all algorithms in pure Python. The
script to generate training data from the Tiger cor-
pus and the classes to train and apply the morpho-
logical analysis and the PoS tagging are available
on Github1 and PyPI2.

In order to speed up the computation, we com-
pute the analysis for 2000 frequent words imme-
diately after training and store the results in the
model file as well. Here we exclude all analyses
resulting in a PoS tag that was never observed for
that word. This also slightly improves the results.

In the following we will call this tagger Hanover
Tagger or short, HanTa, and refer to the version
using observed probabilities for all words that were
seen at least three times in the training data as
HanTa (hybrid).

In the package available on GitHub there are
functions to analyze a single word, to tag a sentence
or to tag and lemmatize a sentence at once. The
user can also choose to get only the PoS tag, the
lemma, or a morphological analysis.

3 Related Work and Alternative Tools

At first glance lemmatization seems to be an easy
task. Nevertheless, for most languages, at least for
German, we need some morphological analysis to
find correct lemmata. State of the art methods for
morphological analysis are still rule based. In the
first place here the work of Koskenniemi (1983)
has to be mentioned. For German this approach
was used in the SMOR tool (Schmid et al., 2004).

Besides the rule based approaches there are sev-
eral attempts to derive a morphological model for
a language in a complete unsupervised way. An
example of this approach is Morfessor (Creutz and
Lagus, 2007), that in fact uses an underlying model
for morphology that is very similar to ours. For a
recent overview of unsupervised learning of mor-
phology we refer to (Goldsmith et al., 2017).

Only a few studies deal with the possibility to
learn lemmatization or morphology in general from
annotated data. Kanis and Müller (2005) and Jonge-
jan and Dalianis (2009) learn rules from a lemma-
tized corpus to transform an inflected word form
to a lemma. Gashkov and Eltsova (2018) obtain
good results for German by a full-form dictionary
and applying analogy for unknown words: basi-
cally, for an unknown word form the word with

1https://github.com/wartaal/HanTa
2https://pypi.org/project/HanTa/

the longest common suffix is searched and then
the transformation associated with that word is ap-
plied. Gesmundo and Samardžić (2012) propose
to annotate words with the type of rule, needed to
transform the full form to a lemma, thus reducing
lemmatization to a tagging task. A similar idea
is followed by Chrupala et al. (2008) who define
classes that correspond to mappings from word
forms to lemmata and train a classifier to classify
words accordingly. This approach is extended by
Müller et al. (2015) who use more features and con-
ditional random fields for classifying morphemes.
To some extend our model resembles this approach.
The main differences are (i) that we learn on seg-
mented data (and thus have to produce such data be-
fore learning) and (ii) that Müller et al. (2015) learn
the transformation needed to produce a lemma as
well, while we need a small language specific, rule
based component that produces a lemma from the
list of morphemes found.

Our goal is not to improve on state of the art
morphological analysis but just to have an easy tool
that gives results that can be used in further tasks
and to provide an alternative for lemmatization
tools that are easily available and therefor used
frequently. In the following we thus compare the
results of lemmatization to those obtained by the
TreeTagger, Spacy and GermaLemma. For testing
PoS tagging we use the same tools and in addition
an own implementation of a standard second order
Hidden Markov Model, using suffix statistics to
guess the output probabilities for unseen words.

The TreeTagger (Schmid, 1999) is a PoS tagger
based on a second order Hidden Markov Model
(or trigram model) extended with decision trees to
use more contextual information and dictionaries
of prefixes and suffixes to improve the basic model.
The standard model for German was trained on a
manually tagged newspaper corpus.

Spacy (ExplosionAI GmbH, 2019) is a state of
the art tool based on deep learning for tokenization,
PoS tagging and named entity recognition. Spacy
also provides lemmatization. While other mod-
ules are based on trained artificial neural networks,
lemmatization is rule based. We used release 2.1.4.

GermaLemma (Konrad, 2017) is a tool that com-
bines a full form lexicon, extracted from the Tiger
Corpus, an algorithm for splitting compounds and
morphological rules from the Pattern package (The
CLiPS (Computational Linguistics & Psycholin-
guistics) research center, 2018). GermaLemma
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requires that the lemmatization is preceded by PoS
tagging.

4 Evaluation

Since our focus is on the development of a prac-
tical tool for lemmatization, that can be used as a
component in a larger pipeline, we will use large
corpora, in which many words occur many times,
instead of word lists for evaluation.

4.1 Data

As mentioned before we use the Tiger Corpus for
training. We used version 2.2 which consists of
50 · 103 sentences or 0.9 · 106 tokens. For cross
validation we split the corpus into 10 contiguous
parts, as was also done by Giesbrecht and Evert
(2009) and is considered to be a slightly harder
and more realistic setting than taking every tenth
sentence, since every part now gets sentences from
different texts. In addition we use a list of the most
frequent verb forms extracted from the DeReKo
Corpus (Stadler and Wegstein, 2016) to train the
morphology model and to make sure, that at least
the most frequent verb stems are seen in the training
phase.

For evaluation, besides the Tiger Corpus, we use
TüBA D/Z and the Hamburg Dependency Treebank.
The Hamburg Dependency Treebank (HDT) (Foth
et al., 2014) is very interesting for our purpose since
it consists of texts from a different domain. Tiger
and TüBA D/Z consist of daily newspaper texts,
while HDT uses texts from heise.de with news
and background articles on anything related to com-
puter hard and software. Here we observe the use
of a different vocabulary and sometimes deviations
from standard German spelling, like writing com-
pounds as words separated by blanks. We use part
A of the corpus, which was manually annotated
and checked for consistency. This part consists
of 102 000 sentences or 1.87 ·106 tokens. We use
HDT for evaluation of PoS Tagging. The lemmata
provided cannot be used for evaluation, since for
compounds only the head is given as a lemma.

TüBa D/Z (Telljohann et al., 2004) is a manu-
ally annotated newspaper corpus of a similar size
(104.787 sentences or 1.96 · 106 tokens). TüBA
D/Z uses a slightly different tagset than Tiger:
TüBA D/Z has a different tag for pronominal ad-
verbs (which we just can replace to compare re-
sults) and it distinguishes between two different
forms of attributive indefinite pronouns (with and

Figure 1: Observed (x-axis) vs. predicted proba-
bilities (y-axis) (here displayed as the natural loga-
rithm of the probabilities) for 2337 word-tag pairs.

without determiner) while Tiger just has one. Thus,
we remove this distinction when evaluating results
trained on the Tiger annotation scheme. With re-
gard to the lemmata, TüBa D/Z uses a #-sign to
mark the boundary of separable prefixes and some-
times adds disambiguating PoS information to the
lemma. Both are removed. In some cases (espe-
cially for adjectival nouns) several possibilities for
the lemma are listed and separated by a pipe sym-
bol. Here we keep the whole string as it is.

4.2 Lemmatization

First, we compare the values of the predicted prob-
abilities with the observed probabilities. For this
purpose we take every 10th word of a list of all
word forms occurring at least 3 times. This results
in a list of 2337 words. For each of these words
we compare the probability for the most probable
observed tag with the probability estimated for that
tag. The Pearson correlation between the two meth-
ods is 0.455 indicating a low correlation between
the observed and predicted values. Especially for
infrequent word forms the estimates are much too
low (see Figure 1). This situation is not completely
unwanted: we will predict non-zero probabilities
for many word forms not present in the corpus.
Consequently, some observed probabilities have to
become smaller.

4.2.1 Quantitative Analysis
The morphological analysis gives a ranked list of
possible PoS tags for each word. We use precision,
recall and Mean Reciprokal Rank (MRR) to eval-
uate these rankings, computed for one fold from
the 10-fold cross validation division of the tiger
corpus. Here we do not take into account the words
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Table 1: Mean Reciprokal Rank on the prediction
of the PoS on 10% of the Tiger corpus, using 90%
as training data. The prediction is only based on
the morphological analysis, not taking into account
information from surrounding words.

all words unknown words
HanTa 0.955 0.900

HanTa (hybrid) 0.962 0.900

Figure 2: Precision and recall of the prediction of
the PoS on 10% of the Tiger corpus. The green
line gives the results for unknown words, while the
blue (upper) line corresponds to all words.

around each word and for an ambiguous word we
thus always predict the most likely tag.

Figure 2 shows the precision-recall curves for
the tagger using only predicted probabilities. The
MRR for known and unknown words for both vari-
ants of the tagger are given in Table 1.

Despite the low correlation of the observed and
computed probabilities, the ranking of the results
seems to be almost identical.

Next, we test the accuracy of lemmatization of
HanTa, the TreeTagger, Spacy and GermaLemma
on the Tiger and the TüBa Corpora. We use Ger-
maLemma here in combination with our own Tri-
gram Tagger implementation (GerTriTa). For Ger-
TriTa and HanTa we use 10-fold cross validation
on the Tiger Corpus. However, GermaLemma is
trained on the Tiger Corpus. Thus, here we cannot
really use the results. The same holds for Spacy
that is trained on Tiger as well.

Since the correct lemmatization for many closed
class elements is unclear and arbitrary (e.g. in Tiger
the lemma of the determiner das is der while the
TreeTagger generates the lemma das, which we do
not want to consider as incorrect) we evaluate on

Table 2: Accuracy of lemmatization on the Tiger
corpus. Values in brackets are obtained by evaluat-
ing on the training data

all unknown
HanTa 96.98 ±0.24 86.00 ±0.68

HanTa (hybrid) 97.12 ±0.25 86.00 ±0.68
TreeTagger 96.12

Spacy (87.46)
GermaLemma (97.79 ±0.20 ) (96,38 ±0.37 )

Table 3: Accuracy of lemmatization on the TüBa
D/Z corpus.

HanTa 92.98
HanTa (hybrid) 93.06

TreeTagger 93.59
Spacy 86.60

GermaLemma 92.23

the open class words only. Results are given in
Table 2.

We also evaluated the lemmatization on the
TüBa D/Z Corpus. This corpus was not used in
development or training of any of the compared
tools (as far as we know) and therefore is much
better suited for evaluation. The results are given
in Table 3.

4.2.2 Error Analysis

For the HanTa lemmatizer we clearly see two main
sources of errors. In the first place many plural
forms of long (unknown) nouns are not correctly
analyzed as a stem and a plural suffix. E.g. the
word Plattenläden (Record shops), occurring in
TüBa D/Z but not in Tiger gets the lemma Plat-
tenläden, since the analysis as one long unknown
word is slightly more probable than the analysis
as a compound, which would have enabled HanTa
to correctly lemmatize the word as Plattenladen.
Also for a simple word like Volkslieder (Folk songs)
HanTa preferred the analysis as one large unknown
noun over the analysis Volk+s+lied+er. This is
partly also caused by the quite low probability of
the suffix er. Here it could help to have more fine
grained classes that would give a higher probability
for the suffix er after certain nouns.

The second source of errors is formed by adjec-
tival nouns and especially present participles that
are used as nouns, like Lehrende (teaching person).
We did not code this type of nouns in any special
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Table 4: Accuracy of PoS tagging on the Tiger
corpus.

all unknown
HanTa 96.52 ±0.33 88.98 ±1.04

HanTa (hybrid) 96.96 ±0.34 88.98 ±1.04
GerTriTa 96.94 ±0.31 88.04 ±0.72

TreeTagger 95.08

way in the training data, but just coded them as
one nominal morpheme. In the Tiger corpus lem-
mata are not assigned uniformly to these type of
nouns. E.g. the word Andersdenkende (dissent-
ing person) is lemmatized as andersdenkend , the
word Asylsuchenden (asylum seeking person) is
lemmatized as Asylsuchender (with strong mascu-
line flexion) and Wohlhabenden (wealthy person)
as wohlhabende (with weak flexion). In the TüBa
D/Z corpus these type of nouns have three lemmata
(one for each gender), separated by a ’|’-sign in case
the gender is underspecified and the lemma with
the corresponding gender marking, if the gender
is clear. Thus Süchtigem (addicted person, dative
masculine singular) gets the lemma Süchtiger.

Most other lemmatizing errors are caused by am-
biguity and the assignment of the wrong PoS. E.g.
the word überzeugt (convinced) has to be lemma-
tized as überzeugen if it is a past participle, but it
has to be lemmatized as überzeugt if it is a past
participle used in an adjectival way (at least accord-
ing to the annotation principles of Tiger and TüBa
D/Z; see e.g. (Lenz, 1993) and (Eisenberg, 1994,
p. 71) for a discussion on the status of German par-
ticiples). Finally, the frequent words möchte and
möchten (would like) are lemmatized incorrectly
in Tiger as möchten, and thus learned incorrectly
by HanTa, while they are correctly lemmatized as
mögen in TüBa D/Z.

4.3 Part of Speech Tagging

For the evaluation of the PoS tagging based on
the tag probabilities found by the lemmatizer we
use two corpora: the TüBa D/Z treebank and the
manually corrected part (part A) of the Hamburg
Dependency Treebank. Especially, the latter one is
interesting since its text are not from daily newspa-
pers like the data from Tiger and TüBa D/Z.

The results for evaluating PoS tagging with 10-
fold cross validation on the Tiger Corpus are given
in Table 4. The results on TüBa D/Z and HTB are
given in Table 5.

Table 5: Accuracy of PoS tagging on the TüBa D/Z
and HDT Corpora.

Tüba HTB
HanTa 95.07 93.80

HanTa (hybrid) 95.54 94.29
GerTriTa 93.19 92.97

TreeTagger 94.81 92.87
Spacy 93.38 92.75

Table 6: Top 10 most frequent errors. The first col-
umn gives the correct PoS tag, the second column
the predicted PoS and the last column the propor-
tion this error has to the total number of errors.

PoS Predicted PoS Perc.
NN NE 10.20 %
NE NN 5.36 %
KOKOM APPR 5.11 %
VVFIN VVINF 4.23 %
NE FM 3.09 %
ADV ADJD 2.76 %
NN ADJA 2.47 %
FM NE 1.78 %
VVFIN VVPP 1.69 %
KOUS PWAV 2.63 %

4.3.1 Error Analysis

Finally, we have a more detailed look of the errors
that HanTa makes on the TüBa-D/Z corpus. Ta-
ble 6 shows the 10 most frequent errors. We see
that there are some frequent ambiguous words, like
als (as, than) and wie (as) that are hard to clas-
sify and already were reported by Giesbrecht and
Evert (2009) to be a main source of errors. For
most verbs the infinitive and first and third per-
son present tense plural are identical and in many
cases the correct class cannot be determined with-
out syntactic analysis. Furthermore, there are many
problems with proper nouns (NE). Here HanTa has
difficulties to decide whether an unknown word
is a proper noun (NE), a foreign word (FM) or a
common noun (NN). In addition, Tiger and TüBa-
D/Z also differ in the distinction between common
nouns and proper nouns. E.g. the words Osteu-
ropa (eastern Europe), Bundesnachrichtendienst
(Federal intelligence office) and EU-Kommission
(EU commission) are classified as proper names in
Tiger but as common names in TüBa-D/Z.
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Table 7: Average runtime of analyzing the first
1000 sentences from TüBa D/Z. All results are
averages from 7 runs.

Tagger Time
TreeTagger 2.85 s ± 0.501 s
Spacy 14.5 s ± 1.61 s
HanTa 10.7 s ± 0.102 s
HanTa (hybrid) 6.94 s ± 0.162 s
HanTa incl. lemm. 37.6 s ± 0.794 s
HanTa (hybrid) incl. lemm. 31.9 s ± 1.26 s

4.4 Run Time

We measured the time needed to tag and/or lemma-
tize the first 1000 sentences from TüBa D/Z in a
Jupyter Notebook on a Laptop with one Intel i7 2.7
GHz Processor and 8.0 GB RAM. The results are
given in Table 7. Currently the results of the mor-
phological analysis of each word is not stored. So
after PoS Tagging of the whole sentence the words
have to be analyzed again for lemmatization. More-
over only probabilities for each PoS and not the
lemmata are stored in the model, so for lemmatiza-
tion each word has to be analyzed, which is clearly
reflected in the run time. We report results for tag-
ging only (i.e. analyzing each word only once) and
for tagging and lemmatization.

5 Discussion

Looking at the lemmatization, we see that our
approach gives surprisingly good results: the ap-
proach in fact is quite naive, the morphological
classes are too coarse-grained and the model is
massively overgenerating and allowing for all kind
of nonsense analyses. Nevertheless, in most cases
the correct PoS and the correct lemma is predicted.
On the Tiger corpus HanTa is even slightly better
than the TreeTagger, on the TüBa D/Z Treebank
the TreeTagger outperforms HanTa with half a per-
cent. GermaLemma gives the best results on Tiger.
However, GermaLemma uses a dictionary derived
from the Tiger corpus, thus a comparison on these
data is not fair. On TüBA D/Z GermaLemma does
not perform very well, but this is due to the bad
performance of the trigram PoS tagger that was
used to provide GermaLemma with the PoS tags it
needs. The results from Spacy in both experiments
are much behind all other approaches.

HanTa’s accuracy on lemmatization (97.12 %) at
first glance seems to be below the results of LEM-

MING reported by Müller et al. (2015) (98.10 %).
However, these results cannot be compared directly.
In the first place, the reported result is on one split
from the Tiger corpus, but it is unclear, whether it
is a contiguous or a random split. More important,
we excluded all closed class words from the eval-
uation. Since most closed class words occur very
frequently and are easy to lemmatize, including
these words will improve the results.

In the evaluation of the PoS Tagger the first re-
markable observation is the result from the Tree-
Tagger that is noticeable below the evaluation re-
sults of Giesbrecht and Evert (2009). A possi-
ble source of difference could be the version of
the Tiger corpus. Probably, Giesbrecht and Evert
used version 1 of the Tiger corpus that consists of
0.7 ·106 tokens.

Here again the results from Spacy stay behind
the other taggers. Interestingly, the baseline trigram
tagger is almost as good as HanTa on the Tiger cor-
pus, but on the Hamburg Dependency Treebank
HanTa outperforms the baseline clearly. Thus, in-
deed, the careful splitting of a word into its stem
and suffix has an advantage over just using the last
letters of a word to guess its PoS.

6 Conclusion and future work

In this paper we have presented a simple approach
to German lemmatization. We have evaluated the
lemmatization on three different large corpora and
shown that the results are close to results that can be
obtained by state of the art tools and methods. Fur-
thermore, we have shown, that the use of HanTa’s
morphological analysis for unknown words in PoS
tagging is more useful than using arbitrary length
suffixes to guess the PoS. The PoS tagging us-
ing morphological analysis even outperforms other
widely used PoS taggers.

In order to make HanTa a useful tool, we will
work on the speed of the analysis, which is now
clearly below that of most other tools evaluated
here. Small improvements on the quality can be
achieved by further development of the script gener-
ating the training data. Here e.g. a better treatment
of adjectival nouns could help. Most interestingly,
however, would be to see the effect of using more
fine grained morpheme classes, including informa-
tion on number, gender, tense, etc.
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Abstract

Every user of email is aware of the problem
of reacting to emails that require a time-
sensitive action by the recipient while be-
ing overwhelmed by informational emails.
We define a new classification problem to
capture this distinction, creating compre-
hensive annotation guidelines and carrying
out annotation. We carry out a proof-of-
concept implementation of a classifier and
discuss our future research which will re-
sult in a tool that is usable in an everyday
business environment.

1 Introduction

The usage of email as a major communication tool
has grown over the past 20 years. As per the current
email statistics report by the Radicati Group, it was
estimated that 3.8 billion users would receive 281.1
billion emails per day in 2018 with an estimated
growth of about 4.4 percent each year (Radicati-
Team, 2018). So a user receives on average about
74 emails per day. Carreras and Màrquez i Villodre
(2001) discuss how users spend too much time sort-
ing, with one problem being spam. But whereas
spam filters nowadays work more and more ef-
ficiently and instant messenger services such as
WhatsApp, Signal and Threema are on the rise for
private communication - and thus keep the major
load of non-work-related mail from our mailboxes,
and for example Googlemail already provides a
topic related sorting of the remaining emails to
their users - many emails people receive at work
still don’t require immediate attention. In business,
most emails still are basically only for information
purposes, such as a report of a meeting or an invi-
tation to a workshop. While these emails might be
relevant and perhaps even time critical, there is no-
one waiting for the recipient’s reaction to the email.
One can assume that emails that contain a ques-
tion or a task would need to be prioritized higher

than an invitation. Sorting through those emails
and setting priorities by hand often takes up a lot
of time and can be seen as a major distraction in a
stressful work environment. Information emails get
more attention than necessary, important emails get
overlooked easily and the time that could be used
for working on assigned tasks or even for breaks is
diminished by the sheer amount of emails one has
to manage.

While email providers nowadays allow users to
create simple filters based on keywords, setting up
these rules still takes up a lot of time and can be
difficult (Gupta and Goyal, 2018). As was noted by
Carreras (2001), most users waste a large amount
of time in managing their emails or they prefer not
to use keyword-based rules for filtering their email
inbox. So, an automated tool that classifies emails
regarding the expected attention that needs to be
provided to them could help with prioritizing the
received emails and thus improve the efficiency of
work related communication.

Text classification in general and classification
of emails in particular is a major subject in compu-
tational linguistics. Sebastiani (2001) defines it to
be “the activity of labeling natural language texts
with thematic categories from a predefined set” and
considers it to be an instance of text mining, since
“‘text mining’ is increasingly being used to denote
all the tasks that, by analyzing large quantities of
text and detecting usage patterns, try to extract
probably useful (although only probably correct)
information.” Thus, classifying emails regarding
an action that is possibly expected from the recip-
ient by the transmitter can be broken down into a
bi-label or multi-label text classification problem
depending on the desired degree to which the ex-
pected action should be distinguished. The general
idea is to have a predefined set of labels or classes
and find the class that best fits a given text. In this
case, a binary label classification would simply be
to sort the email into one of the two categories ac-
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tion required and no action required, depending on
whether there is any text in the email that indicates
that the addressor of the email expects the recipi-
ent to become active in any way - for example to
answer a question or to do a task. But it could also
be interesting for the recipient to further discern
between these two options and to have the emails
labeled according to the degree of action that is
required, as we will discuss later.

The paper is structured as follows. First a short
overview over the annotation process will be given
with an example email. Then the experiments done
on these mails will be described and analyzed. This
is followed by an outlook on possible improve-
ments and a conclusion.

2 Annotation

In December 2001 the Enron corporation, one of
the biggest energy companies of the US at the time,
declared bankruptcy. In the ensuing investigation
by the Federal Energy Regulatory Commission
about 500000 emails by over 150 users were re-
leased to the public. It is perhaps the biggest pub-
licly available email corpus and since then has been
very popular with researchers. It contains a large
variety of business emails as well as spam mails
and private mails. A SQL-dump by Ruhe (2016)
of the Enron data set was used. This is basically a
“repaired” version of the MySQL-dump that was
originally created by (Shetty and Adibi, 2004) but
is no longer available. This MySQL-database con-
tains all the info from the emails in a clean and
easily retrievable format. For saving the annota-
tions, the message-table was simply extended with
the columns label, notes and reviewed.

Consider the email presented in table 1. The
sender of this email obviously expects the recipi-
ents of this email to become active, which is im-
plied by the following wording: “Can the two of
you coordinate...” which would lead to this email
being annotated with the Action Required (AR) cat-
egory. But at the end of the email, the sender asks
a question: “Can we get together that morning and
review your analyses?” This means, the addressor
expects a reply by the recipients, confirming this
request for a meeting or maybe an alternative pro-
posal. This leads to the annotation with Reaction
Required (RR).

Since the categories are considered to be hierar-
chical, a requested reaction is considered to be a
little more important than an action, since the ad-

dressor might wait expectantly for the reply. There-
fore, the possible RR annotation trumps the also
possible AR annotation.

Also, as you can see, the email ends with “888-
582-7421thankskh”, where obviously some whites-
paces went missing, leading to the weird string
“7421thankskh” being considered a token in this
email.

1240 emails were randomly selected and sorted
into one of eight categories. Table 2 shows them in
their hierarchical order with their respective abbre-
viation, their count and a short description.

These labels were selected for their relevance
regarding a work situation. While private emails
might still have some of the same cues as busi-
ness emails the annotators perceived their lan-
guage and subjects as so strongly differing from
the business emails that it was decided to cre-
ate an own label for them. Some of these pri-
vate mails for example contained jokes, cook-
ing recipes or discussions about 9/11. For fur-
ther information on the definition of these cate-
gories, the annotation guidelines are available at
http://hintzenv.wordpress.com.

While non-relevant emails were usually easy to
annotate, sometimes missing context made it hard
to decide on a label. These emails were annotated
“Unsure” and reviewed again later. Those that still
would not be clear stayed in that category. Also, the
announcement of a birthday cake at a colleagues
cubicle led to some discussion. It was decided it
would be considered to be an invitation.

3 Experiments

3.1 Evaluation Techniques

To evaluate a classifier, after the classification of
the test data, the appointed classes need to be com-
pared with the originally annotated classes. There
are several common practices to evaluate the perfor-
mance of a classifier. Precision, recall and f-score
were computed for each class used by each of the
implemented classifiers. Confusion matrices are
also presented.

3.1.1 Micro and Macro scores
For a general overview of the different models, the
micro and macro averaged scores will be computed,
which show a weighted (micro) and unweighted
(macro) average score of the performance of a
model.

The procedure for computing these scores is
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subject body

SFV Rate Design
for Sun Devil

James &David –\t
Can the two of you coordinate a revenue model for Sun Devil
that incorporates a Straight - Fixed Variable rate design along
the following parameters using 15, 20 and 25 year terms:
San Juan utilization: 85% of 780,000/MMBtu/d
Mainline: 85% utilization of 810,000/MMBtu/d
Phoenix lateral: 75% utilization of 500,000 MMBtu/d
Also, prepare some ROE sensitivities if the above utilization
falls by 10% and rises by 10%.
I will be out of town till Tues 11/13. Can we get together that
morning and review your analyses?page me if you have questions
at 888-582-7421thankskh”

Table 1: Example email from the Enron data set

category name label count description

Reaction Required RR 259 A reaction to the email is required.
Action Required AR 87 The recipient is required to take an action.
Appointment/Deadline AD 94 The email contains an appointment or deadline.
Invitation I 25 The email contains an invitation.
Contains Information CI 518 The email contains business-relevant information.
Private P 135 The email is private, not business relevant.
Non-Relevant NR 113 The email is business-related, but not relevant (e.g., newsletters).
Unsure U 9 This is a catch-all category, see the discussion in the text.

Table 2: Categories with respective counts

described by Yang (1999), and Tsoumakas et al.
(2010) present the respective formulas. Further-
more, for the micro average score, Asch (2013)
shows, that for single-label classifiers the scores
for precision and recall are equal. Since the F-
Score is the harmonic average between Precision
and Recall, and for the micro-average-score, those
two scores are equal, so is the F-Score. In this
paper, the macro averaged F1-Scores (later in this
paper referred to as macro score) will be compared
with the micro averaged F1-Scores (later in this
paper referred to as micro score).

3.2 Preprocessing

In order to get the emails into a processable format,
the bodies have to be tokenized: special characters,
punctuation, tabs and newlines were filtered out
and the text was split on blanks. We use Word2Vec
word embeddings and create a single average vector
for each document. We split the annotated data into
80 percent training data and 20 percent test data.

Because the annotated data has been labeled in a
way that is quite fine grained and the counts vary

greatly between the categories, the classifiers were
tested on different groupings of the labels, which
will be described in detail in the evaluation section.
These groupings were selected by their intuitive
relevance to everyday working life and in the hopes
of finding a grouping that gives a balanced overall
performance.

3.2.1 Word Embeddings

For this study, Word2Vec word embeddings were
used. Word2Vec models with the dimensionalities
of 50, 100, 200 and 300 were trained on the En-
ron data set and thus on about 62 Million tokens
- and a vocabulary of about 650 thousand unique
tokens. We do not use pre-trained Word2Vec em-
beddings because the Enron data set consists of
emails, and emails are of a different nature than,
for example, Wikipedia articles regarding the used
vocabulary, syntax and the existence of many typos.
The idea was to use Word2Vec embeddings trained
on the Enron data set in order to better account
for these errors and inconsistencies. We also tried
pre-trained GloVe embeddings in initial experimen-
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micro macro

Naı̈ve Bayes 0.583 0.426
SVC baseline 0.538 0.321

Word2Vec 50 0.551 0.501
Word2Vec 100 0.571 0.489
Word2Vec 200 0.543 0.473
Word2Vec 300 0.575 0.499

Table 3: Micro and macro scores of all models on
non-grouped classes

tation, but the results were much worse, and so we
did not continue experimentation with them. We
leave further study of this issue for future work.

3.3 Classification
Afterwards the classifier was trained on the vec-
torized texts with their respective labels from the
training sets and with the learned features the vec-
torized texts from the test set are classified. In our
study, six different classifiers (Naı̈ve Bayes, base-
line SVM on words, four SVMs for the different
dimensionalities of Word2Vec embeddings) were
combined with different groupings of the labels.

3.4 Evaluation
In order to evaluate the performances of the differ-
ent classifiers first an overview of the micro and
macro overall scores will be shown. For a more
detailed look into the models, the Precision, Re-
call and F1-Scores of the classes in the best- and
worst-performing models will be presented.

3.4.1 Overview
A first test with separate categories produced very
unsatisfactory results. Table 3 shows the weighted
and unweighted average F1-Scores for each of the
models. For purposes of readability the scores have
been rounded to the third decimal place.

According to the (weighted) micro-Score, the
Naı̈ve Bayes classifier performs best at this task,
but a look on the unweighted score shows that
the small classes are classified significantly worse
than the larger classes. With the (unweighted)
macro-Score, the model that resulted in the high-
est score in our tests would be the Support Vector
Classifier based on the 100-dimensional Word2Vec-
embeddings.

Overall, these scores are not really satisfactory.
This is not surprising due to the small size of train-
ing data per class. In the test set, the smallest class

Name Category grouping
7-base RR, AR, AD, I, CI, P, NR
2-action RR+AR, AD+I+CI+P+NR
2-timecrit RR+AR+AD, I+CI+P+NR

Table 4: Keywords assigned to groupings

only had seven occurrences. So, the idea arose to
group the categories in order to get more training
and testing examples for each class.

A more detailed look into the performances of
the models with the base task will follow in section
3.4.2, where the best- and worst-performing models
will be discussed in detail.

For an overview of the performances, tables
5 and 6 compare the micro and macro scores
for each grouping in each of the models. The
weighted micro scores take into account the size
of the groups. The unweighted macro-scores do
not do that. While usually one would think that
the weighted performance of a model would give
more insight into the performance of a model, we
decided to add the unweighted scores since the cat-
egory containing CI shows the highest F1-Scores
due to the size of the corresponding data set but is
one of the lesser important categories, and as such
the weighted scores tend to skew the performances
in favor of the bigger and less important categories.

We now discuss two further groupings of the
labels we experimented with. Category groupings
are assigned a name, leading with the number of
classes the grouping results in, followed by a short
keyword for the way criteria they are grouped for.
In table 4 you can see these names with their re-
spective assigned grouping.

For reasons of readability, again the scores were
rounded to the third decimal places and the model
names have been abbreviated: nb for Naı̈ve Bayes,
svc bl for baseline Support Vector Classifier, wv for
the SVC using the self-trained Word2Vec embed-
dings. Also, for reasons of clarity, the table 5 will
refer to the micro-scores (weighted), while table 6
will refer to the macro-scores (unweighted). For
each grouping the best weighted and unweighted
scores are underlined. The highest weighted and
unweighted F1-Scores across all models are shown
in bold.

As one would expect, the best performing group-
ings are those that contain only two classes and
the grouping with each label on its own performs
the worst. Also, as expected, the unweighted
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7-base 2-action 2-timecrit

nb 0.583 0.725 0.656
svc bl 0.538 0.757 0.725

wv50 0.551 0.729 0.676
wv100 0.571 0.696 0.709
wv200 0.543 0.721 0.692
wv300 0.575 0.741 0.700

Table 5: Comparison of micro-Scores

7-base 2-action 2-timecrit

nb 0.426 0.574 0.616
svc bl 0.321 0.612 0.641

wv50 0.501 0.611 0.630
wv100 0.489 0.580 0.667
wv200 0.473 0.622 0.646
wv300 0.499 0.652 0.658

Table 6: Comparison of macro-Scores

scores are almost consistently lower than the micro
scores while the pre-trained embeddings have an
almost consistently worse average F1-Score than
the Word2Vec embeddings. While the differences
especially in those scores that are very close to each
other cannot be considered statistically significant,
this paper only strives to discuss the possibility of
the task and possibly provide scores for comparison
with similar future tasks.

It is noteworthy that, when comparing the micro
scores for one grouping, the scores are surprisingly
uniform with at best a difference of 0.081 between
the worst and best performing models and even
only 0.061 in the 2-action-grouping. This can be
attributed to the class sizes. In the micro score
the larger a class the higher the influence on the
resulting average score. A look on the respective
precision and recall scores of the classes shows con-
sistently good performance on these larger classes
in all the models.

In order to see how a model improves when
being trained on fewer classes with more training
examples, you can compare horizontally and see
a mostly consistent increase in performance from
seven classes to two classes.

When looking at the two binary groupings, with
micro averaged scores, it seems as though the
switch of the AD-class from the larger class to the
smaller group actually decreased the overall per-
formance. But in table 6, you can see that there,

p r f1

svc bl
AD+I+CI+P+NR 0.77 0.95 0.85

RR+AR 0.67 0.26 0.38

w2v100
I+CI+P+NR 0.77 0.80 0.78
RR+AR+AD 0.57 0.53 0.55

Table 7: Scores of the best-performing models

Actual
RR AR AD I CI P NR

RR 16 4 2 - 15 1 2
AR 1 2 - - 5 - -
AD 2 - 7 - 4 - -

I - - 1 4 1 - -
CI 29 12 4 3 80 4 4
P 3 - - - 3 13 5

NR - - - - 5 1 14
Total 51 18 14 7 113 19 25

Table 8: Confusion matrix for Word2Vec50 based
SVM on base task 7-each

too, is an improvement. This leads to the conclu-
sion that the performance of the larger class drops,
while the performance of the smaller class - which
would be considered more important in a business
environment - improves.

When looking at the micro averaged scores,
the comparison of higher dimensionalities of the
Word2Vec embeddings with the baseline SVC also
seems notable. While with more classes the higher
dimensionalities seem to add to the performance,
with the binary classifiers, the higher dimensionali-
ties perform even worse than the baseline.

With the macro averaged scores, this effect van-
ishes and the Word2Vec-models perform consis-
tently better than the baseline model, again indicat-
ing that the baseline SVM has a bias towards larger
classes.

3.4.2 Detailed discussion of best- and
worst-performing models

For a detailed analysis of the best- and worst-
performing models, table 7 shows the precision,
recall and f-scores for each class. For the model
performing best regarding a weighted calculation
of the average value - the SVC baseline model with
the 2-action-grouping (5:2) - , the recall is very
high for the larger group containing the less impor-
tant categories while the recall with the important
categories is very low with only about 0.26. Using
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the best model by macro score, you have a lot less
variability within the scores.

The worst-performing model with both, the mi-
cro scores as well as the macro scores, was the
SVM with the 50-dimensional GloVe-embeddings
in the “7-base” task - where there were no groups,
but each label for its own. In fact the labels RR,
AR and I were not classified at all - with 0.00000-
scores, resulting in the low macro scores. We do
not present results on pre-trained GloVe embed-
dings in detail, leaving a study of how to adapt
pre-trained embeddings to the Enron corpus for
future work.

3.4.3 Evaluation and Error Analysis -
Word2Vec50 with the 7-each grouping

With the 7-each “grouping” being the base task of
this project, the best performing model of this task
will be discussed here.

In order to get a better look on the distribution
of the actual and predicted classes, in the follow-
ing the confusion matrix for the 50-dimensional
word2vec model (see table 8) will be presented.

3.4.4 Evaluation and Error Analysis - SVC
baseline model with 2-action

In order to get more detail on the performance of
the model, and to get an idea of where the per-
formance issues arise from, a detailed confusion
matrix for the svc baseline model with the category
2-action grouping is presented in table 9.

For readability the larger group
(AD+I+CI+P+NR) will be shortened to Other and
for reasons of space-usage, the confusion matrix
will have the actual categories on the X-axis and
the predicted categories on the Y-axis.

While the performance here is significantly bet-
ter than with the GloVe-models and at least 2

3 of the
mails labeled with Action also really require said
action, still 51 of the 69 mails will be lost - that’s
almost 3

4 .
If you look at the distribution of the RR and AR

emails you can see that with 0.28 the share of cor-
rectly classified emails in the AR category is only
slightly bigger than the 0.26 in the RR category.
But if you consider that the AR category is sig-
nificantly smaller than the RR category, with only
one additional misclassified email, that percentage
would have dropped to 0.22. So, it is safe to assume
that both labels are classified with a comparable
performance.

What is interesting to see, though, is, that within

Actual
RR AR AD I CI P NR

AR+RR 13 5 - - 6 3 -
Other 38 13 13 7 108 16 25
Total 51 18 13 7 114 19 25

Table 9: Confusion matrix for svc baseline model
with 2-action

RR AR AD I CI P NR
AR+RR 23 6 2 - 21 - 1

Other 28 12 11 7 93 19 24
Total 51 18 13 7 114 19 25

Table 10: Confusion matrix for Word2Vec300
model with 2-action

the group of emails that were wrongly classified as
AR+RR, these emails originally stem only from
the CI and P categories. All other categories were
classified correctly. But here with three of the nine
wrongly classified emails being P category emails,
the misclassification of P emails is significantly
higher (0.16) than of the CI emails (0.05). This
might be traced to the fact that often private emails
also contain requests for an action or a reaction.

For comparison, consider the confusion matrix
of the Word2Vec300 model trained with this group-
ing that performed second best to the baseline svc -
best with the macro Score, see table 10.

This confusion matrix produces a very different
picture than the baseline svc. Here already 23+
6 = 29 of the 51+18 = 69 actual action requiring
emails are found - which is already over 40 % -,
there are a lot more misclassifications towards the
smaller class.

3.4.5 Evaluation and Error Analysis -
Word2Vec100 model with the 2-timecrit
grouping

In order to again get a better look at the perfor-
mance of the Word2Vec100 model in the 2-timecrit
grouping, see table 11.

With this SVC and grouping - while here, too,
there are a lot more misclassifications toward the
smaller class, instead of 3

4 of the action requiring
mails being “lost”, of the total 82 mails regarded
as ActionRequiring, only 38 are missed. With that
being less than the half, that’s already a lot less
than with the baseline svc in grouping 5.

It is interesting to see that with the AD emails
there is an unusually high recall with 10 of 13 being
classified into the action requiring group.
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For comparison, here, too, shall be presented the
confusion matrix for the baseline svc model which
performed second-best in the 2-timecrit grouping
(table 12).

Here, again, the AD category - while having
only eight of the thirteen emails classified correctly
- performs surprisingly well. Again, the misclassifi-
cation counts towards the smaller class are smaller,
while those towards the larger class are stronger.

This leads to the conclusion that overall the vec-
tors produced by the CountVectorizer lead to a
tendency of classifying in support of the larger
class and the vectors produced, while the average
document vectors resulting from the Word2Vec-
embeddings lead to a tendency of classifying in
support of the smaller class.

In an everyday office life the latter would prob-
ably be preferable. Consider an email account
containing different folders for each class and the
user - running from one appointment to another -
only wanting to see the action-relevant emails when
looking into the respective folder. While having
emails there that don’t belong would be considered
a nuisance, missing emails might prove to be a
problem of a lot bigger scale.

4 Outlook

In this section, an outlook on possible improve-
ments that can be made on and with the existing
models, as well as ideas for future work - i.e. pos-
sible variations of the tasks - will follow.

While none of the models implemented yet
proved to be adequate for an everyday use in a
work environment, there are several possibilities
to improve the performance and ideas that might
prove to be worth looking into.

A larger annotated data set should help greatly
in the training of the used models. Language is too
complex to grasp meanings just from a little over a
thousand emails. With larger annotated data sets,
more features can be accounted for and so the non-
binary models’ performance might also improve.
Possible ways to achieve a larger data set include:
more time, more personnel and using distant su-
pervision. Although the annotation with distant
supervision produces annotations of a relatively
bad quality, it might still be better than only work-
ing with a small data set. In contrast to that, the
usage of more personnel would help in ensuring a
high quality of annotation. So a good compromise
between the two could possibly be found, where

RR AR AD I CI P NR
AR+RR+AD 26 8 10 3 24 2 4

Other 25 10 3 4 90 17 21
Total 51 18 13 7 114 19 25

Table 11: Confusion matrix for Word2Vec100
model with 2-timecrit grouping

RR AR AD I CI P NR
AR+RR+AD 18 3 8 - 12 3 1

Other 33 15 5 7 102 16 24
Total 51 18 13 7 114 19 25

Table 12: Confusion matrix for svc baseline model
with 2-timecrit grouping

a semi-large set of high quality annotations would
be combined with a large set of low quality data
and where good results might be achieved by hav-
ing several training iterations with only the first
iteration on the combined data set and the other
iterations on only the high quality data set.

Another possibility to get larger annotated data
sets would be to use active learning and let users
help with annotating emails in a run-time environ-
ment and therefore improve the used classifier ac-
cording to the user’s needs. This would also have
the advantage of having the models trained on more
contemporary business emails being adapted re-
garding the respective business area of the user and
to the change of their vocabulary in the past years.

With larger data sets the application of deep
learning models would become possible. With
the Support Vector Machines much information
is lost during the reduction of the embeddings to
an average document vector, so a model that is able
to properly grasp the multiple dimensions of the
embeddings could possibly find more and better
relations between the features and the correspond-
ing classes of the documents and thus make better
classifying decisions.

In addition, one possibility to improve the per-
formance could be found by including the subject
lines as well as info about the sender and the re-
cipient/s of the emails into the models since these
already provided relevant information about the
context of the mail during the annotation process.

In emails you often have the former emails from
the exchange appended to the latest email. While in
the annotation process these old emails sometimes
provided necessary information on the context of
the email, in a bag-of-words model, that is used in
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Naı̈ve Bayes as well as in Support Vector Machines,
would give these old mails too much weight. Espe-
cially in long email exchanges, with five and more
emails and possibly only a short question in the
latest mail. A weighting of the words depending on
their occurrence location might prove to be useful.

The Enron data set has often been used for train-
ing classifiers for spam mail. Instead for this
project the obvious spam mail has simply been
categorized as Non-Relevant. The implementation
of a spam filter based on a larger spam-specific
training set that is run before our classifier to elimi-
nate obvious spam might also improve the results
(and/or help with future annotation of new data).

Several of the produced errors might have their
origin in the hierarchical nature of the categories.
This problem might be evaded by allowing the an-
notation with more than one category per email
and/or by using classifiers that produce more than
one label per email and then tweaking these classi-
fiers by weighing those categories in favor of the
action-inducing categories.

5 Conclusion

For this paper, a classification task was set up from
scratch. The goal was to build a classifier that could
distinguish between emails regarding whether a
response or other action was required from the
recipient. Without suitable annotated data being
accessible and possibly even existent, first, a data
set had to be annotated by hand.

Being probably the biggest open source data set
for business emails, the Enron data set was selected
as a foundation for this self-annotated data set. The
annotation produced an annotated data set of 1240
emails. Due to the nature of the Enron data set, the
distribution of the categories was rather imbalanced
leading to very different sizes of learning and test
sets for each of the categories.

For the task of building a classifier, it was de-
cided to compare six different models: one Naı̈ve
Bayes classifier, a baseline Support Vector Classi-
fier as well as four Support Vector Classifiers based
on Word2Vec embeddings of different dimension-
alities.

Since the performance of these classifiers on the
base task with a class for each of the categories
was not satisfying, the categories were grouped in
different ways with the goal of finding a grouping
that would perform better and still be of practical
use in an everyday work environment.

As was to be expected, the two groupings lead-
ing to binary classifiers performed far better than
the multi-class classifier. With a binary classifier,
the training and test data sets were both bigger and
much more balanced. Also, with a binary clas-
sifier, there are far less classes that can be taken
for misclassification. Also, it was interesting to
see, how the performance of the embeddings-based
models changed with additional dimensions. While
the Word2Vec embeddings would produce varying
micro and macro scores, we noticed that the pre-
trained GloVe embeddings - while over all having
a worse performance than the Word2Vec based
models - showed constant improvement of perfor-
mance with additional dimensionalities on each
of the tasks (but we omit these detailed results).
Another interesting result was that the two base-
line models had a surprisingly good performance
overall.

In the detailed error analysis of the best- and
worst-performing models, it was implicated that
additionally to the small size of the data set, the hi-
erarchical order of the categories might have been
one of the major origins of misclassifications, since
this led to fewer distinguishable features of said
categories. The most improvement could possibly
be achieved by improving the used data set regard-
ing its size and quality. But also with the used
classifying models, there are many possible tweaks
and changes that could be tested and that might
prove to have quite an impact on the classifying
performance.

In conclusion - while at least on the binary tasks
promising results could be achieved - none of the
presented models has a performance that would be
good enough for practical use. Too many misclas-
sifications would make a tool based on the models
used here very frustrating to work with. Also, this
would probably even lead to financial risks when
an email that requires a time-sensitive action by the
recipient, would not be recognized as such by the
classifier. But even with these not yet satisfactory
results, it was shown, that this task is not impos-
sible to achieve but rather a question of obtaining
bigger data sets. Using the annotation guidelines
and initial data set that we have created in this work
(and make available with the publication of this pa-
per), it will be possible for interested researchers
with access to more resources to create a much
larger training corpus than we were able to create.
In addition, we plan to study how to incorporate
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active learning to learn from the user as they iden-
tify mis-categorizations as an additional way to
obtain further supervision for this important task,
see, e.g., the work of Tong and Koller (2002), as
well as more recent work. Finally, once we have
further supervision available for this task, we will
study (data-hungry) classification models based on
neural networks, from which we expect to obtain
further improvements in performance.
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Abstract

We present a comparative evaluation study
for splitting German compounds which be-
long to general language or to a specific
domain. For the domain, we focus on DIY
(”do-it-yourself”). The study consists of
two parts: First, we evaluate three tools for
compound splitting in German, one based
on lexicons and corpus frequencies and two
based on language-independent statistical
processing. We introduce the tools, dis-
cuss the data and the construction of a gold
standard, and show first results for binary
and ternary noun compounds, as well as
for the handling of non-splittable items. In
a second experiment, we post-train one of
the splitters with text data from the DIY-
domain, and evaluate the splitting perfor-
mance on domain-specific compounds.

1 Introduction

German is a highly compounding language, which
means that several simple words like Akku “bat-
tery”, bohren “to drill” and Hammer “hammer”
are combined to form a complex word like
Akkubohrhammer “cordless hammer drill”. As a
result, these complex compounds can be rather in-
frequent. In order to automatically process them,
it is often useful to split them into their (usually
more frequent) components, by using a compound
splitter. However, compound splitting is a com-
plex task, because there are often several splitting
options possible. Splitting compounds which origi-
nate from specific domains further aggravates the
problem: Both compounds and components might
be even more infrequent, and a splitter might not

have seen such data in the training stage, because
it was trained on general language data.
For those reasons, we establish two evaluation set-
tings to get a better insight into compound splitting
for general language and for specific domains: (i)
we compare several splitters with respect to their
performance on both general language and domain-
specific compounds and (ii) we post-train a splitter
with domain data and evaluate the effect on domain-
specific compounds.

In the first setting, we report on the compara-
tive evaluation of three published tools. As a basis
we use data from a specialized corpus, a general
language corpus and the word formation literature.
As the application domain is do-it-yourself instruc-
tions (DIY) from online forums, and we targeted
the extraction and semi-automatic description of
terminology candidates from the forum texts, com-
pound splitting was mainly addressed with ontol-
ogy building in mind; typically, heads of deter-
minative noun compounds are hypernyms of such
compounds. By splitting a noun like Bandssäge
(”bandsaw”) into Band•säge, the noun Säge can
be identified as a hypernym of Bandsäge. Conse-
quently, we only worked on noun compounds so
far, even though adjective compounds would be
equally interesting and even less covered by state
of the art analyses of compound splitting. While
split points are the main issue when it comes to the
quality of the analysis of binary compounds, struc-
ture plays a major role for ternary compounds and
items composed of more than three morphemes.
Thus, for tri-morphemic compounds, we assessed
both morpheme decomposition and structure as-
signment.

In the second setting, we post-train one of the
compound splitters on a DIY text corpus. We then
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split all noun compounds in the corpus using the
original and the modified splitter, and compare the
results.
The paper is organized as following: In section 2
we will give an overview about the related work
and in section 3, we introduce the three compound
splitters. Section 4 describes the data that were
used for the first experiment; additionally it gives
details about how to create the compound gold stan-
dard, and how it can be used for evaluation. Section
5 describes the settings of the second experiment,
how to post-train a splitter and which data were
used. In section 6, we perform a detailed evalua-
tion of the experiments. In section 7, we present
and discuss aspects of the outcome of our evalu-
ation, and in section 8, we conclude and point to
needs with regard to future actions.

2 Related work

There exist a variety of compound splitters, which
rely on different methodologies. There are linguisti-
cally motivated splitters, that rely on word frequen-
cies (Koehn and Knight, 2003; Cap, 2014; Weller-
Di Marco, 2017). CharSplit (Tuggener, 2016) how-
ever relies on a character-based method. A recent
trend is to exploit distributional semantics to find
the correct components (Ziering et al., 2016; Riedl
and Biemann, 2016). Similarly, another splitter
relies on semantic analogies (Daiber et al., 2015).
Beside using different methodologies, the splitters
return different splittings. For example, the Simple
Compound Splitter by Weller-di Marco (2017) can
return a binary or an n-ary split, lemmatize and
POS-tag the components. CharSplit, however, does
only a binary splitting. The output might depend
on the application the splitter was designed for;
for example, CharSplit was designed to find the
compound heads in order to facilitate coreference
resolution.
To our knowledge, no huge compound splitter com-
parison exists; Escartı́n (2014) conducts a small
comparative study with two compound splitters. In
addition, there is little work on domain adaptation
of compound splitters. Macken and Tezcan (2018)
perform Dutch compound splitting, and adapt the
splitter to the automotive and the medical domain.
They find that only using general language data
performs better than only using domain-specific
data, but a combination of both leads to the best
results.

3 Tools for splitting German compounds
and their evaluation

While a number of well-known and some upcom-
ing tools for splitting German compounds exist, we
are not aware of recent activities towards the com-
parative evaluation of the output quality of such
tools. An older landmark for word formation evalu-
ation of German as a whole is the Morpholympics
contest, held in 1994 (Hauser, 1994). We briefly
report about both, tools and evaluation.

3.1 Tools for compound splitting
In a general way, and especially with a view to
the kind of evaluation we carried out, tools for
compound analysis may be subclassified according
to the kind of output they provide:

• tools only providing morpheme decomposi-
tion;

• tools providing morpheme decomposition and
one or more structure proposals.

In addition, one may consider further types of tool
output, e.g. category values of the morphemes
identified. While this classification is based on the
kinds of output produced by the tools, one may also
distinguish symbolic vs. hybrid vs. purely statisti-
cal, machine learning based tools, according to the
approach. In the following, we briefly describe the
tools we analyzed, and we mention a few more that
may be used in a second round of the evaluation.

3.2 SECOS: Unsupervised Compound
Splitting With Distributional Semantics

Unlike most systems that rely on dictionaries or
are trained in a supervised fashion, SECOS (Riedl
and Biemann, 2016) relies entirely on distributional
semantics. The hypothesis investigated by the re-
searchers postulates that compounds are similar
to their constituting word units. Their method is
based on a distributional thesaurus that is computed
using a tokenized monolingual background corpus
without any additional linguistic processing. The
first step is the extraction of a candidate word list
that defines the possible word units of compounds.
The second step is splitting the compounds. The
last step is a ranking of the splits and returning
the top-ranked ones. The method is proven to be
language independent: several experiments were
conducted on German and on Dutch, they produced
equally good results. The tool is freely available.1

1https://github.com/riedlma/SECOS.
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3.3 Compound splitting tool from Tübingen
University

The authors (Ma et al., 2016) introduced a letter
sequence labelling approach, which can utilize rich
word form features to build discriminative learn-
ing models that are optimized for splitting. The
prediction of labels is achieved by training con-
ditional random fields. The method is language-
independent and does not require any linguistical
preprocessing. Splitting is conducted at the surface
form level. The current system, available for test-
ing, is trained to split multi-constituent compounds
at the boundaries of all the constituent words, in-
stead of only splitting at the top level (complete
morpheme decomposition).

3.4 CompoST: Compound Splitting Tool

The tool splits compounds into their morphemes
using morphological rules and corpus frequencies.
The underlying method (Cap, 2014) involves us-
ing the geometric mean of subword frequencies
to disambiguate possible splits. CompoST was
developed for compound processing in statistical
machine translation, but it can equally be used as
an independent module for morphological analy-
sis. It requires frequency counts derived from a
corpus; candidate items are analysed by SMOR
(a rule based morphological analyser for German)
(Schmid et al., 2004). CompoST allows to set dif-
ferent parameters and therefore to gain different
versions of output. For instance, it can split a word
even when frequency scores suggest that the word
can not or should not be split (forced splitting), or
it can split only nouns. One of the drawbacks of
the tool is that words unknown to SMOR cannot be
split, as well as disambiguation of possible splits is
entirely based on frequency, and this might lead to
inconsistencies on a non-lemmatized word list.

4 Gold standard for compound splitting

A gold standard evaluation was carried out, in the
framework of our project on term candidate extrac-
tion from do-it-yourself instructions (DIY). While
the focus of the evaluation was on the coverage of
the data from the DIY-corpus, and on the quality of
the respective analyses, we also wanted to explore
the performance of the tools on general language
data. We created a database that contains the gold
standard, as well as the output of individual tools.
In this way, all elements of the evaluation can later
be enhanced: more gold data can be added, and the

results of further tools can be compared.

4.1 Sources and selection criteria
For both, specialized and general language, corpus
data were used, but with different objectives. For
specialized language, we used a corpus of 11 mil-
lion running words, composed of expert texts and
user generated content (=UGC) from the domain of
DIY instructions. The relationship between expert
and UGC texts was roughly 1:5. For the gold stan-
dard, we extracted noun compounds (by means of
TreeTagger-assigned pos=“NN” annotations) from
three frequency bands: top, medium and low fre-
quency items. Given the overall frequency distribu-
tion of nouns, the distribution of candidate items
shown in Table 1 was achieved.

We are aware that the “medium” frequency band
is as yet underpopulated. Additional sampling may
be needed to provide roughly the same quantities of
data as for the two other frequency bands. However,
this would not even out the relationship between bi-
nary and trimorphemic candidates, which is uneven
as well but likely relatively close to the distribu-
tion to be expected in the texts under analysis. To
counterbalance the almost proportional sampling
from the specialized corpus, we added data from
general language materials. In this part of the gold
standard, we did not aim at replicating frequency
distributions from a given corpus, but we rather
targeted a collection of all cases that are discussed
as relevant in the literature on German compound-
ing. This approach is similar to part of Hauser’s
(1994) sampling method. Thus ca. 200 items were
taken from the standard handbook on German mor-
phology by Fleischer and Barz (1995). We cross-
checked however the chosen items against 200 M
words of news texts and against the SdeWaC cor-
pus (Faaß and Eckart, 2013), and only used items
present in at least one of them. These items pro-
vide a wide range of possible issues for compound
splitting, e.g. adjectival non-heads that are not in
the positive form (Mehrarbeit “additional work”;
Reinststoff “ultrapure substances”, lit.: “ultrapurest
substances”) or compounds with phrasal non-heads
(Heißwasserspeicher “boiler”, lt.: “hotwater stor-
age”).

4.2 Annotation of the gold standard
The annotation was carried out manually, by one
linguist. The reason why we consider this suffi-
cient is that the underlying guidelines are based
on standard analyses from morphological theory
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frequency range frequency non-split binary trimorph. total
top f > 100 44 329 67 440
medium 41 > f > 37 6 113 29 148
low f=12 21 312 100 433
total 71 754 196 1,021

Table 1: Frequency-based sampling of noun compounds from an 11 M word corpus of DIY forum texts.

(Ortner et al., 1991; Pümpel-Mader et al., 1992;
Fleischer and Barz, 1995; Donalies, 2011; Don-
alies, 2014); for items which, according to these
sources, can receive more than one analysis, all
valid analyses were included in the gold standard,
such that tools providing one of them were not pun-
ished. The annotated data were stored in a database.
The following features were annotated:

• split points on the form level - in the sense of
Koehn and Knight (2003) - and lemma forms
of the morphemes;

• pos categories of the non-head morphemes;

• structure of tri-morphemic compounds (left
vs. right branching).

In addition, the following documentary data
were annotated by automatic means:

• number of split points (for easy counting of
over- and undersplitting cases);

• lemma frequency of the item tested, as well
as of its components in 200 M words of news
text and in SdeWaC.

The following is a simplified example of the
linguistic representation of the items in the gold
standard database; the first feature is the POS com-
bination of the non-head morphemes; it is followed
by the lemma from the corpus, its decomposition
into morphemes at the level of surface forms, its
topmost split at the level of surface forms, as well
as the morpheme decomposition and the structure
proposal (=topmost split) on the level of lemmas.

adj-v Kleinstlebewesen

– kleinst lebe wesen + kleinst
Lebewesen

– klein leben Wesen + klein
Lebewesen

The double annotation, at both lemma and sur-
face level, ensures compatibility with most types
of tool outputs and thus eases the comparison.

4.3 Data annotated
As mentioned above, we included noun com-
pounds of three kinds in the database: bi-
nary and tri-morphemic compounds, but also
items that cannot be split, e.g. because they
are derivation products. We also included
ca. 30 items which allow for two structural
analyses, e.g. Meerwasserentsalzungs•Anlage
vs. Meerwasser•Entsalzungsanlage (“desalination
plant”, lit.: “sea water desalination plant”). The
distribution over the full data set is given in table 2.

frequency range #
non-splittable 86
binary
- N+N, Adj+N 715
- V+N 118
tri-morphemic 294
total 1,239

Table 2: Distribution of compounds over the full
data set.

5 Post-training with domain-specific text
data

Adapting a compound splitter to a certain domain
of interest, as DIY in our case, might improve
the compound splitting for two reasons: First, the
domain-specific components of a compound might
be infrequent in general language, and that is why
the correct split or base form of the component
cannot be found. For example, the compound
Eloxierverfahren (“anodizing procedure”) should
be splitted and lemmatized to eloxieren•Verfahren
(“to anodize•procedure”). Secondly, splitting prob-
abilities might be skewed because a certain split
is more likely in general language, while another
one is more likely within the domain. For ex-
ample, the compound Rohrverbinder (“pipe con-
nector”) is likely to be split as Rohr•Verb•Inder
(“pipe•verb•Indian”) in general language, because
the three components do occur more often in gen-
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eral language than the correct components Rohr
(“pipe”) and Verbinder (“connector”).

However, post-training of a compound splitter
on a domain-specific corpus is not always possible.
It depends on the design of the tool and if the origi-
nal training data are available for updating.
We adapt the splitter CompoST. CompoST relies
on frequency counts derived from a corpus, in the
default case a general-language corpus. To adapt
the splitter to the DIY domain, we compute all the
frequency counts for a DIY text corpus. Then we
either add the frequencies to existing token entries,
or create new ones. We use a domain-specific DIY
corpus with 5.6 million words. The texts were col-
lected from different sources, but all of them are
DIY-related. There are texts produced by domain
experts as well as by interested lay users, such as
encyclopedia texts, DIY-instructions and manuals.
Preprocessing has been done with SpaCy2 (Honni-
bal and Johnson, 2015). Working with the German
language model of SpaCy, we make use of the tok-
enizer, the POS-tagger and the lemmatizer. While
the tagging itself is based on a convolutional neural
network, the lemmatizer still works with a conser-
vative look-up table. We use the POS-tags to select
noun compounds as candidates for compound split-
ting.

6 Evaluation

6.1 Comparison of compound splitters

6.1.1 Evaluation methods
We mainly follow Koehn and Knight’s (2003) pro-
cedures for the comparison of our gold standard
splits with the output produced by the tools. To
ease the quantitative assessment of over- and un-
dersplitting, we count the number of split points in
each gold standard item and in each tool output for
the respective item and annotate this number back
into the database. As we offer the gold analyses
both on word forms and on lemmata, we use both
versions as alternatives to match the tool output
against: the results of each tool (or of each ver-
sion of tool output) are inserted, for each gold item,
into the respective row of the database table; for
each tool output, the table is thus enlarged by one
or several complete column(s). Not all tools pro-
vide just the split points; some provide in addition
pos-features or other descriptive output. When pre-
processing the tool output we keep track of such

2https://spacy.io/

specificities. We evaluated the analyses provided
by the tools in terms of correct vs. incorrect split
points, over- and undersplitting. Later, we will in-
clude an evaluation with regard to POS categories
of the components wherever possible.

6.1.2 Results
According to the proposed methodology the first
assessment of tool quality is achieved by a simple
comparison of the output in the terms of:

• correct splits (when the splits provided by
the tool either correspond to the morpho-
logical or structural gold splits, for exam-
ple: Bienenwachslasur will result in the fol-
lowing gold splits: Bienen•wachs•lasur and
Bienenwachs•Lasur);

• incorrect non-splits (when the tool perceives
a word as a non-compound, a special form of
undersplitting);

• wrong split points.

In this paper we present the result of such
an analysis only for N+N type compounds
(Gerölllawine, Bombengeschäft, Tagblatt), as well
as for V+N type compounds (Isolierschlauch,
Meldeeinheit, Schleifgerät), and also for certain
types of tri-morphemic compounds (Sperrholzrest,
Heizkörpernische, Heißklebepistole). The results
obtained for binary compounds, N+N type (N =
626), are listed in Table 3.

Though CompoST clearly outperforms the other
tools, some nouns still remain unsplit. Neverthe-
less it also made fewer wrong splits than SECOS
or the TU-tool. The latter is almost as good as
CompoST in terms of undersplitting, though it pro-
duced almost twice as many wrong splits. While
SECOS made less mistakes with split points than
the TU-tool, it was not as good as in distinguish-
ing compounds from non-splittable items. One of
the reasons for this performance might be the spe-
cialised nature of the data, as most of the N+N type
compounds came from the domain of DIY instruc-
tions, such as: Steinbearbeitung, Bohrmaschine,
Drehzahl. The results obtained for binary com-
pounds of the V+N type (N = 118) are presented in
Table 4.

In this case CompoST produced more nonsplits
than the other tools, though its general perfor-
mance is still higher than 65%, and only one
compound was wrongly split (Wegwerfgesellschaft:
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Tool correct non-split wrong split
CompoST 582 (93%) 9 (1,4%) 35 (5,6%)
TU-tool 500 (80%) 15 (2,3%) 111 (17,7%)
Secos 496 (79%) 50 (7,8%) 79 (13,2%)

Table 3: Quantitative results on N+N compounds.

Tool correct non-split wrong split
CompoST 78 (66%) 39 (33%) 1 (1%)
TU-tool 92 (78%) 2 (1,7%) 24 (20,3%)
Secos 75 (63,7%) 19 (16%) 24 (20,3%)

Table 4: Quantitative results on V+N compounds.

wrongly split as ??Weg•Werf•Gesellschaft instead
of Wegwerf•Gesellschaft). The undersplitting ten-
dency observed in N+N type compounds can be
detected here as well. However the TU-tool
outperforms the others with almost 78% of cor-
rect splits. The TU-tool and SECOS share the
ca. 20% of wrong splits (??Ein•Lege•Bretter
(TU-tool) and ??Einlegebre•Tter (SECOS) in-
stead of Einlege•Bretter, ??Unter•Legscheibe (TU-
tool) and ??Unter•legscheibe (SECOS) instead
of Unterleg•Scheibe, ??Ans•Aug•Leistung (TU-
tool) and ??Ansau•Gleis•Tung (SECOS) instead
of Ansaug•Leistung). Examples of selected ternary
compounds of different types (N = 173) are given
in the table 5.

There may not be enough candidate data to as-
sess all patterns, as A+N+N and V+N+N are rather
rare in our texts; more data may be needed in the
future to allow us to come up with a more meaning-
ful evaluation. Nevertheless, both the TU-tool and
SECOS provided consistently good results, with
low percentages of wrong splits and almost no un-
dersplitting. CompoST on the other hand exhibits
a considerable amount of undersplitting, but pro-
duces only very few wrong splits. It remains un-
clear why A+N+N compounds lead to problems
with CompoST. Our test set contained also non-
compounds (N = 86), so that we could investigate
oversplitting and the ability to distinguish com-
pounds from other word formation products. The
non-splittable candidates are mostly derivatives,
some of which are phrasal derivatives:

• Derivation products: Möglichkeit, Ver-
schraubung;

• Phrasal derivatives: Rechtwinkligkeit

The results are presented in Table 6.

Again CompoST clearly outperforms other
tools in this task. It provides many good solutions
and only a small amount of errors. Both the
TU-tool and SECOS tend to produce erroneous
splits in almost two thirds of the cases; their
recognition capacity of non-splittable terms is
thus not particularly good yet. All the three
systems presented above were tested and their
output was analyzed. Due to the underlying
processing method the TU-tool and SECOS
more often produce oversplitting of compounds
(SECOS: ??W•Ärmer•Ückgew•Innungs•Anlage
instead of Wärme•Rückgewinnungs•Anlage,
??Wasser•Rückgew•Innungs•Anlage in-
stead of Wasser•Ruckgewinnungs•Anlage,
and ??Un•Kennt•Lich•Machung in-
stead of Unkenntlichmachung; TU-
tool: ??Ver•Blend•Mauer•Werk in-
stead of Verblend•mauerwerk, and
??Sch•Werst•Behinderten•Betreuung instead
of Schwerst•Behinderten•Betreuung), while
CompoST undersplits compounds from the general
language even when the parameters are set to
enforce splitting.

6.2 Post-training on domain-specific text data

For the evaluation of post-training CompoST, we
take all word types from the DIY corpus as candi-
dates for compound splitting, which are tagged
as nouns. We both run the original CompoST
(ORIG) and the version of CompoST adapted to
the DIY domain (MOD). The results are shown
in table 7. Overall, the modified version of Com-
poST finds more compounds than original Com-
poST does (first two rows of table). However, the
difference is not big (259 compounds). Further-
more, for the majority of the cases, both splitter
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Type Tool correct non-split wrong split
N + N + N CompoST 97 (85%) 14 (12,3%) 3 (2,7%)
(114) TU-tool 105 (92%) 0 (0%) 9 (8%)
Span•Holz•Platte Secos 92 (81%) 3 (2,7%) 19 (16,3%)
A + N + N CompoST 11 (31,4%) 21 (60%) 3 (8,4%)
(35) TU-tool 31 (89%) 0 (0%) 4 (11%)
Rund•holz•stab Secos 30 (86%) 0 (0%) 5 (14%)
V + N + N CompoST 22 (88%) 3 (12%) 0 (0%)
(25) TU-tool 22 (88%) 0 (0%) 3 (12%)
Senk•kopf•schraube Secos 21 (84%) 0 (0%) 4 (16%)
All types CompoST 195 (66%) 91 (31%) 8 (3%)
(294) TU-tool 261 (89%) 3 (1%) 30 (10%)

Secos 234 (80%) 8 (3%) 52 (17%)

Table 5: Quantitative results for selected ternary candidates.

Tool correct wrong split
CompoST 82 (95%) 4 (5%)
TU-tool 33 (38%) 53 (62%)
Secos 43 (50%) 43 (50%)

Table 6: Quantitative results on non-splittable
items.

versions split identically (row 3), i.e. roughly 95%
of the compounds split by MOD are split in the
same way by ORIG. Rows 4 to 9 show the cases
where the splitters do not agree, which is further
analyzed below.

feature #
all ORIG splits 59,936
all MOD splits 60,195
same split 57,145
only MOD splits 640
only ORIG splits 411
MOD more splits 232
ORIG more splits 227
different split points 127
lower/upper difference 1,793

Table 7: Comparison of the splitting results for
the original CompoST (ORIG) and CompoST post-
trained on a DIY corpus (MOD).

Only MOD splits vs. only ORIG splits. MOD
splits more compounds than ORIG. In return, it
misses compounds which were originally split
(“only ORIG splits”). This makes up roughly 2/3
of the size of the compounds only split by MOD. It

seems likely that the missed compounds originate
from general language, and the newly split ones
are domain-specific. However, when analyzing
the compounds, this is not the case; clear DIY-
compounds like Akkuschrauber (“screwdriver’)’,
Stichsäge (“padsaw”) or Heimwerker (“DIYer”) are
not split by MOD.
Secondly, we want to analyze the impact of hy-
phenated compound candidates. An example
would be Douglasien-Bodendielen (“douglas fir-
floor boards”), where the split point is obvious
because of the hyphen. There are rare cases where
such a split would be wrong, e.g. 3-in-1 or 200-
er. We throw out all compounds where the split
point is set at the hyphen and show the result in
table 8 (columns “only X splits”). Obviously, most
compounds that MOD missed were hyphenated
compounds; for closed compounds, MOD shows a
superior performance for both binary and ternary
compounds.

only X splits X more splits
ORIG MOD ORIG MOD

binary 43 600 - -
ternary 0 50 137 22
nary - - 9 0

Table 8: Difference of splitting results for the origi-
nal CompoST (ORIG) and post-trained CompoST
(MOD) with disregarding all compounds with splits
at hyphens.

MOD more splits vs. ORIG more splits. In
these cases, both splitters split the same compound
but the number of splits is different. While for
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the overall results (table 7) this part seems to be
rather equally sized for the splitters, focusing on
the closed, not hyphenated compounds again (table
8, columns “X more splits”) the picture is quite dif-
ferent. MOD produces fewer splits, i.e. contracts
components within a compound. For example,
ORIG splits Schraubendreherklingen (“screw-
driver blades”) as Schraube•Dreher•Klingen
(“screw•driver•blades”), while MOD splits
Schraubendreher•Klingen (“screwdriver•blades”).
We conclude that MOD finds some compounds
to occur frequently and thus does not split them
anymore. This intuition also coincides with the
results from the previous paragraph, that DIY
compounds like Akkuschrauber (“screwdriver”)
are not split anymore by MOD.

Different split points. In these cases, both split-
ters split the same compound and return the same
number of splits, but the split points are differently
set. When analyzing the compounds, we find that
in most cases the results are different because the
modifier is either lemmatized as noun or verb, e.g.
Putz/putzen (“plastering/to clean”), or the lemma is
different: Dosen→Dose/Dosis. Some errors result
from the Fugen-s (Prozessor•Steuerung “processor
controlling” vs. ??Prozessor•Teuerung, lit.: “pro-
cessor increase in prices”), or a completely wrong
split. MOD performs superiorly to ORIG because
it always selects the more likely lemma in the do-
main (e.g. Putz instead of putzen). We randomly
select 30 compounds of this category and compare
the splitting results; MOD splits 18 times correctly,
ORIG only 8 times (in the other cases, both splits
were incorrect).

Lower/upper difference. In these cases, both
splitters split the same compound, return the same
number of splits and find the same split points.
Only upper- and the lowercasing is different. When
analyzing the respective compound splits, one can
see that it is mostly again the modifier which is
different. Sometimes this is a discrepancy between
verb and nominalized verb (e.g. Sägetisch “sawing
table” is either split as sägen•Tisch “to saw•table”
or Sägen•Tisch “sawing•table”), or upper- or low-
ercasing is just wrong (e.g. Nahtkontrolle is split as
naht•Kontrolle “joint examination”). It is unclear
where this effect comes from. When again extract-
ing 30 compounds randomly, MOD lemmatizes 15
times correctly, and ORIG lemmatizes 14 times
correctly. To conclude, no splitter shows superior

performance here.

7 Discussion

In general, it is rather difficult to compare and eval-
uate the performance of different compound split-
ters. They return diverse splittings, e.g. they ei-
ther return binary or n-ary splits, lemmatize the
results or additionally POS-tag them. For some
splitters, there even are several settings available
(as for example, restricting either to a binary split
or allowing an n-ary split). Thus, sometimes a com-
parison can be hard. For example, do we prefer a
splitter that does not lemmatize against a splitter
that lemmatizes, but sometimes returns wrong lem-
mas? Finally, the follow-up task for the compound
splitting might decide which splitter we will use.

8 Conclusion and outlook

We presented a two-part study to evaluate the per-
formance of German compound splitters on noun
compounds, for general language and for specific
domains. In a first experiment, we conducted a
gold-standard-based evaluation of three compound
splitters on general-language and domain-specific
compounds. The splitters are CompoST, SECOS
and a CRF-based tool from University of Tübingen.
We explained data sampling from specialized cor-
pora and from an inventory of general language
phenomena in compounding. We noted that Com-
poST tends to undersplit compounds (likely due to
a lack of lexical knowledge in SMOR), while the
other two tools tend to oversplit. Consequently,
CompoST also performs best on non-splittable
items (95% correct vs. 50% for the second best
tool). Its precision is highest for N+N compounds.
TU-Tool produces more correct splits on V+N com-
pounds, but also produces more incorrect splits. It
is the best-performing tool on tri-morphemic noun
compounds, with SECOS being second and Com-
poST last (only 66% correct vs. 89% with TU-
Tool). TU-Tool produces a slightly higher amount
of wrong splits than CompoST for tri-morphemic
compounds, but therefore CompoST does not split
nearly one third of the compounds. In general,
CompoST rarely produces splits the result of which
are non-morphemic letter sequences (in contrast to
Einlegebre·Tter discussed in section 6.1.2).

In a second experiment, we post-trained Com-
poST on domain-specific DIY data, and compared
the results for splitting domain-specific compounds.
We found that for roughly 95% of the compound
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candidates, the original and the modified splitter re-
turn identical splits. For the rest of the compounds,
we performed a detailed evaluation with respect to
several features, like the number of splits or a differ-
ence of the exact split points. We find that in these
cases the adapted CompoST mostly outperforms
the original one, especially for binary and ternary
closed compounds. This qualitative improvement
is quantitatively watered down by the fact that the
original CompoST more often splits hyphenated
compound candidates than the post-trained version.
The modified version more often contracts compo-
nents within an n-ary compound, presumably due
to the increased number of occurrences of a com-
plex component (e.g. Heimwerker) in the data used
for post-training.

Overall, the comparison of compound splitters
proved to be more difficult than one would expect,
as the tools come with widely diverging features:
some tools only provide one split-point, others do
not come with training data, yet others include
lemmatization of the output, which in some cases
can be a source of further errors. Against this back-
ground, we see a need for further detailed method-
ological work on the topic.
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Abstract

Operant motives are unconscious intrinsic
desires that can be measured by implicit
methods, such as the Operant Motive Test
(OMT) employs. During the OMT, par-
ticipants are asked to write freely associ-
ated texts to provided questions and im-
ages. Trained psychologists label these
textual answers with one of four motives.
The identified motives allow for psychol-
ogists to predict behavior, long-term de-
velopment, and subsequent success. We
use a long short-term memory neural net-
work (LSTM) combined with an attention
mechanism for classification of OMT tex-
tual answers and show state-of-the-art per-
formance over previous work. When inves-
tigating tokens that have high associated
attention weights with the Linguistic In-
quiry and Word Count (LIWC) tool, we
find a weak connection between LIWC cat-
egories and the OMT theory. Lastly, we au-
tomatically annotate and count motives per
participant and correlate counts with aca-
demic grades, finding a weak correlation
between certain motives and subsequent
academic success.

1 Introduction

The goal of our research is to classify psychometric
textual data. Furthermore, we aim to investigate al-
gorithmic decision making and validate automatic
annotation by predictions in accordance with the
psychometric theory. To pursue this goal, we per-
form multi-label classification on the Operant Mo-
tive Test (OMT, Section 2) with four labels. During
this OMT, participants textually answer questions
on images such as displayed in Figure 1 to provided
questions.

Recent advances in artificial neural network ar-
chitectures have established mechanisms that allow

Figure 1: Some examples of images to be inter-
preted by participants utilized for the operant mo-
tive test (OMT). Exemplary answers given in List-
ing 1 correspond to the first picture. (Kuhl and
Scheffer, 1999).

researchers to, in a limited fashion, inspect reasons
for algorithmic decisions. One of these mecha-
nisms is called attention and was found by Young
et al. (2018) to be among the most broadly investi-
gated and adopted elements of deep neural machine
learning. We want to investigate access to algorith-
mic decision making by employing this attention
mechanism (Section 3).

Lastly, the OMT theory states that some labeled
motives allow for predictions of subsequent aca-
demic success, which we inspect by counting an-
notated labels and correlating these counts with
participant’s academic grades.

Even though there is a high demand for the au-
tomation of psychological textual data analysis
(NLPsych), comparably little research has been per-
formed on this interdisciplinary task (Johannßen
and Biemann, 2018). Reasons for this circum-
stance include the lack of available labeled psy-
chological text data, as Husseini Orabi et al. (2018)
point out, and the mere difficulty of capturing psy-
chological traits solemnly from texts, especially
short texts. Since first, psychologists are skilled

Proceedings of the 15th Conference on Natural Language Processing (KONVENS 2019)
Distributed under a CC BY-NC-SA 4.0 license.

68

https://creativecommons.org/licenses/by-nc-sa/4.0/


workers for such a labeling task and secondly, said
task is difficult, labeling such psychometric tex-
tual data is costly. Also, interpretability and trans-
parency are crucial for gaining insights into the
nature of some tasks including security, medicine,
and psychology, which is often more valuable for
researchers than reaching the highest classification
performance scores (Zhang et al., 2018).

In this work, we focus on the following research
questions: i) Do neural architectures outperform
a previous non-neural machine learning approach
and if so, which architectures perform how well?
ii) Do the attention weights matter and reveal any
insights into algorithmic decision making? iii) Is
there a correlation between automatically predicted
motives and subsequent academic success?

We describe the OMT in Section 2. Thereafter,
we will discuss related work in Section 3. Sec-
tion 4 describes the data basis of this work and its
characteristics. Our research methodology will be
described in Section 5. Results will be presented
in Section 6. Finally, a conclusion will be drawn in
Section 7.

2 Operant Motive Test

Implicit or operant motives are unconscious intrin-
sic desires, which can be measured by psychologi-
cal implicit methods, which require participants to
use introspection for the assessment of psychologi-
cal attributes (Gawronski and De Houwer, 2014).
During the testing procedure, participants are asked
to write freely associated texts to provided ques-
tions and images. The OMT is such a test and
emerged from the Thematic Apperception Test
(TAT, (Murray, 1943)).

Listing 1 displays a few of the training in-
stances that correspond to the first picture of Figure
1, which displays some examples out of several.
Those images show one or multiple persons often
in unclear scenarios and situations. Applicants are
asked to answer four questions: i) What is impor-
tant for the persons in this situation and what is
s/he doing? ii) What is the person feeling? iii)
Why does the person feel this way? iv) How does
the story end? The four answers are concatenated
to a single string. On this string, it is possible
to annotate one of the three motives a) Affiliation
(German ’Anbindung’, letter A), b) Achievement
(German ’Leistung’, letter L) and c) Power (Ger-
man ’Macht’, letter M). The very first observed
motive applies to the whole string, which is the

so-called primacy rule (Kuhl and Scheffer, 1999).
Once participants express a motive, this motive is
saturated. Therefore, the following motives ought
to be ignored when analyzing the answers. If no
motive can be identified, a zero will be annotated
(the so-called zero rule).
A sie nimmt am Gespräch nicht teil und
wendet sich ab. gelangweilt. es
interessiert sie nicht, worüber die
anderen beiden reden. schlecht.

M weicht ängstlich zuruück. unterlegen.
wird zurechtgewiesen.
Gelegenheit den Fehler zu korrigieren
------- Translation -----

A she does not take part in the con-
versation and turns away. bored.
She does not care what the other
two are talking about. Bad.

M withdraws anxiously. Inferior.
is rebuked. Opportunity to
correct the mistake.

Listing 1: German text examples of OMT answers
with A being Affiliation and M being the power
motive. The texts correspond to the first picture of
Figure 1. Translations into English provided by the
authors.

Implicit motives allow for the prediction of clin-
ically measured non-verbal interpersonal commu-
nication such as the amount of smiling, laughing
or eye contact (McAdams et al., 1984) as well as
the job performance (Lang et al., 2012). Schef-
fer (2004) was able to show a significant (p < 0.02)
multiple regression correlation with a negative beta
slope (hence the lower the German grade, the better
with 1 being very good and 5 having failed) be-
tween the achievement motive and z-standardized
average grades of students from different depart-
ments.

3 Related Work

Previous approaches to predicting psychologi-
cal traits. So far, approaches to psychological
traits identification from texts often examined the
connection between language and mental diseases.
Current research mostly focuses on e.g. the detec-
tion of dementia (Masrani et al., 2017), crises (De-
masi et al., 2019), suicide risks (Matero et al.,
2019), mental illnesses (Zomick et al., 2019) or
anxiety (Shen and Rudzicz, 2017) by the use of
some form of natural language processing.

Nonetheless, some findings focus on motivation,
success or characteristics. Tomasello (2002) de-
scribes the psychology of language as the method
of focusing on the way people express themselves

69



rather than to focus on what meaning is conveyed.
Linguistic Inquiry and Word Count (LIWC) is

a tool developed by Pennebaker et al. (1999) for
text analysis, that utilizes previously validated cat-
egories containing word lists for which the mem-
bership ratio of an input sequence is being asserted.
Furthermore, the tool calculates statistical values
e.g. the average word length, the average count
of word per sentence or the frequency of words
longer than 6 characters. LIWC can be considered
to be a standard tool for the analysis of texts from
the psychological domain due to its broad utiliza-
tion among researchers (Johannßen and Biemann,
2018). The German version of LIWC has been
developed by Wolf et al. (2008).

So-called closed-class words are by far more
informative than open-class words in terms of psy-
chological language research. Closed-class words
are words that tend to not change over centuries,
which can be e.g. pronouns, prepositions or ad-
verbs. Open-class words, on the other hand, are
words that are strongly influenced by the time be-
ing, such as historical events or names. Pennebaker
et al. (2014) found a link between the usage of
closed-class words and academic success. During
the study, which used the LIWC tool on written
essays of college applicants and connected these to
subsequent academic success, the authors showed
that the rate of closed-class words are significantly
(p < 0.01) positively correlated to subsequent aca-
demic success, regardless of the chosen essay topic
or sought major.

In (Johannßen et al., 2019) we engineered hand-
crafted features to train a logistic model tree (LMT,
Landwehr et al. (2005)) for classifying the operant
motives. An LMT is a decision tree, which per-
forms logistic regressions at its leaves. The LMT
model reached an F-score of 80.1. The perplexities
of language models for each motive, closed-class
words, and ratios (words per sentence ratio, type-
token ratio) were the main features for classifica-
tion decisions.

Deep learning. Since assessing psychological
traits solemnly from language is a challenging task,
many researchers circumvent this bottleneck by in-
cluding further personal information e.g. from so-
cial media platforms (Souri et al., 2018). Husseini
Orabi et al. (2018) adapted this approach when they
employed convolutional neural networks (CNN, Le-
Cun et al. (1998)) and recurrent neural networks
(RNN) in combination with further information

from social media as labels such as average age,
gender or posting frequency to enhance the detec-
tion of mental disorders.

In order to detect crises, Kshirsagar et al. (2017)
combined neural and non-neural techniques. The
data was obtained from the anonymous emotional
support network Koko1, which is available through
multiple messaging applications.

A long short-term memory neural network
(LSTM, (Hochreiter and Schmidhuber, 1997)) is a
type of RNN which, in turn, is a deep neural net-
work architecture, that allows for the neural cells to
access other cells of the same recurrent layer with
a time delay and thus develop a so-called memory.
An LSTM furthermore employs memory cells that
allow storing information of an arbitrary time hori-
zon. Forget and update gates allow for these cells
to purposely omit information and control, how
the memory is altered. LSTMs have successfully
solved the issues of vanishing or exploding gradi-
ents present in general RNNs (Hochreiter, 1998)
and have been utilized for classifying short texts.

Lai et al. (2015) designed a recurrent convolu-
tional neural network (RCNN) for text classifica-
tion with promising results. An RCNN is an RNN
with a max-pooling layer as its output. The main
advantages of an RCNN in comparison with RNNs
is the enhanced selection of targets or regions to
have an impact on algorithmic decision making.

Young et al. (2018) found attention mecha-
nisms as part of decoder-encoder-architectures to
be amongst these recent advancements in their
survey. Accordingly, attention mechanisms al-
low for decoders to assess their memory by re-
ferring back to their input sequence, which can
enhance the network’s performance. The idea
of employing attention to a sequence-to-sequence
(Seq2Seq) encoder-decoder system originated from
Bahadanau et al. (2015).

With a sequence of annotations hi being
(h1, . . . ,h(Tx)), a context vector ci represents the
weighted sum of the annotations via:

ci =
Tx

∑
j=1

αi jh j (1)

The weights αi j are computed as:

αi j =
exp(ei j)

∑Tx
k=1 exp(eik)

(2)

1https://itskoko.com/
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whilst ei j = a(si−1,h j), with a(. . .) being a
score function describing how well two words are
aligned.

In other words, the system encodes an input se-
quence (this could be e.g. a certain language or a
whole text to be summarized) into a context vec-
tor. This context vector together with hidden states
functions as input for the attention mechanism,
which computes attention weights and passes this
context vector together with the attention weights
on to the output layer. This process is illustrated in
Figure 2.

Figure 2: Illustration of the LSTM with attention
mechanism. The LSTM receives hidden states and
attention weights as inputs in order to output a
corresponding context vector, which thereafter gets
fed to a softmax output layer.

Attention mechanisms were successfully em-
ployed for various tasks. Gupta et al. (2018) uti-
lized a CNN on group images for learning the
global representation of the image and employed
an attention mechanism for merging faces in or-
der to learn local representations of only the faces,
thus leading to a network capable of detecting emo-
tions from entire groups of people. For this, the
authors employed a Seq2Seq system with attention
mechanism (the additional attention mechanism
was proposed by Vaswani et al. (2017)). Images
received automated descriptions by using a CNN
encoder, an attention layer, and an LSTM decoder
by Xu et al. (2015). Furthermore, the authors were
able to project the attention weights onto the im-
ages, visualizing the gaze of the network. Speech
has been analyzed for detecting emotions utilizing
an attention mechanism by Ramet et al. (2018).

On textual data, attention mechanisms have en-
hanced the performance of classification and com-
prehension tasks. Hermann et al. (2015) advanced
automated reading comprehension and question an-
swering for texts with minimal prior knowledge.
So-called self-attention was the enabler of seman-
tic role labeling (SRL) for Tan et al. (2018). Self-
attention is a special case of an attention mech-
anism, that only requires a single sequence to
compute its representation. Vinyals et al. (2015)
showed that a Seq2Seq model with attention mecha-
nism could enhance syntactic constituency parsing
to state-of-the-art performance.

A small subset of this data was annotated by uti-
lizing attention over words. The authors were able
to find the explanation of depressions from texts
with a performance as well as human annotators
had, which the authors refer to as gold explanation.

On the contrary, recent studies have questioned
the interpretability of attention weights and sug-
gested not to equate attention with explanation
(Jain and Wallace, 2019). The authors found that
if attention weights contribute to algorithmic deci-
sion making, the shuffling of these weights should
significantly worsen results.

4 Data

The available data set has been collected and hand-
labeled by researchers of the University of Trier.
More than 14,600 volunteers participated in an-
swering the OMT questions described in Section
2 to 15 provided images such as displayed in Fig-
ure 1. These participants produced 220,859 unique
answers. Each answer was labeled by psycholo-
gists, which were trained with the OMT manual
by Kuhl and Scheffer (1999). After pre-processing
and cleaning the data, 209,716 text instances re-
main. The test and development set both constitute
10% of the available data, which is 20,960 instances
each. The amount of motives in the available data
is unbalanced with power (M) being by far the most
frequent with 59%, achievement (L) constituting
19% of the data, affiliation (A) 17% and zero 5%
(shown in Table 2 and in Figure 3). The pairwise
annotator intraclass correlation was r = .85 on the
Winter scale (Winter, 1994).

5 Methodology

Our methodology can be divided into two parts:
the first is a natural language processing (NLP)
task, which addresses research questions i) and ii)

71



Figure 3: Graphical representation of the unevenly
distributed motive labels amongst the data set.

and the second task answers research question iii)
by counting classified motives per participant and
correlating this count to academic grades.

In order to test whether an LSTM with an at-
tention mechanism succeeds in outperforming the
former best model for classifying the OMT, we
employ the approach by Xu et al. (2015) on an
already existing code basis for multiple text classi-
fiers, which is utilized for further benchmarks as
well.2

As for the word representations, we employed
pre-trained fastText word embeddings for Ger-
man (Bojanowski et al., 2017), provided by the
developers.3 In contrast to Word2Vec word em-
beddings by Mikolov et al. (2013), fastText has
the capability of representing tokens not included
in the embedded words on the basis of character
n-grams. The OMT data (described in Section 4) is
noisy, has many spelling mistakes and would prob-
ably not sufficiently be represented by word-based
embeddings.

5.1 Benchmarking systems

To our knowledge, psychometrics closely related
to the TAT have not been classified with neural
methods yet. The only classification on the OMT
has been performed by utilizing an LMT model
in our previous work (2019), which we compare
to our neural approach. In order to put different
architectures into perspective and to explore the
relationship of our proposed LSTM system with at-
tention mechanism, we performed multiple bench-
marking experiments on the task of automatically
assigning the four classes of operant motives de-
scribed in Section 2 and thus aim to answer the
second research question of how well other neural

2https://github.com/prakashpandey9/Text-Classification-
Pytorch/tree/master/

3Facebook’s AI Research, https://fasttext.cc

approaches perform in comparison.
For this, we employed the following neural ar-

chitectures, as reviewed in Section 3: LSTM, CNN,
RNN, RCNN, Bi-LSTM with self-attention, LSTM
with attention and Seq2One (a Seq2Seq variant
with only one label as output) with attention. Since
neural approaches are non-deterministic (Lai et al.,
2015), we trained each model three times and aver-
aged the F-scores for a stable assessment of results.

Three modifications of the LSTM with attention
mechanism are employed: Firstly, we shuffled the
attention weights before they got applied to the
hidden states. Secondly, we reversed the direction
of the input sequence to honor the OMT primacy
rule. If this rule is followed and processing or-
der has an influence, processing from right-to-left
and classifying on the entire representation could
improve results since the most influential signal
(the first motive in the text) is accumulated last
into the representation. Thirdly, we add compa-
rable hand-crafted features as a fully connected
input to the final classification softmax layer (e.g.
part-of-speech (POS) tags, LIWC categories or the
perplexities of trained language models per target
motive), following Johannßen et al. (2019) to inves-
tigate in how far neural feature induction subsumes
these features.

5.2 Psychometric predictions
After benchmarking, we utilize the most promising
system for predictions in accordance with the OMT
theory. 103 participating students answered the
questions to 15 images, resulting in 1,545 answer
sequences. Further, the data collection includes the
grade of their bachelor’s thesis, which was com-
pleted a few years after the OMT was taken. We
employ the experimental design of our previous
work (Johannßen et al., 2019) to ensure a fair com-
parison. For this, we predict the motives of each
of the 15 answers given per participant, count the
appearances per motive and correlate these to the
bachelor’s thesis grade.

5.3 Model training
All parameters of the models were tuned on a de-
velopment set. Different fixed input sizes were
considered for every architecture: Firstly we con-
sidered a fixed input length of 81 since the longest
answer contains 81 words. Secondly, the average
answer contains 20 words, which we considered
as fixed input size in order to take the primacy
rule (Section 2) into account. Shorter answers than
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the fixed input length receive the padding token
(<pad>), longer ones were truncated. Human an-
notators are asked to ignore the rest of a sequence
after a very first motive could be identified. Terms
not observed in the training vocabulary were re-
placed by an out-of-vocab (OOV) token. Dropouts
of 0.3, 0.5 and 0.8 were evaluated, whereas 0.5 has
shown to perform best for the RNNs and has also
been suggested by Hinton et al. (2012). The num-
ber of iterations was set to 3,600 in 32 batches and
two epochs. The models received word embedded
fastText inputs with 100 and 300 dimensions, of
which the 300-dimensional embeddings reached
better results, and had two hidden layers with 256
cells each. Learning rates were set to 0.0001, 0.001
and 0.01 for each model, with 0.001 performing
best. All results are displayed in Table 1 and were
achieved with these unified best-performing param-
eters.

As for the LSTM with attention mechanism,
which has shown to perform best, the model con-
verged quickly to a loss of approx. 0.4 and oscil-
lates thereafter.

5.4 Attention weights assessment

As shown by Vaswani et al. (2017), the attention
mechanism (described in Section 3) has broadly
been believed to contribute to explainable artificial
intelligence by shedding light on algorithmic de-
cision making. Many authors have followed the
initial idea and e.g. applied heat maps according to
attention weights for input sequences and investi-
gated algorithmic decision making. Other studies
find contrary evidence that attention weights do
not necessarily reflect true meaning (Jain and Wal-
lace, 2019). Even though we are aware of these
controversies and limitations, we follow the critic’s
suggestion to investigate whether attention weights
make a difference in the performance of a system.
For this, we measure on which index the most atten-
tion weight mass is accumulated. We hypothesized
that this might often be the last token since atten-
tion weights usually traverse a sequence in search
(metaphorically speaking) for suiting candidates
and mostly does not find any of such, applying
the most of the available attention weight to the
last possible candidate – the last token. We will
further collect sequences that do not show this be-
havior and thus have the largest attention weight
mass assigned to other tokens than the last one.
These tokens will be evaluated with the LIWC tool.

We would expect the motives to be reflected in
the LIWC categories if they meant anything at all.
We automatically assembled all classified instances,
whose highest attention weight did not assemble on
the very last token, exceeded 0.3 and was classified
correctly.

6 Results

6.1 Model performance

Table 1 shows classification performance of the
different approaches on the test set. We were
able to improve over our previous classifier (Jo-
hannßen et al., 2019). Even though neural ap-
proaches often perform better than earlier ma-
chine learning (Zhang et al., 2018), only the re-
sults of the best-performing model, the LSTM with
an attention mechanism, outperforms the feature-
engineered LMT classification model by an F-score
of 81.55 (the LMT scored 81.10 and thus only
slightly worse) with a fixed input size of 20 to-
kens. The same model with the fixed size of the
longest answer of 81 tokens performed worse with
an F-score of 80.71 (not shown in Table 1). The
other approaches, also with a fixed input size of
20 tokens, performed worse, mostly around a 79
F-score except for the CNN. Including 129 hand-
crafted features, reversing the reading direction and
shuffling attention weights did not improve the re-
sults, thus indicating that firstly, attention matters,
secondly, the direction of classification is not as
important and thirdly, the LSTM attention model
learns the features (POS, LIWC categories, per-
plexity) incidentally. The confusion matrix of the
best-performing model is displayed in Table 2. The
same LSTM with attention mechanism enriched
by similar hand-crafted features does not improve
results further, indicating that the information from
these features is subsumed by the induced repre-
sentations. The inversion of the input sequence
resulted in lower scores, indicating that either the
model cannot make use of seeing earlier tokens
later to account for the primacy rule, or that the pri-
macy rule has not been followed consequently dur-
ing annotation. Shuffling of the attention weights
worsens the results, indicating that these weights
matter for the classification task.

6.2 Assessment of the attention weights

Table 1 shows that the LSTM with attention mech-
anism scored significantly lower when its attention
weights were shuffled compared to the one with
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Model ∅ Accuracy ∅ Precision ∅ Recall ∅ F-score F σ
CNN 63.26 59.34 63.62 61.41 2.36
RNN 68.73 73.10 68.73 70.85 1.59
LSTM 77.84 78.05 77.84 77.92 0.65
Sequence to One (Seq2One) with attention 77.34 76.81 77.43 77.12 1.53
LSTM Attn with shuffled attention weights 79.03 78.05 79.03 78.54 0.13
RCNN 79.70 79.35 79.81 79.58 0.77
Bi-LSTM with self-attention 81.16 80.35 81.16 80.75 0.31
LSTM Attn with 129 addit. handcrafted features 80.85 79.86 80.86 80.35 1.23
LSTM Attn with a reversed direction 80.87 80.05 80.87 80.46 0.99
LSTM with an attention mechanism (LSTM Attn) 81.94 81.15 81.96 81.55 0.09
LMT with 129 handcrafted features (baseline) 81.56 80.90 81.60 81.10 0.00

Table 1: Performance comparison between the LMT and neural systems. All models classified with a
fixed input size of 20 tokens. The only system overcoming the strong baseline of the feature-based LMT
is an LSTM with attention mechanism. This system was also tested in reversed direction, with shuffled
attention weights and with 129 additional handcrafted features, all of which performed worse than the best
model. We averaged all scores (∅) from three trained models each, and provide the standard deviation
across runs (σ ).

Predicted

A
ct

ua
l

0 A L M Σ
5% 17% 19% 59% 100%

0 283 102 150 478 1,013
A 29 2,739 112 646 3,526
L 90 91 3,079 872 4,132

M 126 657 404 11,102 12,289
Σ 528 3,589 3,745 13,098 20,960

Table 2: The relative motive amounts and confu-
sion matrix of the best performing system (LSTM
Attn).

properly trained attention and assigned weights.
Jain and Wallace (2019) stated that this case had
occurred only rarely in their experiments, but that
if this circumstance holds true, they would assume
that attention weights could be considered for in-
terpretation and explanation.

We can observe that on average, 79.85% of the
available attention weight mass was assigned to the
very last token of each instance. It appears that the
mechanism considered one token at a time from left
to right and determines whether attention weight
mass should be assigned to the token in question.
If this is not the case, the attention weight mass is
being kept and the successor token is considered.
When the mechanism reaches the end of the se-
quence, it assigns whatever attention weight mass
is left to the very last token. The second and third
index with the highest following attention weight
masses are the second last and third last tokens re-

spectively. According to the OMT theory, the last
tokens of a sequence, in general, should not provide
the main information for encoding the whole se-
quence due to the primacy rule, this high attention
weight mass on the last token indicates, that for
the majority of classified instances, the attention
weights do not serve as a widely applicable means
to interpret the reasons for classification decisions
in this setup.

Besides these last tokens, we aimed to investi-
gate the mechanism further and compare these non-
concluding tokens to all tokens by automatically
assembling instances and attention weights.

Table 3 compares the four most prominent psy-
chologically validated LIWC category member-
ships in percent per motive of all tokes versus
non-final tokens with high attention weight masses.
Most of the LIWC category names appear to be
representative for the wordlists that they consist of.
E.g. positive emotion consists of e.g. love, nice and
sweet.

According to the OMT theory, people with a
strong achievement motive desire intrinsic excel-
lence. They tend to analyze problems thoroughly
and focus on tasks. This description is reflected by
cognitive mechanism that is almost twice as present
for high attention mass tokens as it is for all tokens
(27.39% compared to 14.11%). The categories oc-
cuptation (e.g. observe, conduct, advancing) with
24.66% and achieve – already with the same name
as the OMT motive – with 23.28% are high in
presence as well. Compared to rather low social,
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High attention weight mass All tokens
LIWC per cent words LIWC per cent words

A
ch

ie
vm

en
t

mechanism
cognitive

27.39

capabilities
motivated

concentrated
intense social 15.17

-
-
-
-

occupation 24.66
mechanism
cognitive

14.11

achieve 23.28
references

other
11.44

insight 10.96 affect 10.49

A
ffi

lia
tio

n affect 12.12

interested
partner
secure

important social 19.76

-
-
-
-

emotion
positive

12.12
references

other
12.04

humans 9.09 affect 10.31

social 9.09
mechanism
cognitive

9.48

Po
w

er affect 33.95

humiliated
dominant

feels
can social 18.99

-
-
-
-

mechanism
cognitive

28.91
mechanism
cognitive

11.46

emotion
positive

24.93
references

other
11.25

insight 20.16 affect 9.91

Table 3: LIWC analysis of tokens that received
the most attention weight mass on the left with all
tokens on the right separated by predicted labels
(left) versus manually annotated labels (right).

affect and other references, the OMT theory for
the achievement motive appears to be better repre-
sented by tokens with high attention. Single words
include intense, concentrated, motivated and capa-
bilities.

Similarly, the LIWC categories for the affilia-
tion motive are affect, positive emotion, humans
and social for the left columns and apparently
reflect the description of a desire to solve prob-
lems cooperatively, whilst avoiding conflicts. How-
ever, scores for LIWC categories are rather low at
12.12% and 9.09%. The social LIWC category is
strongly present on the right column for all tokens
with 19.76%, as well as affect with 12.04%. The
other two LIWC categories of the right columns
other references and cognitive mechanism do not
appear to align well with the affiliation motive.

Even though the desire to influence and alter
one’s surrounding and fellow beings, the power
motive can be identified by positive expressions as
well as rather harsh ones. All LIWC categories of
these columns on the left appear to align with the
power motive, which are affect (33.95%), cognitive
mechanism (28.91%), positive emotion (24.93%)
and insight (20.16%). The corresponding LIWC
categories for all tokens on the right columns cor-
respond with the exception of other references but
are comparably weaker.

This comparison shows that tokens with high
attention mass per motive correspond to the OMT

theory e.g. occupation and insight for achievement,
whilst all tokens do show some correspondence
(e.g. social and affiliation), but in general, do not
align well with the OMT theory. Interestingly,
when removing the tokens (besides the last ones)
that received the most attention weight mass and re-
evaluating the answers with the LIWC tool to test
the counterhypothesis that high-attention tokens do
not reflect the classes, the categories shift to ones
that do not correspond to the OMT theory.

gelangweilt
bored

weil
because

sie
she every

jeden
day
tag

0

protected
geborgen weil

because
die
the

andere
other person

person
A

gefordert
challenged

will
wants

das
the

ziel
goal

erreichen
to reach

L

zu
to

maßregeln
disciplin

dominant
dominant

die
the

andere
other

M

Table 4: Heatmap according to the attention
weights displayed on four example snippets of
OMT answers in German with their glossed trans-
lations and targets (A for affiliation, M for power
and L for achievement).

Examples are given in Table 4, which displays
some tokens highlighted, according to the token’s
attention weight masses. These examples do not
reflect the whole data basis but illustrate a possible
aid for understanding the task at hand and might
help develop tool support for this task or related
psychometrics.

6.3 Correlation with bachelor’s thesis grades

As described in Section 5, in order to analyze the
predictive power of motives, we count predicted
motives and correlate these counts to academic
grades. While we previously found a weak correla-
tion of r =−0.2 between power motive counts and
the bachelor’s thesis grade, the experiment in this
work revealed a a correlation of r =−0.25 between
the bachelor’s thesis grade and the achievement
motive in this work, i.e. the higher the achieve-
ment motive count, the better the German grade
value (1 equals good, 5 equals having failed). The
power motive is positively correlated with a small
r = 0.14, i.e. the higher the power motive count,
the worse the German grade. Figure 4 shows scat-
ter plot displaying the counts of the power and
achievement motives and the achieved bachelor’s
thesis grade.

This discrepancy of both model’s predictions
is anomalous. If both models performed compa-
rably well on the same type of data, both mod-
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els should reveal comparable correlations between
counted motives and grades. The investigation of
each model’s motive predictions per student shows
that the LSTM with attention mechanism often as-
signs the power motive but never zero, whilst the
LMT model assigns zero on 17.76% of all cases,
indicating that the LMT model often did not predict
any motive. Thus, even though the models behave
comparably well on test data of the same origin as
the training data, they differ in their algorithmic
decision making on data from a different origin.

Figure 4: After predicting motives, the four motives
per participants were counted. The power motive
has the highest frequency. By counting predicted
motives and correlating them to academic grades,
a weak correlation of r =−0.25 could be observed
between the achievement motive (blue dots) and
the bachelor’s thesis grade (in Germany, the best
grade is 1, reading: the higher the achievement
motive count, the better the grade). In contrast, the
plots shows that the higher the power motive counts
(orange dots), the worse the grade with r = 0.14.

7 Conclusion and outlook

We were able to outperform prior classification
of the OMT by employing an LSTM with an at-
tention mechanism achieving an F-score of 81.55
and thus can positively answer research question
i), asking whether our proposed model could out-
perform our former approach. Other architectures
such as the RNN, LSTM, Bi-LSTM or the RCNN
mostly reached an F-score of approx. 79. Atten-
tion weights only matter in thus far that the shuf-

fling of these weights worsens the results, asked by
research question ii). The attention weight mass
mostly accumulates on the very last token and thus
does not allow for insights in the general case. For
these cases where the attention weight mass was
distributed among other tokens than the last one
of a sequence, an analysis with the LIWC tool
showed conformity of LIWC categories with the
corresponding operant motives compared to these
of all words. This indicates an overlap between
the memberships per word of both linguistic assess-
ments. This behavior of the highest attention mass
on last tokens could be canceled out by employing
a Bi-LSTM with attention mechanism and concate-
nating the attention weights of both systems, which
we consider for future experiments. When remov-
ing these tokens and re-evaluating the sequence
with the LIWC tool, the results shift, which has
to be investigated further. Research question iii)
questioned a correlation between identified motives
and subsequent academic success as prior research
has shown. This correlation could slightly be out-
performed with r =−0.25 between the counted
achievement motives and bachelor’s thesis grade,
which is a weak correlation much different to for-
mer predictions of the LMT model that assigned
zeros more often than the LSTM model with atten-
tion mechanism. Since zero marks indecisiveness,
it can be assumed that the LMT model does not
generalize as well as the LSTM – though this as-
sumption would have to be further examined by e.g.
having trained psychologists assess the outputs of
both models. Furthermore, direct predictions from
language to grades could be investigated, hence
losing information at the intermediate step of auto-
matically annotated motives.

Nonetheless, further validation is appropriate
due to recent debates upon attention weights as
indicators of interpretation. One approach for val-
idation would be to provide trained psychologists
for labeling the OMT with tokens that received
comparably much attention weight mass and with
tokens that did not to measure how many cases
would have been identified by said psychologists.
Furthermore, we aim to provide annotators with
a tool with attention-based highlighting for possi-
bly saving time and expenses during the labeling
process. Further numerical improvements could
result from using contextualized embeddings, e.g.
Bidirectional Encoder Representations from Trans-
formers (BERT, Devlin et al. (2019)).
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Abstract

The recognition of emotions by humans is
a complex process which considers mul-
tiple interacting signals such as facial ex-
pressions and both prosody and semantic
content of utterances. Commonly, research
on automatic recognition of emotions is,
with few exceptions, limited to one modal-
ity. We describe an in-car experiment for
emotion recognition from speech interac-
tions for three modalities: the audio signal
of a spoken interaction, the visual signal
of the driver’s face, and the manually tran-
scribed content of utterances of the driver.
We use off-the-shelf tools for emotion de-
tection in audio and face and compare that
to a neural transfer learning approach for
emotion recognition from text which uti-
lizes existing resources from other domains.
We see that transfer learning enables mod-
els based on out-of-domain corpora to per-
form well. This method contributes up to
10 percentage points in F1, with up to 76
micro-average F1 across the emotions joy,
annoyance and insecurity. Our findings
also indicate that off-the-shelf-tools ana-
lyzing face and audio are not ready yet for
emotion detection in in-car speech interac-
tions without further adjustments.

1 Introduction

Automatic emotion recognition is commonly under-
stood as the task of assigning an emotion to a pre-
defined instance, for example an utterance (as au-
dio signal), an image (for instance with a depicted
face), or a textual unit (e.g., a transcribed utterance,
a sentence, or a Tweet). The set of emotions is often
following the original definition by Ekman (1992),
which includes anger, fear, disgust, sadness, joy,

∗The first two authors contributed equally.

and surprise, or the extension by Plutchik (1980)
who adds trust and anticipation.

Most work in emotion detection is limited to one
modality. Exceptions include Busso et al. (2004)
and Sebe et al. (2005), who investigate multimodal
approaches combining speech with facial informa-
tion. Emotion recognition in speech can utilize
semantic features as well (Anagnostopoulos et al.,
2015). Note that the term “multimodal” is also
used beyond the combination of vision, audio, and
text. For example, Soleymani et al. (2012) use it to
refer to the combination of electroencephalogram,
pupillary response and gaze distance.

In this paper, we deal with the specific situation
of car environments as a testbed for multimodal
emotion recognition. This is an interesting environ-
ment since it is, to some degree, a controlled en-
vironment: Dialogue partners are limited in move-
ment, the degrees of freedom for occurring events
are limited, and several sensors which are useful
for emotion recognition are already integrated in
this setting. More specifically, we focus on emo-
tion recognition from speech events in a dialogue
with a human partner and with an intelligent agent.

Also from the application point of view, the do-
main is a relevant choice: Past research has shown
that emotional intelligence is beneficial for human
computer interaction. Properly processing emo-
tions in interactions increases the engagement of
users and can improve performance when a specific
task is to be fulfilled (Klein et al., 2002; Coplan and
Goldie, 2011; Partala and Surakka, 2004; Pantic et
al., 2005). This is mostly based on the aspect that
machines communicating with humans appear to
be more trustworthy when they show empathy and
are perceived as being natural (Partala and Surakka,
2004; Brave et al., 2005; Pantic et al., 2005).

Virtual agents play an increasingly important
role in the automotive context and the speech
modality is increasingly being used in cars due to
its potential to limit distraction. It has been shown
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that adapting the in-car speech interaction system
according to the drivers’ emotional state can help to
enhance security, performance as well as the over-
all driving experience (Nass et al., 2005; Harris and
Nass, 2011).

With this paper, we investigate how each of the
three considered modalitites, namely facial expres-
sions, utterances of a driver as an audio signal, and
transcribed text contributes to the task of emotion
recognition in in-car speech interactions. We focus
on the five emotions of joy, insecurity, annoyance,
relaxation, and boredom since terms corresponding
to so-called fundamental emotions like fear have
been shown to be associated to too strong emo-
tional states than being appropriate for the in-car
context (Dittrich and Zepf, 2019). Our first contri-
bution is the description of the experimental setup
for our data collection. Aiming to provoke spe-
cific emotions with situations which can occur in
real-world driving scenarios and to induce speech
interactions, the study was conducted in a driving
simulator. Based on the collected data, we pro-
vide baseline predictions with off-the-shelf tools
for face and speech emotion recognition and com-
pare them to a neural network-based approach for
emotion recognition from text. Our second con-
tribution is the introduction of transfer learning to
adapt models trained on established out-of-domain
corpora to our use case. We work on German lan-
guage, therefore the transfer consists of a domain
and a language transfer.

2 Related Work

2.1 Facial Expressions

A common approach to encode emotions for fa-
cial expressions is the facial action coding sys-
tem FACS (Ekman and Friesen, 1978; Sujono and
Gunawan, 2015; Lien et al., 1998). As the reli-
ability and reproducability of findings with this
method have been critically discussed (Mesman et
al., 2012), the trend has increasingly shifted to per-
form the recognition directly on images and videos,
especially with deep learning. For instance, Jung et
al. (2015) developed a model which considers tem-
poral geometry features and temporal appearance
features from image sequences. Kim et al. (2016)
propose an ensemble of convolutional neural net-
works which outperforms isolated networks.

In the automotive domain, FACS is still popular.
Ma et al. (2017) use support vector machines to
distinguish happy, bothered, confused, and con-

centrated based on data from a natural driving
environment. They found that bothered and con-
fused are difficult to distinguish, while happy and
concentrated are well identified. Aiming to re-
duce computational cost, Tews et al. (2011) ap-
ply a simple feature extraction using four dots in
the face defining three facial areas. They analyze
the variance of the three facial areas for the recog-
nition of happy, anger and neutral. Ihme et al.
(2018) aim at detecting frustration in a simulator
environment. They induce the emotion with spe-
cific scenarios and a demanding secondary task
and are able to associate specific face movements
according to FACS. Paschero et al. (2012) use
OpenCV (https://opencv.org/) to detect the eyes
and the mouth region and track facial movements.
They simulate different lightning conditions and
apply a multilayer perceptron for the classification
task of Ekman’s set of fundamental emotions.

Overall, we found that studies using facial fea-
tures usually focus on continuous driver monitor-
ing, often in driver-only scenarios. In contrast, our
work investigates the potential of emotion recogni-
tion during speech interactions.

2.2 Acoustic

Past research on emotion recognition from acous-
tics mainly concentrates on either feature selection
or the development of appropriate classifiers. Rao
et al. (2013) as well as Ververidis et al. (2004) com-
pare local and global features in support vector
machines. Next to such discriminative approaches,
hidden Markov models are well-studied, however,
there is no agreement on which feature-based clas-
sifier is most suitable (El Ayadi et al., 2011). Simi-
lar to the facial expression modality, recent efforts
on applying deep learning have been increased for
acoustic speech processing. For instance, Lee and
Tashev (2015) use a recurrent neural network and
Palaz et al. (2015) apply a convolutional neural net-
work to the raw speech signal. Neumann and Vu
(2017) as well as Trigeorgis et al. (2016) analyze
the importance of features in the context of deep
learning-based emotion recognition.

In the automotive sector, Boril et al. (2011) ap-
proach the detection of negative emotional states
within interactions between driver and co-driver as
well as in calls of the driver towards the automated
spoken dialogue system. Using real-world driving
data, they find that the combination of acoustic fea-
tures and their respective Gaussian mixture model
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scores performs best. Schuller et al. (2006) collects
2,000 dialog turns directed towards an automotive
user interface and investigate the classification of
anger, confusion, and neutral. They show that au-
tomatic feature generation and feature selection
boost the performance of an SVM-based classifier.
Further, they analyze the performance under sys-
tematically added noise and develop methods to
mitigate negative effects. For more details, we re-
fer the reader to the survey by Schuller (2018). In
this work, we explore the straight-forward applica-
tion of domain independent software to an in-car
scenario without domain-specific adaptations.

2.3 Text

Previous work on emotion analysis in natural lan-
guage processing focuses either on resource cre-
ation or on emotion classification for a specific
task and domain. On the side of resource creation,
the early and influential work of Pennebaker et al.
(2015) is a dictionary of words being associated
with different psychologically relevant categories,
including a subset of emotions. Another popular
resource is the NRC dictionary by Mohammad and
Turney (2012). It contains more than 10000 words
for a set of discrete emotion classes. Other re-
sources include WordNet Affect (Strapparava and
Valitutti, 2004) which distinguishes particular word
classes. Further, annotated corpora have been cre-
ated for a set of different domains, for instance
fairy tales (Alm et al., 2005), Blogs (Aman and Sz-
pakowicz, 2007), Twitter (Mohammad et al., 2017;
Schuff et al., 2017; Mohammad, 2012; Mohammad
and Bravo-Marquez, 2017a; Klinger et al., 2018),
Facebook (Preoţiuc-Pietro et al., 2016), news head-
lines (Strapparava and Mihalcea, 2007), dialogues
(Li et al., 2017), literature (Kim et al., 2017), or
self reports on emotion events (Scherer, 1997) (see
(Bostan and Klinger, 2018) for an overview).

To automatically assign emotions to textual units,
the application of dictionaries has been a popu-
lar approach and still is, particularly in domains
without annotated corpora. Another approach to
overcome the lack of huge amounts of annotated
training data in a particular domain or for a spe-
cific topic is to exploit distant supervision: use the
signal of occurrences of emoticons or specific hash-
tags or words to automatically label the data. This
is sometimes referred to as self-labeling (Klinger
et al., 2018; Pool and Nissim, 2016; Felbo et al.,
2017; Wang et al., 2012).

Figure 1: The setup of the driving simulator.

A variety of classification approaches have been
tested, including SNoW (Alm et al., 2005), support
vector machines (Aman and Szpakowicz, 2007),
maximum entropy classification, long short-term
memory network, and convolutional neural net-
work models (Schuff et al., 2017, i.a.). More re-
cently, the state of the art is the use of transfer
learning from noisy annotations to more specific
predictions (Felbo et al., 2017). Still, it has been
shown that transferring from one domain to another
is challenging, as the way emotions are expressed
varies between areas (Bostan and Klinger, 2018).
The approach by Felbo et al. (2017) is different to
our work as they use a huge noisy data set for pre-
training the model while we use small high quality
data sets instead.

Recently, the state of the art has also been pushed
forward with a set of shared tasks, in which the
participants with top results mostly exploit deep
learning methods for prediction based on pretrained
structures like embeddings or language models
(Klinger et al., 2018; Mohammad et al., 2018; Mo-
hammad and Bravo-Marquez, 2017a).

Our work follows this approach and builds up on
embeddings with deep learning. Furthermore, we
approach the application and adaption of text-based
classifiers to the automotive domain with transfer
learning.

3 Data set Collection

The first contribution of this paper is the construc-
tion of the AMMER data set which we describe in
the following. We focus on the drivers’ interactions
with both a virtual agent as well as a co-driver. To
collect the data in a safe and controlled environ-
ment and to be able to consider a variety of prede-
fined driving situations, the study was conducted
in a driving simulator.
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Type Example

D–A, be-
ginning

Wie geht es dir gerade und wie sind
deine Gedanken zur bevorstehenden
Fahrt? How are you doing right now?
What are your thoughts about the up-
coming drive?

D–A,
reaching
destina-
tion

Bei über 50 Teilnehmern hast du die
zweitschnellste Zeit erreicht. Was
glaubst du? Wie hast du es geschafft
so schnell zu sein? Among more than
50 participants you achieved the sec-
ond best result. What do you think?
How did you manage to achieve that?

D–A,
after
driving

Du hast im letzten Streckenabschnitt
ein paar Mal stark gebremst. Was ist
da passiert? In the last section, you
slowed down multiple times. What hap-
pened?

D–Co,
low-
demand
section

Erinnern Sie sich an Ihren letzten
Urlaub. Bitte beschreiben Sie, wie
dieser Urlaub für Sie war? Remember
your last vacation. Please describe
how it was.

Table 1: Examples for triggered interactions with
translations to English. (D: Driver, A: Agent, Co:
Co-Driver)

3.1 Study Setup and Design

The study environment consists of a fixed-base driv-
ing simulator running Vires’s VTD (Virtual Test
Drive, v2.2.0) simulation software (https://vires.
com/vtd-vires-virtual-test-drive/). The vehicle has
an automatic transmission, a steering wheel and
gas and brake pedals. We collect data from video,
speech and biosignals (Empatica E4 to record heart
rate, electrodermal activity, skin temperature, not
further used in this paper) and questionnaires. Two
RGB cameras are fixed in the vehicle to capture
the drivers face, one at the sun shield above the
drivers seat and one in the middle of the dashboard.
A microphone is placed on the center console. One
experimenter sits next to the driver, the other be-
hind the simulator. The virtual agent accompany-
ing the drive is realized as Wizard-of-Oz prototype
which enables the experimenter to manually trigger
prerecorded voice samples playing trough the in-
car speakers and to bring new content to the center
screen. Figure 1 shows the driving simulator.

The experimental setting is comparable to an

everyday driving task. Participants are told that
the goal of the study is to evaluate and to improve
an intelligent driving assistant. To increase the
probability of emotions to arise, participants are in-
structed to reach the destination of the route as fast
as possible while following traffic rules and speed
limits. They are informed that the time needed
for the task would be compared to other partici-
pants. The route comprises highways, rural roads,
and city streets. A navigation system with voice
commands and information on the screen keeps the
participants on the predefined track.

To trigger emotion changes in the participant, we
use the following events: (i) a car on the right lane
cutting off to the left lane when participants try to
overtake followed by trucks blocking both lanes
with a slow overtaking maneuver (ii) a skateboarder
who appears unexpectedly on the street and (iii)
participants are praised for reaching the destination
unexpectedly quickly in comparison to previous
participants.

Based on these events, we trigger three inter-
actions (Table 1 provides examples) with the in-
telligent agent (Driver-Agent Interactions, D–A).
Pretending to be aware of the current situation,
e. g., to recognize unusual driving behavior such
as strong braking, the agent asks the driver to ex-
plain his subjective perception of these events in
detail. Additionally, we trigger two more interac-
tions with the intelligent agent at the beginning and
at the end of the drive, where participants are asked
to describe their mood and thoughts regarding the
(upcoming) drive. This results in five interactions
between the driver and the virtual agent.

Furthermore, the co-driver asks three different
questions during sessions with light traffic and low
cognitive demand (Driver-Co-Driver Interactions,
D–Co). These questions are more general and non-
traffic-related and aim at triggering the participants’
memory and fantasy. Participants are asked to de-
scribe their last vacation, their dream house and
their idea of the perfect job. In sum, there are eight
interactions per participant (5 D–A, 3 D–Co).

3.2 Procedure

At the beginning of the study, participants were
welcomed and the upcoming study procedure was
explained. Subsequently, participants signed a con-
sent form and completed a questionnaire to pro-
vide demographic information. After that, the co-
driving experimenter started with the instruction
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E IT Example

J A Ich glaube, weil ich ziemlich schnell auf Situationen reagieren kann, weil ich eine ziemlich gute Reaktion
habe. Und ich würde auch behaupten, dass ich relativ vorausschauend fahre, weil ich schon einiges an
Fahrerfahrung mitbringe. I think because I can respond to situations very quickly because my reaction is
very good. And I would say that I drive foresightful because I have a lot of driving experience.

J C Letzter Urlaub war im September 2018. Singapur und Bali. War sehr schön. Erholung, andere Kultur,
andere Länder. War sehr gut und ist zu wiederholen. Last vacation was in September 2018. Singapore
and Bali. It was beautiful. Recreation, different culture, different countries. It was very good and needs
repetition.

A A Zwei bis drei Mal Fahrzeuge, die Kolonne fuhren. Und das letzte Fahrzeug hat, für mein Gefühl, sehr
ruckartig und mit wenig nach hinten zu schauen, die Spur gewechselt und mich dazu gezwungen, dann
doch noch meine Geschwindigkeit zu reduzieren. Two or three times vehicles were driving behind each
other. The last vehicle cut off my lane, in my opinion very quickly and without looking back and forced me
to slow down.

A C Mir geht es nicht besonders gut. Die Fahrt war sehr stressig. Ich schwitze ziemlich. I’m not feeling well.
The ride was stressful. I am sweating.

I A Letzter Urlaub war nicht so gut für mich. Obwohl. Naja doch. Der letzte war schon wieder gut. Das war im
Sommer. Da war es nämlich so abartig warm dieses Jahr. Und wir haben bei uns daheim. Also ich komme
ja vom Land. Wir haben bei uns daheim auf dem Land unseren Wohnwagen ausgebaut. Last vacation was
not so good for me. Although. Well, yes. The last one was good. It was in summer. It was very warm this
year. And we have at home. I come from the countryside. We have furnished our mobile home.

I C Ein Mensch ist über die Straße gelaufen und ich habe ihn zuerst nicht gesehen. A human crossed the street
and I haven’t seen him in the first moment.

B A Ich habe mich immer an die Richtgeschwindigkeit gehalten. Und ja. Ich weiß auch nicht. I always followed
the recommended velocity. And, well. I don’t know.

B C Ja. Nicht viel arbeiten und viel Geld verdienen. Yes. Not working much and earning a lot of money.
R A Mir geht es gut und ich bin gespannt auf die Fahrt. Ich denke, es macht Spaß. I am fine and I am looking

forward to the ride. I think it will be fun.
R C Ja, ich erinnere mich an den letzten Urlaub und der war schön, war erholsam und war warm. Yes, I remember

the last vacation. It was nice, recreative and warm.
N A Es sind Autos von der rechten Spur auf meine Spur gezogen, welche davor deutlich langsamer waren. Cars

were changing into my lane, which were slower before.
N C Ein Haus, das relativ alleine für sich steht. Am besten am Meer und mit einem grünen Garten. Und ja. Viel

Platz für sich. A house with space around. In the best case at the sea and with a green garden. And yes. A
lot of space for us.

Table 2: Examples from the collected data set (with translation to English). E: Emotion, IT: interaction
type with agent (A) and with Codriver (C). J: Joy, A: Annoyance, I: Insecurity, B: Boredom, R: Relaxation,
N: No emotion.

in the simulator which was followed by a familiar-
ization drive consisting of highway and city driv-
ing and covering different driving maneuvers such
as tight corners, lane changing and strong brak-
ing. Subsequently, participants started with the
main driving task. The drive had a duration of
20 minutes containing the eight previously men-
tioned speech interactions. After the completion of
the drive, the actual goal of improving automatic
emotional recognition was revealed and a stan-
dard emotional intelligence questionnaire, namely
the TEIQue-SF (Cooper and Petrides, 2010), was
handed to the participants. Finally, a retrospec-
tive interview was conducted, in which participants
were played recordings of their in-car interactions
and asked to give discrete (annoyance, insecurity,
joy, relaxation, boredom, none, following (Dittrich
and Zepf, 2019)) was well as dimensional (valence,
arousal, dominance (Posner et al., 2005) on a 11-

point scale) emotion ratings for the interactions and
the according situations. We only use the discrete
class annotations in this paper.

3.3 Data Analysis

Overall, 36 participants aged 18 to 64 years
(µ=28.89, σ=12.58) completed the experiment.
This leads to 288 interactions, 180 between driver
and the agent and 108 between driver and co-
driver. The emotion self-ratings from the partic-
ipants yielded 90 utterances labeled with joy, 26
with annoyance, 49 with insecurity, 9 with bore-
dom, 111 with relaxation and 3 with no emotion.
One example interaction per interaction type and
emotion is shown in Table 2. For further experi-
ments, we only use joy, annoyance/anger, and in-
security/fear due to the small sample size for bore-
dom and no emotion and under the assumption that
relaxation brings little expressivity.
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Figure 2: Model for Transfer Learning from Text.
Grey boxes contain frozen parameters in the corre-
sponding learning step.

4 Methods

4.1 Emotion Recognition from Facial
Expressions

We preprocess the visual data by extracting the
sequence of images for each interaction from the
point where the agent’s or the co-driver’s question
was completely uttered until the driver’s response
stops. The average length is 16.3 seconds, with
the minimum at 2.2s and the maximum at 54.7s.
We apply an off-the-shelf tool for emotion recogni-
tion (the manufacturer cannot be disclosed due to
licensing restrictions). It delivers frame-by-frame
scores (∈ [0;100]) for discrete emotional states of
joy, anger and fear. While joy corresponds directly
to our annotation, we map anger to our label annoy-
ance and fear to our label insecurity. The maximal
average score across all frames constitutes the over-
all classification for the video sequence. Frames
where the software is not able to detect the face are
ignored.

4.2 Emotion Recognition from Audio Signal

We extract the audio signal for the same sequence
as described for facial expressions and apply an
off-the-shelf tool for emotion recognition. The
software delivers single classification scores for a
set of 24 discrete emotions for the entire utterance.
We consider the outputs for the states of joy, anger,
and fear, mapping analogously to our classes as for
facial expressions. Low-confidence predictions are
interpreted as “no emotion”. We accept the emotion
with the highest score as the discrete prediction
otherwise.

4.3 Emotion Recognition from Transcribed
Utterances

For the emotion recognition from text, we manu-
ally transcribe all utterances of our AMMER study.
To exploit existing and available data sets which
are larger than the AMMER data set, we develop
a transfer learning approach. We use a neural net-
work with an embedding layer (frozen weights, pre-
trained on Common Crawl and Wikipedia (Grave
et al., 2018)), a bidirectional LSTM (Schuster and
Paliwal, 1997), and two dense layers followed by
a soft max output layer. This setup is inspired
by (Andryushechkin et al., 2017). We use a dropout
rate of 0.3 in all layers and optimize with Adam
(Kingma and Ba, 2015) with a learning rate of 10−5

(These parameters are the same for all further ex-
periments). We build on top of the Keras library
with the TensorFlow backend. We consider this
setup our baseline model.

We train models on a variety of corpora, namely
the common format published by (Bostan and
Klinger, 2018) of the FigureEight (formally known
as Crowdflower) data set of social media, the
ISEAR data (Scherer and Wallbott, 1994) (self-
reported emotional events), and, the Twitter Emo-
tion Corpus (TEC, weakly annotated Tweets with
#anger, #disgust, #fear, #happy, #sadness, and #sur-
prise, Mohammad (2012)). From all corpora, we
use instances with labels fear, anger, or joy. These
corpora are English, however, we do predictions
on German utterances. Therefore, each corpus is
preprocessed to German with Google Translate1.
We remove URLs, user tags (“@Username”), punc-
tuation and hash signs. The distributions of the
data sets are shown in Table 3.

To adapt models trained on these data, we ap-
ply transfer learning as follows: The model is first
trained until convergence on one out-of-domain
corpus (only on classes fear, joy, anger for com-
patibility reasons). Then, the parameters of the
bi-LSTM layer are frozen and the remaining layers
are further trained on AMMER. This procedure is
illustrated in Figure 2

5 Results

5.1 Facial Expressions and Audio

Table 4 shows the confusion matrices for facial
and audio emotion recognition on our complete
AMMER data set and Table 5 shows the re-

1http://translate.google.com, performed on January 4, 2019
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Data set Fear Anger Joy Total

Figure8 8,419 1,419 9,179 19,017
EmoInt 2,252 1,701 1,616 5,569
ISEAR 1,095 1,096 1,094 3,285
TEC 2,782 1,534 8,132 12,448
AMMER 49 26 90 165

Table 3: Class distribution of the used data sets for the considered emotional states (Figure8 (Figure Eight,
2016), EmoInt (Mohammad and Bravo-Marquez, 2017b), ISEAR, (Scherer, 1997), TEC (Mohammad,
2012), AMMER (this paper)).
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Insecurity 11 17 21 49
Annoyance 10 7 9 26
Joy 24 27 39 90
Total 45 51 69 165
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Insecurity 17 14 1 17 49
Annoyance 12 7 0 7 26
Joy 27 26 4 33 90
Total 56 47 5 57 165

Transfer Learning Text
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Insecurity 33 0 16 49
Annoyance 7 4 15 26
Joy 1 1 88 90
Total 41 5 119 165

Table 4: Confusion Matrix for Face Classification
and Audio Classification (on full AMMER data)
and for transfer learning from text (training set
of EmoInt and test set of AMMER). Insecurity,
annoyance and joy are the gold labels. Fear, anger
and joy are predictions.

sults per class for each method, including facial
and audio data and micro and macro averages.
The classification from facial expressions yields
a macro-averaged F1 score of 33 % across the three
emotions joy, insecurity, and annoyance (P=0.31,
R=0.35). While the classification results for joy

are promising (R=43 %, P=57 %), the distinction
of insecurity and annoyance from the other classes
appears to be more challenging.

Regarding the audio signal, we observe a macro
F1 score of 29 % (P=42 %, R=22 %). There is a
bias towards negative emotions, which results in a
small number of detected joy predictions (R=4 %).
Insecurity and annoyance are frequently confused.

5.2 Text from Transcribed Utterances

The experimental setting for the evaluation of emo-
tion recognition from text is as follows: We eval-
uate the BiLSTM model in three different exper-
iments: (1) in-domain, (2) out-of-domain and (3)
transfer learning. For all experiments we train on
the classes anger/annoyance, fear/insecurity and
joy. Table 6 shows all results for the comparison of
these experimental settings.

5.2.1 Experiment 1: In-Domain application
We first set a baseline by validating our models on
established corpora. We train the baseline model on
60 % of each data set listed in Table 3 and evaluate
that model with 40 % of the data from the same do-
main (results shown in the column “In-Domain” in
Table 6). Excluding AMMER, we achieve an aver-
age micro F1 of 68 %, with best results of F1=73 %
on TEC. The model trained on our AMMER cor-
pus achieves an F1 score of 57%. This is most
probably due to the small size of this data set and
the class bias towards joy, which makes up more
than half of the data set. These results are mostly
in line with Bostan and Klinger (2018).

5.2.2 Experiment 2: Simple Out-Of-Domain
application

Now we analyze how well the models trained in
Experiment 1 perform when applied to our data set.
The results are shown in column “Simple” in Ta-
ble 6. We observe a clear drop in performance, with
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Vision Audio Text (TL)

P R F1 P R F1 P R F1

Insecurity 24 22 23 31 35 33 80 67 73
Annoyance 14 39 21 15 27 19 80 15 26
Joy 57 43 49 80 4 8 74 98 84

Macro-avg 32 35 33 42 22 29 78 60 68
Micro-avg 34 34 34 26 17 21 76 76 76

Table 5: Performance for classification from vision, audio, and transfer learning from text (training set of
EmoInt).

Out-of-domain
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Figure8 66 55 59 76
EmoInt 62 48 56 76
TEC 73 55 58 76
ISEAR 70 35 59 72
AMMER 57 — — —

Table 6: Results in micro F1 for Experiment 1 (in-
domain), Experiment 2 and 3 (out-of-domain with
and without transfer learning).

an average of F1=48 %. The best performing model
is again the one trained on TEC, en par with the
one trained on the Figure8 data. The model trained
on ISEAR performs second best in Experiment 1,
it performs worst in Experiment 2.

5.2.3 Experiment 3: Transfer Learning
application

To adapt models trained on previously existing data
sets to our particular application, the AMMER cor-
pus, we apply transfer learning. Here, we perform
leave-one-out cross validation. As pre-trained mod-
els we use each model from Experiment 1 and
further optimize with the training subset of each
crossvalidation iteration of AMMER. The results
are shown in the column “Transfer L.” in Table 6.
The confusion matrix is also depicted in Table 4.

With this procedure we achieve an average per-
formance of F1=75 %, being better than the results
from the in-domain Experiment 1. The best per-
formance of F1=76 % is achieved with the model
pre-trained on each data set, except for ISEAR. All
transfer learning models clearly outperform their

simple out-of-domain counterpart.
To ensure that this performance increase is not

only due to the larger data set, we compare these
results to training the model without transfer on
a corpus consisting of each corpus together with
AMMER (again, in leave-one-out crossvalidation).
These results are depicted in column “Joint C.”.
Thus, both settings, “transfer learning” and “joint
corpus” have access to the same information.

The results show an increase in performance in
contrast to not using AMMER for training, how-
ever, the transfer approach based on partial retrain-
ing the model shows a clear improvement for all
models (by 7pp for Figure8, 10pp for EmoInt, 8pp
for TEC, 13pp for ISEAR) compared to the ”Joint”
setup.

6 Summary & Future Work

We described the creation of the multimodal AM-
MER data with emotional speech interactions be-
tween a driver and both a virtual agent and a co-
driver. We analyzed the modalities of facial expres-
sions, acoustics, and transcribed utterances regard-
ing their potential for emotion recognition during
in-car speech interactions. We applied off-the-shelf
emotion recognition tools for facial expressions and
acoustics. For transcribed text, we developed a neu-
ral network-based classifier with transfer learning
exploiting existing annotated corpora. We find that
analyzing transcribed utterances is most promising
for classification of the three emotional states of
joy, annoyance and insecurity.

Our results for facial expressions indicate that
there is potential for the classification of joy, how-
ever, the states of annoyance and insecurity are
not well recognized. Future work needs to investi-
gate more sophisticated approaches to map frame
predictions to sequence predictions. Furthermore,
movements of the mouth region during speech inter-
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actions might negatively influence the classification
from facial expressions. Therefore, the question
remains how facial expressions can best contribute
to multimodal detection in speech interactions.

Regarding the classification from the acoustic
signal, the application of off-the-shelf classifiers
without further adjustments seems to be challeng-
ing. We find a strong bias towards negative emo-
tional states for our experimental setting. For in-
stance, the personalization of the recognition al-
gorithm (e. g., mean and standard deviation nor-
malization) could help to adapt the classification
for specific speakers and thus to reduce this bias.
Further, the acoustic environment in the vehicle
interior has special properties and the recognition
software might need further adaptations.

Our transfer learning-based text classifier shows
considerably better results. This is a substantial
result in its own, as only one previous method
for transfer learning in emotion recognition has
been proposed, in which a sentiment/emotion spe-
cific source for labels in pre-training has been used,
to the best of our knowledge (Felbo et al., 2017).
Other applications of transfer learning from gen-
eral language models include (Rozental et al., 2018;
Chronopoulou et al., 2018, i.a.). Our approach is
substantially different, not being trained on a huge
amount of noisy data, but on smaller out-of-domain
sets of higher quality. This result suggests that
emotion classification systems which work across
domains can be developed with reasonable effort.

For a productive application of emotion detec-
tion in the context of speech events we conclude
that a deployed system might perform best with a
speech-to-text module followed by an analysis of
the text. Further, in this work, we did not explore
an ensemble model or the interaction of different
modalities. Thus, future work should investigate
the fusion of multiple modalities in a single classi-
fier.
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Abstract

A tool that enables the use of active learn-
ing, as well as the incorporation of word
embeddings, was evaluated for its abil-
ity to decrease the training data set size
required for a named entity recognition
model. Uncertainty-based active learning
and the use of word embeddings led to very
large performance improvements on small
data sets for the entity categories PERSON

and LOCATION. In contrast, the embedding
features used were shown to be unsuitable
for detecting entities belonging to the OR-
GANISATION category. The tool was also
extended with functionality for visualising
the usefulness of the active learning process
and of the word embeddings used. The vi-
sualisations provided were able to indicate
the performance differences between the
entities, as well as differences with regards
to usefulness of the embedding features.

1 Introduction

To acquire large training data sets by the use of
low-cost crowdsourcing is not a universal solution
for all annotation tasks. The ethical aspect could
be one concern, as the concept of low-cost crowd
annotations implies low-paid annotators (Martin
et al., 2017). Other obstacles might be data pri-
vacy restrictions (e.g., when annotating clinical
health records), or a lack of specialised competence
among crowd workers, e.g., competence in the an-
notation task or in a specific language. Strategies
for facilitating annotation are therefore important,
also in the age of crowdsourcing.

A possible strategy for facilitating annotation is
to minimise the amount of manually annotated data
required, e.g., data required for the task of training
a machine learning model. This could be achieved
by (i) using active learning to actively select train-
ing samples useful to the model and (ii) training

the model on information that has been derived in
an unsupervised fashion. There is a large body of
research that has shown the effectiveness of using
each one of these strategies individually, and there
are also annotation tools/annotation tool extensions
that incorporate these two strategies (Skeppstedt et
al., 2016; Kucher et al., 2017). However, to the best
of our knowledge, there are no studies that evaluate
the effectiveness of this combined data reducing
strategy provided by the tools. The first aim of
this study is therefore to evaluate the effectiveness
of one such tool, i.e., to evaluate whether using
the tool leads to the expected decrease in data size
required to train a machine learning model.

Also the annotation of a smaller data set can
however be a time-consuming, and potentially bor-
ing, task. Gamification of the task is one previously
explored strategy for solving this problem (Dumi-
trache et al., 2013; Venhuizen et al., 2013).

Another potential strategy for increasing the in-
trinsic motivation for the annotation task, is to
make the annotator aware of the usefulness of the
data that is being annotated. The second aim of
this study is to take a first step towards exploring
this strategy in the context of an active learning
process. We aim to provide a suggestion for a vi-
sualisation of how the increasingly larger training
data set, which results from the manual annotation
effort, changes the model that is trained on this
annotated data set. That is, a visualisation that has
the potential to increase the human understanding
of the active learning-based annotation process.

2 Background

The tool whose performance we have evaluated,
and whose active learning process we have visu-
alised, is the tool “PAL – a tool for Pre-annotation
and Active Learning” (Skeppstedt et al., 2016).
PAL is meant to be used as an extension to an-
other annotation tool, e.g., BRAT (Stenetorp et al.,
2012), for annotating data to be used for training
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a named entity recognition (NER) model. While
high performance is often reported for the NER
task, e.g., for newswire texts (Sang and Meulder,
2003), the task is more difficult for noisy texts
and when small training data sets are used. For in-
stance, the best system on the ACL 2015 Workshop
on Noisy User-generated Text achieved an F-score
of 0.74 for PERSON, 0.50 for COMPANY, and 0.66
for GEO-LOCATION when using a training set of
2,950 tweets (Baldwin et al., 2015; Yamada et al.,
2015).

PAL provides functionality for active data se-
lection, as well as for incorporating unsupervised
data in the form of word embeddings when training
the models that are used for active data selection.
The tool also offers annotation support in the form
of pre-annotations. This is achieved by repeatedly
retraining a NER model on the data that the anno-
tator produces in BRAT and on information incor-
porated from word embeddings. The trained model
can then be used for two purposes: (i) to actively
import new annotation data into BRAT, i.e., to ac-
tively select data useful for improving the model,
and (ii) to simplify the annotation by providing the
annotator with pre-annotations in BRAT format.
To allow the annotator to add, delete or change
the span length of pre-annotated entities — instead
of annotating from scratch — has been shown to
reduce annotation time (Lingren et al., 2014).

PAL could, for instance, be used according to
the annotation process suggested by Olsson (2008).
That is, to first annotate an actively selected sub-
set of a corpus to achieve a model that can per-
form pre-annotations with acceptable accuracy, and
thereafter use this model for providing the anno-
tator with pre-annotations when a larger corpus
is annotated. Such a corpus might, for instance,
be used for training a model that requires a large
training data set to perform well. The current study
focuses on the first part of such a use case, that is on
the process of actively selecting training samples
to achieve a model that recognises named entities
with acceptable performance.

2.1 Approaches for minimising training data

To use active learning, instead of a random sam-
pling of training data, has led to a reduction of the
number of samples needed to train classifiers to
recognise different entity types (Shen et al., 2004;
Tomanek et al., 2007). The technique builds on
the following idea: Data samples estimated to be

useful to a machine learning model are actively se-
lected from a pool of unlabelled data. The selected
samples are presented to an annotator for manual
annotation, and the newly annotated data is then
added to the set of labelled data that is available
for training the model. This expanded training data
set is then used to retrain the model, which in turn
is applied in the next iteration in the process of
actively selecting data. The estimate of a sample’s
usefulness can, for instance, be based on the level
of disagreement among different classifiers (Ols-
son, 2008, pp. 25–29), or on properties specific to
the type of model used, e.g., a confidence measure
provided by the model (Settles, 2009).

The other technique included in PAL for reduc-
ing the training data size is to incorporate features
gathered in an unsupervised fashion, through the
use of text distributional properties of word types.
There is a large body of research that shows this
technique to be effective for named entity recogni-
tion, e.g., the use of features in the form of Brown
clusters (Miller et al., 2004) and more recently in
the form of different types of word vectors automat-
ically derived from large corpora (Sahlgren, 2006;
Mikolov et al., 2013). Word vectors have for in-
stance been incorporated in the feature set when
using conditional random fields classifiers (Turian
et al., 2010; Guo et al., 2014; Henriksson, 2015;
Copara et al., 2016), or used as input to different
types of neural network-based classifiers (Godin et
al., 2015; dos Santos and Guimarães, 2015; Yang
et al., 2016; Lample et al., 2016; Reimers and
Gurevych, 2017). There is, however, less research
that investigates the effects of using the two strate-
gies of unsupervised features and active learning
in tandem; in particular their effects on small data
sets, i.e., the use case that we explore here.

2.2 Functionality of PAL

Each iteration in PAL is run in two steps. First,
data positioned in PAL’s “folder for labelled data”
is used for training a machine learning model;
a model which is then used for selecting new
data samples from PAL’s “folder for unlabelled
data.” The model also provides BRAT-format pre-
annotations for the selected data, enabling it to
be directly imported into BRAT (Figure 3b). In
the second step, which takes place after the data
has been manually annotated, the data annotated
in BRAT is moved into PAL’s “folder for labelled
data”, to enable the next active learning iteration.
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A basic feature vector for training the model, xn,
is constructed through representing each token by
a concatenation of (i) the one-hot encoding for the
token with (ii) the one-hot encoding for a config-
urable number of neighbours to the token.

The functionality of incorporating features de-
rived in an unsupervised fashion is provided in PAL
through an extension of the basic vector by a vector
derived from pre-trained word embeddings. This is
achieved by concatenating the basic feature vector
with the word embedding vector that represents the
token, as well as with the word embedding vectors
that represent the neighbours of the token.

Information from gazetteers or information on
which words were capitalised were not included in
the feature set, to focus the experiment on the ef-
fects of the different strategies compared. This also
makes the results somewhat more generalisable,
e.g., to entity types that are not typically capitalised
or for which gazetteers do not typically exist, or to
languages that do not use an initial capital letter as
a signal for names.

With the focus on making the data selection and
model training process as comprehensible as pos-
sible for a human, we used the main classification
method included in PAL, which is a token-level
logistic regression classifier. That is, a classifier
for which a human-interpretable confidence mea-
sure can be returned for each token in the pool of
unlabelled data. The output of this unstructured
predictor, is then post-processed into B/I-labels for
tokens classified as an entity.

The confidence is then used for carrying out un-
certainty sampling from the pool of unlabelled data
(Settles, 2009). More specifically, the measure used
is the difference in certainty level between the two
most probable classifications for each of the tokens
in the data pool. Given cp1 as the most probable
classification and cp2 as the second most probable
classification for the observation xn, the uncertainty
measure would be:

Mn = P(cp1|xn)−P(cp2|xn) (1)

The smaller Mn, the higher is the uncertainty of the
classifier and the higher is the sample ranked in the
active selection process (Schein and Ungar, 2007).

PAL represents each training sample by the low-
est M among the tokens it includes. For each
iteration in the active selection process, samples
that contain tokens with the lowest M-values are
thereby selected. To achieve a variation among the

samples selected, PAL also imposes the constraint
of not allowing the selected texts to include the
same word twice, if this word is predicted by the
model to be included in a named entity.

PAL accesses embeddings through Gensim
(Řehůřek and Sojka, 2010) and uses Scikit-learn’s
(Pedregosa et al., 2011) logistic regression clas-
sifier with a regularisation strength determined
through cross-fold validation.

3 Method

The evaluation of PAL was carried out using the
Broad Twitter Corpus (Derczynski et al., 2016),
which consists of English tweets annotated for the
three entities PERSON, LOCATION, and ORGANI-
SATION. The corpus is sampled across different
regions, temporal periods, and from different types
of Twitter users, to ensure a large diversity of the
entities included. Each of the three entity types was
annotated separately.

We removed metadata in the form of hashtags
and usernames starting with @, to make the task
more similar to most previous NER tasks, where
entities are mentioned in a textual context. The
corpus is divided into six segments, each of them
with a different signifying property, e.g., tweets
from popular individuals, tweets from mainstream
news, or tweets focused on one specific event. For
performing the experiments we, however, sampled
randomly from the corpus (as described below),
without taking this structure into account.

3.1 Simulation of active learning

The active learning process in PAL was used in
simulated mode as follows: the machine learning
model was first trained on a small labelled data set
consisting of 200 randomly selected tweets, i.e., a
set representing an initial seed set. The task of the
active learning algorithm would then be to select
the most informative data points from the pool of
unlabelled data. In the experiment, the “pool of
unlabelled data” was simulated by the texts from
the pre-labelled tweets in the Broad Twitter Corpus,
and the corpus labels were used to simulate input
in the form of manual annotations performed by
the annotator.

For the experiment performed, we selected 20
tweets in each iteration. These 20 tweets and their
corresponding labels were thus added to the set of
labelled data, to simulate the process of them being
manually annotated. The model was, thereafter,
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retrained, and a new iteration in the process of
actively selecting tweets was then carried out, until
the set of labelled data contained 1,000 tweets.

A context window of the two most immediate
neighbours was used, with a frequency cut-off of
three occurrences for a neighbour to be included.
Word embeddings from a word2vec skip-gram
model, which had been pre-trained by Godin et
al. (2015) on 400 million tweets, were used as un-
supervised features.

3.2 Evaluating the active learning simulation

The strategies used in PAL for decreasing the train-
ing data size required were compared to a baseline
strategy. A total of four different strategies were
thus evaluated for their performance on a small
training data set: (i) the baseline, with random data
selection and a basic feature vector, (ii) data selec-
tion through active learning and the basic feature
vector, (iii) random data selection and the feature
vector extended with word2vec features, and finally
(iv) data selection through active learning and the
feature vector extended with word2vec features.

4,000 tweets were randomly selected from the
Broad Twitter Corpus to simulate the pool of unla-
belled data, and 2,000 other tweets were randomly
selected to be used as evaluation data. From the
simulated pool of data were then 200 tweets ran-
domly selected to form the seed set.

Starting with this seed set, an evaluation was
carried out of the four different strategies investi-
gated. For one of the active learning strategies, the
basic feature vector was used, and for the other, the
word2vec extension. For every step in the itera-
tion, the performance of the model was evaluated
against the 2,000 tweets that formed the evaluation
data, i.e., after 20 new training data samples had
been actively added to the training data set.

For the two strategies that did not include ac-
tive learning, each iteration instead consisted of a
random selection of 20 new tweets from the simu-
lated data pool. A new model was trained on data
including these newly selected tweets, and then
evaluated against the 2,000 tweets in the evaluation
set. The same randomly selected data sets were
used both for the setting with word2vec features
and the setting without these features.

As results of the study were heavily dependent
on the random selection of a number of small data
sets, it was particularly important to make sure that
results achieved were not due to chance. The entire

experiment was therefore repeated 10 times, each
time with a new random selection of data pool,
evaluation and seed set, as well as training data
for the strategies not using active data selection. A
separate experiment was carried out for each one of
the three entity types LOCATION, ORGANISATION

and PERSON, i.e., matching the manner in which
the evaluation corpus had been annotated. Entities
were represented by the BIO-encoding, and the
classifications were evaluated using the CoNLL
2000 NER script (Tjong Kim Sang and Buchholz,
2000).

Figure 1: Average F-score for the ten experiment re-
runs. The error bars show the interval between the min-
imum and maximum of the F-scores measured, and the
x-axes show the number of training samples.

3.3 Visualising the active learning process

We extended PAL by enabling it to record statistics
for the pool of unlabelled data for each iteration
of active data selection. We also extended the tool
by adding a command which allows the user to
generate a visualisation of this recorded data. The
visualisation aimed to increase the human under-
standing of the active learning and classifier train-
ing by (i) showing why a particular set of samples
are chosen for manual annotation in each iteration,
(ii) showing an indication of the usefulness of the
embedding features used, through visualising how
clusters formed by the embeddings correspond to
the entity categories investigated, and (iii) showing
how the classification uncertainty for the pool of
unlabelled data changes when more data is anno-
tated and used for training the model.
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Figure 2: (a-f) Six subplots, two for each of the three entity categories. (g) The left-hand column: The model’s
uncertainty for classifying tokens in the pool of unlabelled data when 500 samples have been removed from the
pool, labelled, and then used as training data for the model. (h) The right-hand column: Same as g, but with a
training data size of 1,000 samples. (i) A t-SNE plot is displayed to the left in each of the six subplots, showing
word embeddings that correspond to words included in the pool of unlabelled data. Words that occur in similar con-
texts are positioned close to each other in the plot. (j) The 20 most uncertain tokens in the pool of unlabelled data,
together with a bar chart showing their level of uncertainty, is displayed to the right in each subplot. That is, the 20
tokens for which the machine learning model, trained on the set of labelled data available, is most uncertain. (The
two closest neighbouring tokens are shown in parenthesis.) (k-l) The colour red is used for signifying that a token
has been classified by the model as belonging to the entity category in question (i.e., classified as a LOCATION,
ORGANISATION or PERSON entity). (m-n) The colour blue is used for signifying that a token is not classified as
belonging to the entity category in question. (o-p) The t-SNE plot and the bar chart use the same colour-coding for
signifying the output of the machine learning model. The larger the uncertainty with which a token is classified by
the model, the darker (i.e., closer to black) is the red or blue in which it is displayed. (q) In contrast, tokens that
the model classifies with a low uncertainty are displayed in a bright colour with low saturation. (r) The numbers
can be used for locating the position in the t-SNE plot for those among the most uncertain tokens that occurred at
least twice in the pool of unlabelled data. (s) Bar chart indicating mean model uncertainty for all words left in the
pool of unlabelled data. (t) Bar chart indicating the proportion of incorrectly classified tokens when conducting
cross-fold validation on the training set.

The advantage of applying the functionality in
PAL that uses a token-level, logistic regression clas-
sifier for the data selection, and that selects samples

based on their most uncertain token, is that the se-
lection process is easily explainable. That is, the
first of the visualisation goals can be met by con-
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veying a list of these tokens, for which the model
was most uncertain, together with the model’s clas-
sification uncertainty for these tokens.

The second visualisation goal can be met by plot-
ting a t-distributed stochastic neighbour embedding
plot, t-SNE (van der Maaten and Hinton, 2008), of
the word embeddings that were used as features.
Plotted word embeddings can then be colour-coded
according to how the word which they represent
most often is classified. Thereby, a comparison
between classifications by the trained model and
clusters of word embeddings, as shown by the t-
SNE plot, can be carried out.

To show the classification uncertainty of the
most uncertain tokens also helps meeting the third
visualisation goal. That is, changes in uncertainty
for these most uncertain tokens indicate changes
in model performance when the training data size
increases. In addition, the colour-coding of the t-
SNE plot can also be used for indicating whether
the classification uncertainty for the tokens in the
pool of unlabelled data changes when more data is
labelled and used as training data.

3.4 Visualisations for another corpus

To verify that the visualisation also functions on an-
other corpus than the English corpus that we used
during development and for simulation of the pro-
cess, we performed a small annotation experiment
on a corpus of Japanese microblogs.1

As white space is not normally used in Japanese
text, we first performed a pre-processing using
the MeCab tool (Kudo, 2006). That is, the text
segments generated by MeCab was used, and
white space was inserted between these segments.
Thereby, the white space-based tokenisation in-
cluded in Scikit-learn could be used as-is. As un-
supervised features, we used word embedding vec-
tors from a word2vec model that had been trained
on Japanese texts, which had been segmented by
MeCab and merged with the help of a dictionary2.

For this corpus, we did not perform a simulation,
but instead applied PAL for the authentic use case
of annotating raw text data. That is, we used the
facilities of active learning and pre-annotation that
are available in PAL for annotating text, and gen-

1http://www.cs.cmu.edu/˜lingwang/microtopia/#twittergold
Microblogs collected with the criterium that they should
contain the same content written in Japanese and in English
(Ling et al., 2014), from which we used the Japanese parts.

2https://github.com/shiroyagicorp/
japanese-word2vec-model-builder

erated a visualisation after each iteration. We im-
ported the pre-annotations generated by PAL into
the BRAT annotation tool, as shown in Figure 3, to
modify or delete incorrect annotations and to add
omitted ones. We used annotation guidelines for
entity detection and tracking (EDT)3.

4 Results

Evaluation results in the form of an F-score mea-
surement when evaluating against an external evalu-
ation set are shown in Figure 1, while Figures 2 and
3 show the output of the proposed visualisations
for the active learning process.

4.1 Evaluation results

The main lines in Figure 1 show the average F-
scores for the ten re-runs for each training data size
included in the experiment. The error bars show
the minimum and maximum F-scores for the ten
re-runs, i.e., giving an indication of the variation in
the results achieved.

For the entity categories LOCATION and PER-
SON, average F-scores for the four different strate-
gies produce four well-separated lines. Results are
often separated, or close to separated, also when
taking the lowest/highest value measured for the
ten folds into account. Active data selection gives
better results than random selection, and incorporat-
ing unsupervised features gives better results than
not using them. The incorporation of unsupervised
features is a more useful strategy than active data
selection, and, more importantly, combining the
two strategies is the overall most useful method.

Figure 1 further shows that while active learning
was useful also for the category ORGANISATION,
the use of word embeddings instead had a small
negative impact on this category for a data set con-
taining more than 600 samples.

4.2 Visualisation output

The visualisation functionality, with which we ex-
tended the PAL tool in this study, provides one
visualisation of the unlabelled data pool for each
iteration in the active learning process. The left-
hand column in Figure 2 shows three visualisations,
one for each of the three entity categories investi-
gated. Each of them was generated in an active
learning iteration when the training data set con-
tained 500 samples. The right-hand column in the

3www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/
english-edt-v4.2.6.pdf
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figure shows visualisations for the three categories,
that instead were generated when the training data
set contained 1,000 data samples. All six subplots
visualise the state of the pool when using active
learning and the word2vec features.

Each subplot shows the state of the pool of un-
labelled data. That is, each subplot contains an
uncertainty colour-coded t-SNE visualisation of
word embeddings that correspond to tokens present
in the data pool, as well as a bar chart display-
ing the classification uncertainty for the 20 most
uncertain tokens in the pool. Red colours in the
t-SNE plot and the bar chart signify tokens that the
model, trained on the currently available labelled
data, classifies as belonging to the entity category
in question, whereas blue colours indicate that this
model classifies the token as outside of an entity.
Darker colours in the t-SNE plot and the bar chart
signify higher uncertainty for the classification.

In particular, the colours and lengths of the bars
for PERSON and LOCATION show that there is a
higher uncertainty for a model trained on 500 data
samples than for a model trained on 1,000 samples.
Also the colour coding of the t-SNE plot gives a
slight indication of this difference in uncertainty.
In contrast, for the ORGANISATION entity, there
is a large uncertainty also for a training data set
containing 1,000 samples. The bars that indicate
mean uncertainty left in the data pool corroborate
this difference.

The visualised differences in model uncertainty
for different entities correspond to differences
found in the evaluations against the gold standard,
as shown in Figure 1. That is, the model trained
to recognise ORGANISATION, which is visualised
as uncertain, still yields a very low F-score when
trained on 1,000 training samples. Similarly, that
better results were achieved for PERSON and LO-
CATION when evaluating against the gold standard,
is reflected by a visualisation that indicates a lower
uncertainty for models trained on 1,000 training
samples to detect these entity categories.

Conversely, the percentage of incorrect classifi-
cations increases when the training data set for the
entity LOCATION increases. Thereby, the standard
measurement, in the form of incorrect classifica-
tions when performing a cross-validation on the
labelled data, fails to indicate changes in model
performance.4

4This measure is equivalent to inverse accuracy. Inverse
accuracy is used to match the uncertainty measure used, i.e.,

The spatial information in the t-SNE plot of word
embeddings correspond well to differences with
regards to the usefulness of embedding features
between the three entity categories evaluated. That
is, tokens classified as belonging to the categories
PERSON and LOCATION, for which word embed-
dings were useful, are shown as clusters of red dots
in the t-SNE plots. In contrast, tokens classified
as belonging to ORGANISATION, for which word
embeddings were shown not to be useful, mainly
occur as scattered dots in the plot.

The output of experiments on the Japanese data,
for a model trained on 138 manually labelled mi-
croblogs, is shown in Figure 3. Figure 3a visualises
the state of the pool with regards to the LOCATION

category, and Figure 3b shows pre-annotations re-
sulting from this model.5

a

b

Figure 3: (a) The state for the LOCATION entity in the
pool of unlabelled data, when the NER model has been
trained on 138 manually labelled Japanese microblogs.
Two potential entity clusters are shown in the t-SNE
plot (close to 8, Turkey, and 20, Hokkaido). Which
iteration is shown can be changed through the slider
provided. (b) Pre-annotations for two samples selected
for manual annotation, as they contain the two most
uncertain tokens in the data pool, i.e., the tokens shown
as the first two elements in the list of uncertain tokens.

the aim for both should be to reach 0%.
5The code for PAL, as well as for the experiments re-

ported here, can be found at: https://github.com/mariask2/
PAL-A-tool-for-Pre-annotation-and-Active-Learning. There,
a link can also be found to a video showing how the state of
the pool changes with an increasing training data size.
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5 Discussion

Results for the LOCATION and PERSON entities
yield that the combined functionality of active
learning and incorporation of unsupervised features
has the potential to lead to large increases in re-
sults on small data sets. This, in turn, shows that
these techniques form useful components for the
use case on which we focused here, i.e., to achieve
models that can give acceptable performance on
small data sets and that can be applied for provid-
ing pre-annotations when annotating larger data
sets.

The categories LOCATION and PERSON seem
to be relatively coherent in terms of the contexts
in which they occur, as shown by the large model
performance increases achieved when word em-
bedding features were incorporated. In contrast,
that slightly better results were achieved for OR-
GANISATION without word embedding features,
indicates that entities belonging to this category
occur in semantically diverse contexts.

These differences in context coherence between
different entity categories were also shown by the t-
SNE plot functionality, which we provided to meet
one of the visualisation goals of the PAL tool exten-
sion of this study, i.e., the goal of showing whether
the word embeddings used as features formed clus-
ters corresponding to manually annotated entity
categories. Thereby, the annotator is provided with
a possibility to estimate the effect of these word
embedding features in the active learning process.

The t-SNE plot and the bar charts of the extended
version of the PAL tool also meet the visualisation
goals of showing why a particular set of samples
were chosen for annotation, and of showing how
the increased size of the training data set affects the
performance of the trained model. An increased
training data size led to that two of the classifiers
achieved an F-score that might be high enough
to be acceptable for pre-annotation, while the F-
score remained low for the ORGANISATION cate-
gory, also when the data size was increased. These
differences were reflected in the visualisations of
the effects of the increased training data size.

We believe that visualisations that aim to in-
crease the human understanding of the active learn-
ing process and of the features used, and that show
how the state of the data pool changes as more
data is manually annotated, have the potential to
increase the intrinsic motivation for the annota-
tion task. Future work will therefore include user

studies to determine how annotators perceive these
visualisations that were added to the PAL tool, and
how the visualisations affect the motivation for the
annotation work. Such user studies should also in-
clude investigations of how the performance level
of the machine learning model correlates with the
perceived usefulness of the pre-annotations pro-
vided by the model.

6 Conclusion

We evaluated the ability of the PAL tool to reduce
the training data size required through the use of
active selection of data and through the incorpora-
tion of unsupervised features in the form of word
embeddings. Results achieved for the categories
LOCATION and PERSON showed that the combined
functionality of active learning and incorporation of
word embeddings has the potential to lead to large
increases in results on small data sets. In contrast,
word embeddings did not lead to any improvements
in the performance for detecting the ORGANISA-
TION entity, and low F-scores were achieved for
this entity category, also when 1,000 samples were
used for training the model.

The PAL tool was also extended with visualisa-
tion functionality, with the aim of increasing the
human understanding of the active learning pro-
cess and of the features used. The visualisations
provided were able to indicate performance differ-
ences between the entities, as well as differences
with regards to the usefulness of the embedding
features. That is, the same differences that were
shown in the formal evaluations against the gold
standard annotations.

We hope that this study will inspire annotation
projects to facilitate the annotation process by prac-
tically applying the methods that we have evaluated
here. In particular, we hope that the application of
PAL, and other tools that provide annotation sup-
port, will lead to that more annotation projects are
being conducted on corpora for which crowdsourc-
ing is not appropriate. For instance, corpora for
specialised domains or smaller languages.
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[Godin et al.2015] Fréderic Godin, Baptist Vandersmis-
sen, Wesley De Neve, and Rik Van de Walle. 2015.
Multimedia lab @ acl w-nut ner sharedtask: named
entity recognition for twitter microposts using dis-
tributed word representations. In ACL 2015 Work-
shop on Noisy User-generated Text, Proceedings,
pages 146–153. Association for Computational Lin-
guistics.

[Guo et al.2014] Jiang Guo, Wanxiang Che, Haifeng
Wang, and Ting Liu. 2014. Revisiting embedding
features for simple semi-supervised learning. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2014,
October 25-29, 2014, Doha, Qatar, A meeting of
SIGDAT, a Special Interest Group of the ACL, pages
110–120.

[Henriksson2015] Aron Henriksson. 2015. Learn-
ing multiple distributed prototypes of semantic cat-
egories for named entity recognition. Int. J. Data
Min. Bioinformatics, 13(4):395–411, October.

[Kucher et al.2017] Kostiantyn Kucher, Carita Paradis,
Magnus Sahlgren, and Andreas Kerren. 2017. Ac-
tive learning and visual analytics for stance classifi-
cation with alva. ACM Trans. Interact. Intell. Syst.,
7(3):14:1–14:31, October.

[Kudo2006] Taku Kudo. 2006. Mecab : Yet another
part-of-speech and morphological analyzer. http://
mecab.sourceforge.jp.

[Lample et al.2016] Guillaume Lample, Miguel Balles-
teros, Sandeep Subramanian, Kazuya Kawakami,
and Chris Dyer. 2016. Neural architectures for
named entity recognition. In NAACL HLT 2016, The
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, San Diego California,
USA, June 12-17, 2016, pages 260–270.

[Ling et al.2014] Wang Ling, Luis Marujo, Chris Dyer,
Alan Black, and Isabel Trancoso. 2014. Crowd-
sourcing high-quality parallel data extraction from
twitter. In Proceedings of the Ninth Workshop on
Statistical Machine Translation, WMT ’14, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

[Lingren et al.2014] Todd Lingren, Louise Deleger,
Katalin Molnar, Haijun Zhai, Jareen Meinzen-Derr,
Megan Kaiser, Laura Stoutenborough, Qi Li, and
Imre Solti. 2014. Evaluating the impact of pre-
annotation on annotation speed and potential bias:
natural language processing gold standard develop-
ment for clinical named entity recognition in clini-
cal trial announcements. J Am Med Inform Assoc,
21(3):406–13.

[Martin et al.2017] David Martin, Sheelagh Carpendale,
Neha Gupta, Tobias Hoßfeld, Babak Naderi, Ju-
dith Redi, Ernestasia Siahaan, and Ina Wechsung.
2017. Understanding the crowd: Ethical and prac-
tical matters in the academic use of crowdsourcing.
In Evaluation in the Crowd. Crowdsourcing and
Human-Centered Experiments, pages 27–69, Cham.
Springer International Publishing.

[Mikolov et al.2013] Tomas Mikolov, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013. Efficient estima-
tion of word representations in vector space. CoRR,
abs/1301.3781.

[Miller et al.2004] Scott Miller, Jethran Guinness, and
Alex Zamanian. 2004. Name tagging with word
clusters and discriminative training. In Proceedings
of the North American Chapter of the Association
for Computational Linguistics on Human Language
Technology (NAACL HLT), pages 337–342, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

[Olsson2008] Fredrik Olsson. 2008. Bootstrapping
Named Entity Annotation by Means of Active Ma-
chine Learning. Ph.D. thesis, University of Gothen-
burg. Faculty of Arts.

99



[Pedregosa et al.2011] Fabian Pedregosa, Gaël Varo-
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Abstract

In this work, we propose the Image
Captioning-Retrieval (ICR) problem that
states the objective of language genera-
tion as information exchange. To solve
the ICR problem, we design and imple-
ment an end-to-end neural network archi-
tecture that describes the content of im-
ages in natural language, and retrieves them
solely based on these generated descrip-
tions. The main goal is to be able to gen-
erate information-maximizing natural lan-
guage messages. We experimentally show
a strong increase in message information
content while losing some grammatical cor-
rectness in the generated descriptions in a
semi-supervised setting where caption gen-
eration is trained towards retrieval quality.

1 Introduction

Human thinking and reasoning are deeply con-
nected to words and language. Turing (1950) fa-
mously defined the ability to hold a complex con-
versation as artificial intelligence. While this no-
tion is debated (Searle, 1980), it is widely accepted
that it is language that makes us human. An artifi-
cial system capable of producing human language
will be received by us as human-like.

Current conversational and language produc-
ing systems can broadly be categorized into three
classes: rule-based systems, supervised learning
systems, and Reinforcement Learning (RL) mod-
els. Rule-based systems produce outputs by a set
of conditionals and rules of varying complexity.
This approach works well for expert systems and
the understanding of simple commands. Due to

the predictability and traceability, rule-based lan-
guage systems dominate commercial applications.
Supervised learning systems apply supervised opti-
mization strategies to predict appropriate language
outputs for given inputs (Vinyals and Le, 2015).
A prerequisite is a corpus of conversational train-
ing examples containing input sentences and cor-
responding output sentences. RL-based conversa-
tional systems (English and Heeman, 2005; Li et
al., 2016) seek to learn a dialog policy that guides
how the artificial agent should follow when inter-
acting with a user.

While current state-of-the-art systems are ar-
guably able to produce language that seems human-
like, their objective is stated as mere production
of well-sounding sentences. However, production
of grammatically correct sentences as an end goal
falls short of the motivation humans have for lan-
guage production, namely the exchange of infor-
mation (Kirby, 2007). In Mathur and Singh (2018)
it is noted that especially sequence-to-sequence
models cannot solve the language modelling prob-
lem, since ”the objective function that is being
optimized does not capture the actual objective
achieved through human communication, which is
typically longer term and based on exchange of
information rather than next step prediction”. The
main driver of a conversational system should not
be the direct production of sentences in a human-
readable language, but the optimal amount of infor-
mation exchange between agents (Steels, 2015).

In this work, we examine language generation
through an alternative objective of maximum infor-
mation exchange. We propose to train a language
production system directly with the motivation of
maximizing information content, rather than using
language modelling objectives. To achieve this,
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Figure 1: The Image Captioning-Retrieval (ICR) problem simulates a natural language message passed
from one agent to another, and is composed of Image Captioning (IC) and Natural Language Image Search
(NLIS).

we propose the Image Captioning-Retrieval (ICR)
problem. The ICR problem simulates a message
passed from one agent to another, and is composed
of two parts: Image captioning (IC) and natural
language image search (NLIS) as illustrated in Fig-
ure 1. IC describes or captions a given image with
a sentence in natural language. NLIS takes the
caption as an input and retrieves the closest image
out of a set of candidate images. By combining IC
and NLIS, we can train our language production
system directly with the motivation of information
exchange. The constraint that the communication
takes place in human-understandable language is
ensured by producing captions in natural language.
For this, we first pre-train the IC system in a super-
vised fashion using pairs of images and captions,
and subsequently continue to train the overall sys-
tem on the retrieval task. This can be viewed as
a semi-supervised setting since captions are im-
proved not through direct supervision on gold cap-
tions, but on indirect supervision on discriminating
between pictures in the retrieval task.

Our contribution is two-fold. Firstly, we show
that solving the ICR problem gives rise to natural
language messages, while experimentally showing
a strong increase in message information content.
Secondly, we qualitatively present that the descrip-
tions generated by our model capture more details
of images as compared to plain IC systems.

The remainder of the paper is organized as fol-
lows. In Section 2, we review relevant related
works in image captioning, natural language image

search and neural learning architectures. Section
3 describes our overall approach, detailing the re-
spective subsystems and their combination. The
experimental setup is laid out in Section 4, before
reporting quantitative evaluation results in Section
5. Qualitative observations are discussed in Section
6, Section 7 draws conclusions and provides direc-
tions for further work in natural language learning
through conversations.

2 Related Work

State-of-the-art natural language production sys-
tems apply supervised learning, in particular the
sequence-to-sequence model of Vinyals and Le
(2015). This approach was inspired by machine
translation (Sutskever et al., 2014), and has since
been replicated multiple times. While an in-depth
survey of natural language generating systems is
beyond the scope of the present paper, we direct
the interested reader to the recent survey of Gatt
and Krahmer (2018). In our subsequent review, we
discuss the two key subtasks of our ICR problem
(Fig. 1), IC and NLIS, and the interplay of systems
solving these two tasks.

Given an input image, an IC system outputs a de-
scription of the image in natural language. In turn,
given as input a textual description of an image, an
NLIS system finds the image that best matches the
input description among a set of candidate images.
We review techniques and ideas most closely re-
lated to our focus on the information exchange mo-
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tivation for language generation. These approaches
typically combine an IC network and an NLIS net-
work and train them jointly. For a recent general
survey of deep learning techniques applied to IC,
we refer the reader to Hossain et al. (2019).

Most related to our work, the idea of scoring im-
age descriptions based on the amount of informa-
tion carried in the sentence is proposed in Hodosh
et al. (2013). Instead of using traditional n-gram
based evaluation measures like the BLEU (Pap-
ineni et al., 2002) or the CIDEr score (Vedantam
et al., 2015), Hodosh et al. (2013) propose to use
an NLIS system, pre-trained on human-annotated
image-caption-pairs, to score the created image cap-
tions. The idea is widely used in other recent works
in IC (Devlin et al., 2015; Vinyals et al., 2017;
Karpathy and Fei-Fei, 2017; Donahue et al., 2017).
The general architecture of these models contains
an IC encoder-decoder model that encodes image
information into textual form, and an image scor-
ing system that evaluates the created captions using
an NLIS system. The IC model is often a combina-
tion of a convolutional neural network (CNN) and
a long-short-term memory network (LSTM).

Adversarial training is employed by several state-
of-the-art works in IC (Dai et al., 2017; Liang et
al., 2017; Liu et al., 2018). An NLIS network
is applied to discriminate between generated and
real samples. In Shetty et al. (2017), the objective
is altered from merely reproducing ground truth
captions to matching a distribution of human gener-
ated captions by applying an approximate Gumbel
sampler.

RL is employed in some recent approaches such
as the method by Ren et al. (2017b). A reward
function is derived by considering visual-semantic
embedding similarities: input images and captions
both are mapped into a embedding space, and their
similarity in this space is measured by an appropri-
ate metric.

In contrast to the reviewed work we explicitly de-
fine information exchange as the primary objective
for IC and NLIS. Through this we clearly sepa-
rate us from related studies that use information
exchange merely as a performance indicator or a
general guidance.

3 Image Captioning Retrieval Network

Our ICR network is an IC network and an NLIS
network, combined by a Gumbel softmax layer.

3.1 Image Captioning

The IC model receives an image and returns multi-
ple probability distributions over a vocabulary.

The input for the model is an image xim ∈
Rh×w×c, where h,w,c are the height, width and
color dimension, together with a sequence of words.
The model output is a probability distribution over
a fixed vocabulary V . Each word is thus assigned a
likelihood of being the next word.

The input image is resized to a fixed size and
fed through an image encoder (e.g. CNN) with
the parameters θφ that extract the most important
image features in a vector φ(xim,θφ ) ∈ Rk, where
k is the length of the feature vector.

The respective image annotation is embedded
in a dense word embedding, yielding the second
model input xse ∈ Rt×d , where t is the number of
words in a sentence and d is the dimensionality
of the dense word embedding. The embedded
sentence is fed through a sentence encoder (e.g.
LSTM) resulting in a t × l tensor, where l is the
length of the feature vector.

Now xim is replicated t times and concatenated
with the sentence features. This results in a
t × (l + k) tensor, which is fed through a block
of fully connected layers and a final softmax layer,
squeezing the model output into t probability distri-
butions with P(yt |xse

1→t−1,φ(x
im,θφ )), where yt is

the probability over the vocabulary V at timestep t,
xse is the information from the previous words and
φ(xim,θφ ) is the image vector.

At training time, xse and the target y∈Rt×d , with
the same shape as xse, are representations of the
same ground truth sentence. This training tech-
nique is called teacher forcing. xse is shifted one
time-step into the future by adding a start-symbol
at its beginning. This way, word yt equals xse

t+1 and
the model is trained to predict the next word of the
same sentence xse. An end-symbol is appended to
y, so input and output have the same length and the
model is trained on how to end the sentence. The
loss is calculated through the cross-entropy of the
predicted probability distribution and the ground
truth distribution. This allows a quick and stable
learning process but also leads to the so-called ex-
posure bias (Ranzato et al., 2016).

At inference, only the image vector φ(xim,θφ )
is available. The model starts with x̂se, containing
only the start-symbol, as first input and generates
P(ŷt). Depending on the selection mode, one word
yt from P(ŷt) is selected and appended to the pre-
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Figure 2: Our ICR model. Annotations and images are both transformed into feature representations,
which are mapped into a shared embedding space. The distance in this space defines the similarity of the
image-annotation pair.

vious input x̂se
1→t−1. It then serves as new input for

the next prediction step.

3.2 Natural Language Image Search
Our NLIS model is realized through an image and a
sentence encoder that are trained on the triplet rank-
ing loss (Karpathy et al., 2014; Ren et al., 2017a;
Karpathy and Fei-Fei, 2017; Wang et al., 2017;
Faghri et al., 2018; Liu et al., 2018).

Both encoders are similar to the ones used in
our IC model. Images xim are transformed into
feature representations φ(xim,θφ ) ∈ Rdφ , where φ
is the image encoder (e.g. CNN), with model pa-
rameters θφ . Correspondingly, sentences xse are
embedded and transformed into a feature represen-
tation through a model ψ(xse,θψ) ∈ Rdψ , where ψ
is the sentence encoder (e.g. LSTM) with model
parameters θψ .

fim(xim,Wim,θφ ) =
∥∥W T

imφ(xim,θφ )
∥∥

2 (1)

fse(xse,Wse,θψ) =
∥∥W T

se ψ(xse,θψ)
∥∥

2 (2)

Both feature representations are mapped into a
shared embedding space of size e by linear pro-
jection with weight matrices Wim ∈ Rdφ×e and
Wse ∈ Rdψ×e. The resulting projections are nor-
malized with the L2 norm to lie on the unit hyper-
sphere.

s(im,se) = fim(xim,Wim,θφ ) · fse(xse,Wse,θψ) (3)

The similarity between an image-sentence pair
is defined as the inner product between the two

normalized vectors, resulting in the cosine similar-
ity (Subhashini and Kumar, 2010).

L (θ ,Bim,Bse) =
1
N

N

∑
n=1

L(imn,sen,Bim′ ,Bse′)

(4)
For a batch of images, Bim = {xim}N

n=1, and corre-
sponding sentences, Bse = {xse}N

n=1, the batch loss
is calculated by comparing every image against
every sentence and vice versa. In every iteration,
one image-sentence pair is selected as true pair,
marked as (imn,sen). The similarity of this pair
is compared to the similarities between the image
and all other sentences or the sentence and all other
images respectively. A batch of sentences, without
the correct sentence, is denoted as Bse′ and a batch
of images without the correct image as Bim′ .

All possible parameters to be optimized are de-
fined by θ = {θφ ,θψ ,Wim,Wse}. Depending on the
experimental setup, however, θφ and/or Wim are not
optimized or finetuned.

LSH(im,se, ˆim, ŝe) =

∑̂
se
[α− s(im,se)+ s(im, ŝe)]++

∑̂
im

[α− s(im,se)+ s( ˆim,se)]+

(5)

LSH is defined as the sum of hinges and describes
the classic triplet ranking loss. Let α be the mar-
gin that the similarity of all wrong image-sentence
pairs should be smaller than the similarity of the
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correct image-sentence pair. s(im,se) describes
the similarity of the correct image-sentence pair
while s(im, ŝe) describes the similarity between an
incorrect image-sentence pair. In order to avoid
negative losses, we use positive values only, as
defined by the notation [x]+ = max(0,x). The sec-
ond term is symmetrical to the first term. In the
first term, an image is fixed and the similarity with
different candidate sentences is calculated and re-
turned. In the second term, a sentence is fixed
and all other images are iterated over to calculate
the similarities. Faghri et al. (2018) report a steep
increase in accuracy on the NLIS task when us-
ing triplet ranking loss with the max of hinges,
LMH. This refers to selecting the one (negative)
sample with the highest loss in every mini-batch.
The only difference between LMH and LSH is the
selection of the biggest error, maxŝe[α−s(im,se)+
s(im, ŝe)]+, instead of the summation of errors,
∑ŝe[α− s(im,se)+ s(im, ŝe)]+.

3.3 Image Captioning-Retrieval
Our ICR network is a combination of the two mod-
els described above. In order to overcome the prob-
lem of discrete word representations being not dif-
ferentiable, the Gumbel softmax trick (Jang et al.,
2016) is used to transform one-hot probability dis-
tributions into pseudo-one-hot-representations.

The original Gumbel-Max trick (Gumbel, 1954)
is a simple and efficient way to draw samples from
a categorical distribution with class probabilities π .
g ∈ (0,1) is called the Gumbel distribution and is
calculated from u, drawn from a uniform distribu-
tion between 0 and 1.

g =−log(−log(Uniform(0,1))) (6)

z = onehot
(

argmax
i

[gi + log(π)]
)

(7)

Since argmax is non-differentiable, the continu-
ous softmax function is used as an approximation.
τ is the temperature of the softmax. The smaller τ
is, the closer the distribution is to a one-hot encod-
ing. yi is the resulting k-dimensional word distribu-
tion.

yi =
exp((log(πi)+gi)/τ)

∑k
j=1 exp((log(πi)+gi)/τ)

for i, ...,k

(8)

A second challenge is the sampling of novel sen-
tences. Our ICR model needs a complete input

sentence xse to be able to determine the probabil-
ity for every sub-sentence xse

t1:ti . This can either be
achieved by creating complete and novel sentences
with our IC model in a pre-step or by directly using
the Gumbel softmax trick in this phase. Since the
Gumbel softmax activation function introduces ran-
domness into the selection process, unseen word
combinations can occur, from which the model will
not be able to recover. For this reason we decided
to use the first-mentioned approach.

When feeding the novel image annotation
through our ICR model, it will be fed through the
IC model again and reproduce the output ŷ. The
output is transformed with the Gumbel softmax ac-
tivation function, which selects one word randomly
based on its probability and transforms it into a
value close to one. All other words will receive a
very low probability, close to 0. Let γ(ŷ) be the
Gumbel softmax output.

Together the original image vector φ(xim,θφ )
and γ(ŷ) are fed into the NLIS network to output a
similarity matrix, containing similarities between
every image and every sentence. From this simi-
larity matrix, either the sum or the max of hinges
loss (Section 3.2) can be calculated and used for
training.

4 Experimental Setup

Our experiments are designed to optimize informa-
tion exchange between the IC and the NLIS system.
Information exchange is measured by the image
retrieval score, which is reported in the percentage
of images ranked within the best 1, 5 or 10 ranked
images (r@1, r@5, r@10). The Consensus-based
Image Description Evaluation (CIDEr) (Vedantam
et al., 2015) score for the generated annotations
is presented alongside. CIDEr is an n-gram based
evaluation metric especially created for image an-
notation.

We use MSCOCO dataset with 2017 split (Lin
et al., 2014; Chen et al., 2015) for training and
validation. The dataset contains 118,287 training
and 5,000 validation images, all of them annotated
with five ground truth sentences.

In preprocessing, all annotations are cut or
padded to contain exactly 16 tokens. Tokens ap-
pearing less than 10 times are replaced with the un-
known word token. Every word is embedded with
a pre-trained English fasttext model (Bojanowski
et al., 2017). All images were encoded by ex-
tracting the last fully connected layer of ResNet50
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Table 1: Performance of our IC and NLIS model af-
ter stand-alone pre-training on their respective task
(*Our), compared to VSA (Karpathy and Fei-Fei,
2017), UVS (Kiros et al., 2014), VSE++ (Faghri
et al., 2018), sm-LSTM (Huang et al., 2017), m-
RNN (Mao et al., 2014) and LRCN (Donahue et al.,
2017) on different measures as reported in the liter-
ature. NLIS results refer to 1,000 test images and
5,000 respective descriptions from MSCOCO 2017.
r@n shows the percentage of sentences/images
ranked under the top n ranks. BLEU4 and CIDEr
are received from the C40 test set of the official
2015 COCO Caption Challenge Competition. Re-
sults with most similar architectures are listed if
available.

Image captioning Image retrieval
System r@1 r@5 r@10 r@1 r@5 r@10
VSA 38.4 69.9 80.5 27.4 60.2 74.8
*Our 39.9 69.8 80.1 32.0 66.3 80.8
UVS 43.4 75.7 85.8 33.0 67.2 80.6
VSE++ 43.6 74.8 84.6 33.7 68.8 82.0
sm-LSTM 53.2 83.1 91.5 40.7 75.8 87.4

Image captioning
System BLEU4 CIDEr
VSA 0.446 0.692
*Our 0.472 0.753
UVS 0.517 0.752
m-RNN 0.578 0.896
LRCN 0.585 0.934

(2,048 nodes), pre-trained on ImageNet (Deng et
al., 2009).

IC and NLIS network are separately pre-trained
until they yield optimal annotation and ranking
results. Multiple hyperparameters (model archi-
tecture, number of epochs, learning rate, etc.) of
both models were empirically optimized to yield re-
sults close to state-of-the-art performance for their
respective task. For both models, sentences are en-
coded by 1,024 LSTM cells. Images are projected
onto vectors of the same size with a dense layer.
In our NLIS network, encoded sentence features
are also projected onto a 1,024 dimensional space
by a fully connected layer. In our IC model, sen-
tence and image features are concatenated and fed
through two dense layers (1,024 and 2,048 nodes),
before the final softmax layer. Between every layer
we added dropout layers with 0.4 dropout to pre-
vent the model from overfitting. When training
our NLIS model we used sum of hinges for one
epoch before switching to max of hinges loss. This
was necessary for a stable training. In all later ICR
experiments we used max of hinges loss.

Table 1 shows the performance of our models

after pre-training compared to related studies that
used similar techniques with similar network ar-
chitectures. The performance of our NLIS model
builds the baseline for further training with our
complete ICR model. In order to combine IC
and NLIS model in our final model, we imple-
mented both models in the same framework. Sim-
ply reusing models from related work was not pos-
sible due to the incompatibility of different neural
network frameworks.

In our main training loop, 20,000 images are
randomly selected per epoch and fed through our
ICR network. A loss is calculated for the generated
annotation and for the retrieved image. Mini-batch
size is set to 128 for all experiments. The model
was trained for 40 epochs with Adam as optimizer.
The learning rate is set to 0.0002 for the first 20
epochs and then decreased to 0.00002 for the rest
of the training process.

Optimizing all weights in the ICR network leads
to an unstable training process and often resulted in
sudden drops in performance. Freezing the weights
of the image projection layer from the beginning
of training (IP=F) or at a certain epoch (IP=17) sta-
bilized the training process. Freezing the weights
of the sentence encoder (SE=F) had a similar sta-
bilizing effect on the training. Training with only
self-generated sentences right from the start leads
to an instant decrease in performance since the
model has no time to adjust to flawed input sen-
tences. To counter this issue, novel self-generated
annotations are slowly added to existing ground
truth sentences. This is implemented by randomly
selecting an annotation from a list of both ground
truth annotations and generated ones. In the begin-
ning, this list contains only ground truth samples.
At every epoch, novel annotations are added. When
the list reaches a defined size (INF=5, 10, 15), a
random sentence is dropped from the list. This way,
novel sentences are slowly infused into the training
process.

To increase ranking performance, true image-
sentence pairs were added to the output from the IC
network. In this case, one mini-batch contains 64
image-sentence pairs generated by our IC network
and 64 true image-sentence pairs directly from the
dataset (TP=T). Otherwise the whole mini-batch
contains only self-generated samples (TP=F). Both
methods result in a 128×128 similarity matrix for
one mini-batch. After the training phase, 1,000
validation images are captioned and retrieved to
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Table 2: Ranking retrieval results for different experimental settings on 1000 validation images from
MSCOCO 2017. TP=True Pairs, SE=Sentence encoders trainable, IP=Image Projection layer trainable
or trained until which epoch, INF=Infusion list size, NLIS sum=Sum over all image scores, C=CIDEr

Sentence Retrieval Image retrieval
TP SE IP INF r@1 r@5 r@10 r@1 r@5 r@10 NLIS sum C
F T F 10 34.7 72.1 86.9 33.2 69.7 83.7 186.6 0.061
F F F 10 40.8 77.8 89.9 38.8 76.3 88.9 204.0 0.101
T T 17 10 44.4 79.9 90.5 40.8 79.1 89.7 209.6 0.049
T F T 10 47.6 84.2 93.6 43.1 81.8 92.5 217.4 0.094
T F T 15 46.2 86.4 93.6 46.0 83.0 93.0 222.0 0.083

Pre-training Baseline 39.9 69.8 80.1 32.0 66.3 80.8 179.1 0.753

determine the performance of our model.

5 Results

Table 2 shows various experimental settings and
their resulting ranking and CIDEr score. In the
last row, the baseline ranking and annotation per-
formance is reported. It represents our best per-
formance of the two models when trained on their
respective tasks alone.

The table shows that the usage of true image
pairs (TP) generally increases the ranking perfor-
mance of the network. The best experimental re-
sults were observed when freezing the sentence
encoder weights for the ICR training (SE=F) but
not the image projection layer (IP=T). An infusion
list size of 10 (INF=10) yields optimal sentence
retrieval scores while an infusion list size of 15
(INF=15) results in a 3 percent-point increase in
the r@1 for the NLIS score and the best overall
retrieval score (NLIS sum). Training runs with no
infusion list (not mentioned in Table 2) were aban-
doned early in the experimental phase, for they
resulted in unstable training and worse ranking
scores than our baseline.

Compared to the ranking performance of our
baseline (Table 1), we observe improvements for
all reported experiments. Under the same evalua-
tion set (1000 validation images), our best model
improves image r@1 results by 14.0 percentage
points resulting in 46.0% correctly retrieved im-
ages through our self-generated image descrip-
tions. 80.0% of all described images were retrieved
within the 10 top ranks. Not only could we in-
crease our retrieval performance immensely com-
pared to our baseline, but we also outperform all
related studies using similar image encoders. This
indicates that our self-generated sentences contain
more image information than the ground-truth an-

notations, created by human annotators. CIDEr
scores, however, decrease from our baseline perfor-
mance of 0.72 to around 0.10.

The increase in retrieval scores and the decrease
in CIDEr can be observed in Figure 3 as well. It
shows a selection of images and different annota-
tions. The first annotation is the annotation gener-
ated by our IC system, after pre-training (PT). GT
shows one of the ground truth captions for compar-
ison. The last sentence is the generated description
from our best performing (ICR) model. Word repe-
titions, missing of stop-words and the selection of
more specific and precise words (e.g. locomotive
instead of train) are at the same time responsible
for higher retrieval scores and lower CIDEr score.
Since n-gram based evaluation metrics use direct
comparison between prediction and ground-truth
sentence, using often occurring words (e.g. stop-
words) and general terminology (e.g. train) nor-
mally yields better results. Ironically, these words
often carry the least amount of information.

6 Discussion

A comparison between the images in Figure 3 and
their descriptions after the pre-training phase and
after the ICR training phase shows that the increase
in information exchange is not only visible in the
ranking scores, but also leads to arguably better
generated descriptions.

The sentences created after the pre-training are
almost exclusively grammatically correct and de-
scribe the image content more or less accurately.
Generated descriptions show less grammatical
structure after the IC system was trained to maxi-
mize the ranking performance, but the content of
the sentence describes the image in much more
detail and correctness.

The generated sentences after ICR training often

107



Figure 3: Next to every image, the description gen-
erated by the pre-trained IC model (PT), one of the
ground truth descriptions (GT) and the descriptions,
generated after training the ICR model.

contain repeating words, and they do not contain
the end-symbol anymore. Both of these effects are
likely due to the pre-training of the system. During
the pre-training phase, only correct sentences were
used as input for the model. In the ICR training
phase, new sentences are generated and used for
training. Additionally, since the Gumbel softmax
trick is a statistical sampling method, the word with
the highest probability is not always picked, as it
has been before with greedy picking. This means
the system encounters new situations that it has
to deal with. Since it was trained with teacher-
forcing, it has developed little robustness against
these novel situations. Interestingly, the ICR sys-
tem tries to fully use the maximum length of 16
tokens, possibly conveying the importance of im-
age elements with word repetition.

It is important to mention that the grounding be-
tween words and entities in the images stays intact
during the training. This means, the network keeps
using the same words for certain scenes or objects,
learned in the pre-training phase. This is highly rel-
evant for a system trying to learn language without
explicit targets. It means that the system keeps con-
nections between image entities and words, even
when trained on a different task. This allows us
to focus on a more implicit goal like information
exchange.

Regarding the first image in Figure 3, one can
see, that the description after the ICR training in-
cludes ”an old locomotive” instead of only ”a
train”. The description also contains ”wires over-
pass”, describing the electrical wires over the train,
even though this information was not present in any
of the 5 human annotated sentences. This shows
that the model is no longer explicitly trained on the
true sentences, but has a much more implicit objec-
tive. In order to optimize the ranking performance,
additionally, highly distinct image information is
reflected in the wording. The fourth image in Fig-
ure 3 shows similar increases in content and detail
description. The information that the elephant is

”walking through some river” is crucial to distinctly
rank this image higher than other elephant images.

In the third picture, the new description is less
general. The pre-trained system is producing a
generic sentence, more or less fitting to any tennis
scene. The description, generated after the ICR
training is more accurate in its context. The same
is true for images 2 and 3. In general, the image
content is described in more detail and in more
accuracy. The sentences are less grammatical than
before, however.

These findings are satisfying and show that our
objective trains our system to transfer information
while still creating human-readable sentences. The
fact that the created sentences are still grounded
show that our language system, once pre-trained,
keeps its relations between objects and words in-
tact. Our main goal of increasing the amount of
exchanged information is clearly reached. Our sec-
ondary goal of insuring the human-readability of
the generated language is partly satisfied and could
be addressed with future work.

7 Conclusion

We clearly show how training an IC network with
a more implicit objective like the ranking results
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from our NLIS network can improve the amount
of information captured in the generated sentences.
The newly generated sentences are not grammati-
cally perfect but understandable by humans. More
importantly, after training our ICR model, gen-
erated descriptions capture more distinct details
of images and describe more aspects of the im-
ages. The ranking performance was increased by
a large margin, surpassing previous image search
approaches.

This work has strengthened our belief that lan-
guage generation and comprehension learning can
benefit from implicit objectives in a joint learning
setup as opposed to learn them from explicit su-
pervision separately. Language offers a mapping
from a high dimensional to discrete space. It of-
fers the exchange of complex information in an
equally complex but agreed-upon system. If in-
formation exchange is a major goal, more effort
should be placed in implicitly modeling, with ob-
jectives like information exchange in order to solve
tasks, requiring content that can only be transferred
by language. The proposed language game in this
work builds one of the most basic language games:
describing and finding an image.

More sophisticated games, like solving riddles,
answering questions, walking through a maze or
executing commands can all be implemented based
on language instructions. These games all have
to be designed in a way that succeeding is a di-
rect implication of information exchange. If this
approach is used, while language grounding and
correct grammar are enforced and guaranteed for,
we will have a chance of optimizing language gen-
eration and comprehension directly on target tasks,
which should result in more targeted and better-
suited systems as opposed to training on auxiliary
objectives.

In future work, conversation generation can also
be targeted. The challenge there is that conversa-
tion should only be as informative as required in a
given situation to not distract or cause an unneces-
sarily high cognitive load.
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A. M. Turing. 1950. Computing machinery and intelli-
gence. Mind, 49:433–460.

R. Vedantam, C. L. Zitnick, and D. Parikh. 2015.
CIDEr: Consensus-based image description evalua-
tion. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 4566–4575, Boston, MA,
USA.

O. Vinyals and Q. V. Le. 2015. A Neural Conver-
sational Model. Computing Research Repository,
abs/1506.05869.

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan.
2017. Show and Tell: Lessons Learned from the
2015 MSCOCO Image Captioning Challenge. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 39(4):652–663.

L. Wang, Y. Li, and S. Lazebnik. 2017. Learn-
ing Two-Branch Neural Networks for Image-Text
Matching Tasks. Computing Research Repository,
abs/1704.03470.

110



German End-to-end Speech Recognition based on DeepSpeech

Aashish Agarwal and Torsten Zesch
Language Technology Lab

University of Duisburg-Essen
Duisburg, Germany

Abstract

While automatic speech recognition is an
important task, freely available models are
rare, especially for languages other than
English. In this paper, we describe the pro-
cess of training German models based on
the Mozilla DeepSpeech architecture using
publicly available data. We compare the re-
sulting models with other available speech
recognition services for German and find
that we obtain comparable results. Accept-
able performance under noisy conditions
would, however, still require much more
training data. We release our trained Ger-
man models and also the training configu-
rations.

1 Introduction

Automatic speech recognition (ASR) is the task of
translating a spoken utterance into a textual tran-
script. It is a key component of voice assistants like
Google Home (Li et al., 2017), in spoken language
translation devices (Krstovski et al., 2008), or for
automatic transcription of audio and video files
(Liao et al., 2013). For any language beyond En-
glish, readily available pre-trained models are still
rare. For German, we are only aware of the model
by Milde and Köhn (2018) for the Kaldi framework
(Povey et al., 2011). For the recently introduced
Mozilla DeepSpeech framework, a German model
is still missing. This is a serious obstacle to ap-
plied research on German speech data, as available
web-services by Google, Amazon, or Microsoft are
problematic due to data privacy reasons. We thus
use publicly available speech data to train a Ger-
man DeepSpeech model. We release our trained
German model and also publish the code and con-
figurations enabling researchers to (i) directly use
the model in applications, (ii) reproduce state-of-
the-art results, and (iii) train new models based on
other source corpora.

2 Speech Recognition Systems

Due to the underlying complexity of recogniz-
ing spoken language and the wish of the service
provider to keep the model private, many systems
are offered as web services. This includes com-
mercial services like Google Cloud Speech-to-Text
(He et al., 2018), Amazon Alexa Voice Services1,
IBM Watson Speech to Text (Saon et al., 2017) or
Speechmatics2 as well as academic services like
BAS.3 While web services are convenient, there
are many situations where they cannot be used:

• sending data to a web service might violate
data privacy protection laws

• as the data throughput of a web service is
limited; it might rule out batch processing of
large amounts of speech data

• the user cannot control (or change) the func-
tionality of a remotely deployed web service

• research results based on web service calls
are not easily replicable, as services might
change without notice or become unavailable
altogether.

For this work, we therefore consider only frame-
works that can be used locally and without restric-
tions. One such framework is Kaldi (Povey et al.,
2011) which was found to be the best perform-
ing open-source ASR system in a previous study
(Gaida et al., 2014). It is open-source toolkit writ-
ten in C++ that supports conventional models (e.g.
Gaussian Mixture Models) as well as deep neu-
ral networks. Recently, end-to-end neural systems
like wav2letter++ (Pratap et al., 2018) provided by
Facebook, or DeepSpeech4 provided by Mozilla
have been introduced. To our knowledge, there is

1https://developer.amazon.com/alexa/science
2https://www.speechmatics.com
3https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface/ASR
4https://github.com/mozilla/DeepSpeech
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Figure 1: DeepSpeech architecture (adapted from
Mozilla Blog5)

only one German model for any of these frame-
works that is publicly available, which is the one
by Milde and Köhn (2018) for Kaldi. Other Ger-
man models, e.g. a Kaldi model from Fraunhofer
IAIS (Stadtschnitzer et al., 2014), rely on in-house
datasets and are not publicly available.

In this work, we focus on Mozilla’s DeepSpeech
framework, as it is an end-to-end neural system
that can be quite easily trained, unlike Kaldi, which
requires more domain knowledge or wav2letter++,
which is not yet widely tested by the community.

Mozilla DeepSpeech DeepSpeech (v0.1.0) was
based on a TensorFlow (Abadi et al., 2016) imple-
mentation of Baidu’s end-to-end ASR architecture
(Hannun et al., 2014). As it is under active devel-
opment, the current architecture deviates from the
original version quite a bit. In Figure 1, we give
an overview of the architecture of version v0.5.0,
which we also used for our experiments in this
paper.6

DeepSpeech is a character-level, deep recurrent

5https://hacks.mozilla.org/2018/09/speech-recognition-deepspeech
6https://github.com/mozilla/DeepSpeech/releases/tag/v0.5.0

neural network (RNN), which can be trained end-
to-end using supervised learning.7 It extracts Mel-
Frequency Cepstral Coefficients (Imai, 1983) as
features and directly outputs the transcription, with-
out the need for forced alignment on the input or
any external source of knowledge like a Grapheme
to Phoneme (G2P) converter. Overall, the network
has six layers: the speech features are fed into three
fully connected layers (dense), followed by a uni-
directional RNN layer, then a fully connected layer
(dense) and finally an output layer as shown in Fig-
ure 1. The RNN layer uses LSTM cells, and the
hidden fully connected layers use a ReLU activa-
tion function. The network outputs a matrix of
character probabilities, i.e. for each time step the
system gives a probability for each character in the
alphabet, which represents the likelihood of that
character corresponding to the audio. Further, the
Connectionist Temporal Classification (CTC) loss
function (Graves et al., 2006) is used to maximize
the probability of the correct transcription.

DeepSpeech comes with a pre-trained English
model, but while Mozilla is collecting speech sam-
ples8 and is releasing training datasets in several
languages (see paragraph on Mozilla Common
Voice in Section 3), no official models other than
English are provided. Users have reported on train-
ing models for French9 and Russian (Iakushkin et
al., 2018), but the resulting models do not seem to
be available.

3 Model Training

In this section, we describe in detail our setup for
training the German model in order to ease subse-
quent attempts to train DeepSpeech models.

3.1 Datasets
To train the German Deep Speech model, we utilize
the following publicly available datasets:

The Voxforge10 corpus, which is about 35 hours
of German speech clips. Nearly 180 speakers have
read aloud sentences from German Wikipedia, pro-
tocols from the European Parliament, and some
individual commands. The clips vary in length,
ranging from 5 to 7 seconds.

The Tuda-De (Milde and Köhn, 2018) corpus,
is similar to Voxforge. It uses the same sources

7https://hacks.mozilla.org/2017/11/a-journey-to-10-word-error-rate/
8https://voice.mozilla.org/
9http://bit.ly/discourse-mozilla-org

10http://www.voxforge.org/home/forums/other-languages/german/

open-speech-data-corpus-for-german
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Dataset Size Median Length # Speakers Condition Type

Voxforge 35h 4.5s 180 noisy read
Tuda-De 127h 7.4s 147 clean read
Mozilla Common Voice 140h 3.7s >1,000 noisy read

Table 1: Overview of German datasets

(Wikipedia, parliament speeches, commands), but
the recordings are under more controlled condi-
tions. The final data was also curated “to reduce
speaking errors and artefacts”. Each recording was
made with 4 different microphones at the same
time. This means that while the overall size of
the dataset is larger than Voxforge and a model
based on this dataset is supposed to be more robust,
the actual amount of unique speech hours in both
datasets are about the same.

The Mozilla Common Voice project11 aims to
make speech recognition open to everyone. The
multilingual dataset currently covers 18 languages -
including English, French, German, and Mandarin.
The German corpus contains clips with lengths
varying from 3 to 5 seconds. However, the corpus
is recorded outside controlled conditions as per the
comfort of the speaker. The utterances have back-
ground noise, and users have varied accents. There-
fore we expect this dataset to be relatively challeng-
ing. Speakers in this dataset are relatively young,
and the male/female ratio is about 5:1, which might
result in a severe bias when trying to transfer the
model.12 The version used in our experiments has
140 hours of recordings, but as Mozilla aims at
adding more recordings, there might already be a
larger dataset available.

3.2 Preprocessing

DeepSpeech expects audio and transcription data
to be prepared in a specific format so that they can
be read directly by the input pipeline (see Figure 2
for an example). We cleaned the transcriptions
by removing commas as well as punctuation and
converting all transcriptions to lower case. We
further ensured all audio clips are in .wav format.
The pruned results were split into training (70%),
validation (15%), and test data (15%).

For more details on data preprocessing parame-
ters, we refer the reader to the code release.13

11https://voice.mozilla.org/de/datasets
12Speaker Information is based on the self-reported statis-

tics provided on the project homepage for each dataset.
13https://github.com/AASHISHAG/deepspeech-german

Hyperparameter Value

Batch Size 24
Dropout 0.25
Learning Rate 0.0001

Table 2: Hyperparameters used in the experiments

3.3 Hyperparameter Setup

We searched for a good set of hyperparameters
as shown in Figure 3. In the first iteration, we
select learning rate and train batch-size and plot
the graph showing the relationship of dropout and
word-error rate, to determine the dropout with the
lowest WER. We then used the best dropout (0.25)
from the above iteration and kept the train batch
size, to identify the best learning rate. Finally,
we took the best dropout (0.25) and learning rate
(0.0001) to determine the effect on batch size which
shows that our initial choice of 24 was reasonable,
even if somewhat better results seem possible using
smaller batches.

Since Deep Speech employs early stopping,
which stops the training of a neural network early
before it overfits the training data, we did not ex-
periment much with the number of epochs. The re-
maining hyperparameters were set to be the same as
those pre-configured in Mozilla Deepspeech. The
best results are obtained with the hyper-parameters
mentioned in Table 2. We train the network using
the Adam optimizer (Kingma and Ba, 2014).

Language Model We apply a probabilistic lan-
guage model using KenLM toolkit (Heafield, 2011)
to train a 3-gram model on the pre-processed cor-
pus provided by Radeck-Arneth et al. (2015). It
consists of eight million filtered sentences compris-
ing 63.0% Wikipedia, 22.0% Europarl, and 14.6%
crawled sentences. MaryTTS14 has been used to
canonicalize the corpus, i.e. normalized to a form
that is close to how a reader would speak the sen-
tence, especially changing numbers, abbreviations,
and dates. Additionally, punctuations were dis-
carded, as it is usually also not pronounced. We

14http://mary.dfki.de/
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Figure 2: Screenshot of the input file format
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Figure 3: Hyperparameter search space

Dataset WER

Mozilla 79.7
Voxforge 72.1
Tuda-De 26.8
Tuda-De + Mozilla 57.3
Tuda-De + Voxforge 15.1
Tuda-De + Voxforge + Mozilla 21.5

Table 3: German DeepSpeech results

used the unpruned Language Model that has a
rather large vocabulary size of over 2 million types,
but we expect pruning would only affect runtime,
not recognition quality.

3.4 Server & Runtime

We trained and tested our models on a compute
server having 56 Intel(R) Xeon(R) Gold 5120
CPUs @ 2.20GHz, 3 Nvidia Quadro RTX 6000
with 24GB of RAM each. Typical training time on
a single dataset under this setup was in the range
of 1 hour.

4 Results & Discussion

Table 3 shows the word error rates (WER) obtained
when training and testing DeepSpeech on the avail-
able German datasets and their combinations. The
best configuration in Milde and Köhn (2018) using
only the Tuda-De corpus yields a WER of 28.96%.

Our model only trained on Tuda-De yields a com-
parable WER of 26.8%.

Results for the other datasets are much lower, but
apparently combining several datasets improves the
results. While the combination of Tuda and Mozilla
yields a WER of 57.3%, the combination of Tuda,
Voxforge, and Mozilla gives a WER of 21.5%.
Combining the very similar Tuda-De and Voxforge
yields a WER of 15.1%, which is a remarkable im-
provement over using only a single dataset. Note
that this is the black-box performance, as we used
DeepSpeech as is and only slightly tuned hyper-
parameters. See Section 6 for ideas on how to
improve over these results.

To put our results into perspective, in Table 4,
we present results in other languages for training
different versions of the DeepSpeech architecture.
Our best results are in the same range as for the
other languages, but cross-dataset comparisons are
hard to interpret. However, it is safe to say that
training a DeepSpeech model can result in accept-
able in-domain word error rates with considerably
less training data than previously considered.

4.1 Influence of Training Size
Figure 4 depicts the relation between the amount of
training data and its impact on the word-error-rate.
To plot the learning curve, we split the training
data into 10 subsets containing each 10% of the
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Figure 4: Learning curves for single datasets
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Language DeepSpeech version Training Set Size Test Set WER

English Baidu
(Hannun et al., 2014)

Switchboard
Fisher
WSJ
Baidu

7,380h Hub5 (LDC2002S23) 16.0

English Mozilla v0.3.0
Switchboard
Fisher
LibriSpeech

3,260h LibriSpeech (clean test) 11.0

English Mozilla v0.5.0
Switchboard
Fisher
LibriSpeech

3,260h LibriSpeech (clean test) 8.2

Russian Mozilla v?
(Iakushkin et al., 2018)

Yt-vad-1k
Yt-vad-650-clean 1,650h Voxforge (Russian) 18.0

German Mozilla v0.5.0
(our) Tuda-De + Voxforge 162h Tuda-De + Voxforge (test) 15.1

Table 4: Comparison with previous results in other languages

training data. Then the model is trained on one
subset and WER is calculated on a separate test
dataset. Next, we introduce the new subset with
more data, re-train the model, and compute its ef-
fect on the error rate. The model is trained on each
subset for a maximum of 10 epochs and sometimes
less when the model starts to overfit the training
data, and early stopping is triggered. We observe
that the rather noisy datasets Voxforge and Mozilla
converge rather slowly, while the clean Tuda-De
reaches much better results. This might also be
a result of the different microphones that add in-
creased robustness (not unlike other data augmen-
tation strategies).

Figure 5 present the same learning curves when
combining datasets showing that we can reach even
better WER in this setting. Mixing the datasets
seems to force the model to converge more quickly.
However, combining the similar dataset Tuda-De
and Voxforge yields a bit better performance than
combining all three datasets.

We also tested against a mix of all datasets in
combination, but add training data one dataset at
a time. Thus, the order in which datasets are in-
troduced into the training process might influence
performance. Figure 6 shows the results for dif-
ferent order in which the datasets are introduced
into the training process. Adding the noisy Mozilla
dataset too early in the process seems to slow down
convergence, while it adds a little bit of improved
performance when added in the end.

4.2 Cross-dataset Performance

So far, we used training and testing data either from
the same dataset or a mix of the available datasets,

Train Test WER

Voxforge

Voxforge

72.1
Tuda-De 96.8
Mozilla 73.1
Tuda-De, Mozilla 66.2

Tuda-De

Tuda-De

26.8
Voxforge 98.5
Mozilla 84.9
Voxforge, Mozilla 83.8

Mozilla

Mozilla

79.7
Tuda-De 94.8
Voxforge 87.1
Tuda-De, Voxforge 80.5

Table 5: Results across datasets

while of course keeping train and test data separate.
To get a more realistic estimate of performance
when used in a general setting, we assess cross-
dataset performance, i.e. we train and develop on
one or two datasets and test on a third one.

Table 5 shows the resulting word error rates. Ap-
parently, the cross-domain results are much worse
than in the in-domain setting in Table 3. For exam-
ple, training on Mozilla or Voxforge and Mozilla
and testing on Tuda-De yield unacceptable word
error rates of 84.9 and 83.8 compared to 26.8 when
training on Tuda-De. Interestingly, in this case, as
we have seen already above, adding Voxforge in
the mix does not help much, even if it is similar to
Tuda-De. We see a similar picture for the other test
datasets, transferring from a single dataset does not
work at all, as in the training process the model is
never forced to generalize beyond its properties.

However, training on the Tuda-De and Mozilla
combination yields WER of 66.2 on Voxforge,
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Model WER Example

original - der bandbreitenverbrauch wird erheblich verringert
Tuda-De 60 diese zeiten tonwoche erheblich verringert
Voxforge 80 zeiten epoche erheblich in
Tuda-De + Mozilla 160 es sind endete suche den ist es in
Tuda-De + Voxforge 60 der pen zeiten verprach wird erheblich verringert
Tuda-De + Voxforge + Mozilla 40 der bandbreiten verbrauch wird erheblich verringert

original - ferner gibt es möglicherweise eine gewisse anonymität und sicherheit
Tuda-De 78 weites mögliche welche in glichen unität und sicherheit
Voxforge 100 zitierweise sich entsichert
Tuda-De + Mozilla 100 hunde titisee gelten die die mitte zum
Tuda-De + Voxforge 44 den gibt es möglicherweise eine gewisse mietsicherheit
Tuda-De + Voxforge + Mozilla 11 er gibt es möglicherweise eine gewisse anonymität und sicherheit

original - die einwilligung des schuldners war nicht erforderlich
Tuda-De 100 ideen
Voxforge 86 die angebliche natacha vollich
Tuda-De + Mozilla 57 die einwilligung des schutzmacht erfordern
Tuda-De + Voxforge 86 die ein eigenes schuldnersicht erfordern
Tuda-De + Voxforge + Mozilla 43 die einigung des schuldner zwar nicht erforderlich

original - die geschwindigkeit für die kunden kann erhöht werden
Tuda-De 75 die geschwindigkeit und unterteilten
Voxforge 100 schinkelpreise
Tuda-De + Mozilla 88 wie die schmiede den trennendes
Tuda-De + Voxforge 38 die geschwindigkeit für die kunden kenterte
Tuda-De + Voxforge + Mozilla 0 die geschwindigkeit für die kunden kann erhöht werden

original - mehrere arbeitgeberverbände sind zu einem dachverband zusammengeschlossen
Tuda-De 114 der see aufweitungen des in einem tatorten samen erschossen
Voxforge 100 es recognitionszeichen
Tuda-De + Mozilla 100 in den sitzungen des entstandenen schaden
Tuda-De + Voxforge 29 mehrere arbeitgeberverbände sind zu einem tachodaten geschlossen
Tuda-De + Voxforge + Mozilla 14 der arbeitgeberverbände sind zu einem dachverband zusammengeschlossen

Table 6: Recognition results on random Voxforge test instances

which is even lower than using the training por-
tion of Voxforge (which yields 72.1). Thus forcing
the model to generalize over topics, recording con-
ditions, speakers, etc. seem to be a crucial point.

5 Error Analysis

Table 6 shows the recognition results on randomly
selected test instances from the Voxforge dataset.
The models trained on only one dataset are surpris-
ingly bad, resulting in rather poetic utterances that
sometimes are quite far from the expected source.
An example is the Tuda-De model recognizing
tatorten samen erschossen instead of dachverband
zusammengeschlossen.

As is to be expected for German, compounds
are especially challenging as exemplified by band-
breitenverbrauch that is recognized as bandbreiten
verbrauch or even pen zeiten verprach, where ver-
prach is probably only in the language model as a
common misspelling of versprach.

The models often fail in interesting ways, e.g.
all models sometimes return very short results like
schinkelpreise that should actually have low prob-

ability. We currently have no explanation for this
behaviour and need to explore the issue further.

In cases like des schuldners war being recog-
nized as des schuldner zwar, the phonetic ambigu-
ity should have been resolved by a better language
model.

6 Summary

In this paper, we presented the first results on
building a German speech recognition model using
Mozilla Deep Speech. Our best performing model
reaches an in-domain WER of 15.1%, which is in
line with the performance for other languages us-
ing the DeepSpeech framework. Our results thus
support the idea that Mozilla Deep Speech can
be easily transferred to new languages. Learning
curve experiments highlight the importance of the
amount of training data, but also quite strong order
effects when mixing the datasets.

We publish our trained model along with con-
figuration data for all our experiments in order to
enable replicating all results. The model can eas-
ily be re-trained and optimised on new datasets by
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referring the code-release.15 No specific hardware
is required to run the trained model, and it works
even on a normal desktop computer or laptop.

Future Work Our experiments only scratch the
surface of possible approaches, and our analysis
recommends several avenues for further explo-
ration.

We mainly treated DeepSpeech as a black-box
and only performed a light hyper-parameter search.
The model can probably still be fine-tuned by ex-
ploring other hyper-parameters. We also did not
experiment much with the language model, but
used a simple 3-gram model.

Since the amount of publicly available training
data is limited, it could be interesting to consider
data augmentation strategies.16 Another approach
to improve recognition quality could be to use
transfer learning by taking an English model (pre-
trained with the larger English datasets) and re-
training with the German data (Kunze et al., 2017;
Bansal et al., 2018). In the light of recent discus-
sions on the CO2 footprint of training deep learning
models (Strubell et al., 2019), using re-training and
providing trained models is desirable. Additionally,
more research is needed to find neural architectures
that perform equally well, but require less compute.

Finally, the training process described here could
be easily used to train speech recognition models
for other languages, where currently no pre-trained
models are available.
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Abstract

The Semi-supervised learning (SSL) is an
important research area in machine learn-
ing where both labeled and unlabeled data
is used to build a model. One of the
big advantages of semi-supervised meth-
ods is that they are transparent and easy to
comprehend for humans, unlike most deep
learning techniques which are black box. In
this paper, we design a graph-based semi-
supervised learning framework to detect
sentiment polarity in word vectors trained
on a German corpus. We study theoretical
aspects of the task, empirically analyze a
seminal label propagation algorithm (Zhu
and Ghahramani, 2002) and suggest vari-
ants to improve classification performance.
Additionally, we review the literature of
graph construction for SSL and propose
new methods to avoid hubs, i.e., vertices of
high degree, which are harmful as outlined
by Ozaki et al. (2011).

1 Introduction

Among the most ubiquitous techniques for label
enrichment and transfer learning in sentiment anal-
ysis, in particular for classification tasks, are sen-
timent lexica and word vectors. The use of such
lexica is a classical approach which has been used
for several decades before the advent of deep learn-
ing (Taboada et al., 2011). The training of word
vectors from large unlabeled text corpora is a com-
paratively more recent method dating back to the
seminal paper by Mikolov et al. (2013).

For sentiment analysis, it is common to focus on
supervised methods (Gamon, 2004; Matsumoto et
al., 2005; Pang et al., 2002; dos Santos and Gatti,
2014). Usually, large unlabeled text corpora are
easily available, whereas labeled lexica are harder
to come by and often involve exorbitant labeling

costs. Thus, given an unlabeled dataset at the outset,
this approach is expensive as it takes both time and
labor to annotate a sufficiently large training set.
Typically, word vectors have a vocabulary of size
O(106) (Mikolov et al., 2013) while lexica contain
O(104) (Waltinger, 2010a) words, thus resulting in
a poor ratio of labeled to unlabeled points.

In recent years, semi-supervised learning (SSL)
methods, particularly graph-based approaches
based on label propagation (Zhu and Ghahramani,
2002) attracted attention (Goldberg and Zhu, 2006;
Rao and Ravichandran, 2009; Ren et al., 2012). As
a consequence, graph construction for these meth-
ods emerged as a relevant field of study (Ozaki
et al., 2011; de Sousa et al., 2013; Vega-Oliveros
et al., 2014) as well as approaches minimizing a
cost function derived from such a graph (Ravi and
Diao, 2016). Note that label propagation and its
variations are equivalent to certain minimization
problems (Bengio et al., 2006).

Giulianelli (2017) used SSL on a word embed-
ding obtained via a layer of a long short term mem-
ory (LSTM) recurrent network instead of using
word vectors. However, training an LSTM is a
supervised task, i.e. the method requires a large
amount of labeled data in the first place, which
defeats the purpose and is going against the main
motivation behind SSL techniques.

A major challenge with high dimensional data
is the curse of dimensionality, a well-known phe-
nomenon particularly affecting methods based
on nearest neighbour graphs. Radovanović et
al. (2010) and subsequently Ozaki et al. (2011)
showed that hubs, i.e. vertices of high degree, have
a negative effect on classification results due to the
fact that they are among the nearest neighbours of
a large subset of the dataset.

We introduce the k nearest neighbor (kNN)
graph, consider different variants of it and propose
a trimming and a normalization procedure in order
to combat hubs.

Proceedings of the 15th Conference on Natural Language Processing (KONVENS 2019)
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2 Contributions

To the best of our knowledge, there is no previ-
ous work carrying out a detailed theoretical and
empirical study of SSL as described above, that is
label propagation of a German sentiment lexicon
on word vectors trained on a German corpus.

Our contributions are as follows:
• A study of theoretical challenges of label prop-

agation on a polarity lexicon of word vectors.
• Benchmarking the performance of label prop-

agation on different word vector models of
varying dimensionality, including contextual
language models.
• Extensive experiments to study the perfor-

mance of label propagation empirically with a
variety of parameter configurations and graph
construction techniques.
• Proposition of 2 new methods to avoid the

negative effect of hubs during label propaga-
tion.

The rest of this paper is organized in the fol-
lowing way. We introduce the SSL setting, label
propagation and its problems in section 3. Our
new methods for graph regularization are explained
in section 4. Further motivation, analysis of the
dataset used, the set-up and the results of our ex-
periments are given in section 5. We conclude with
section 6.

3 Graph-based SSL

We begin with a definition of SSL, then define the
similarity function. Afterwards, we move on to
graph construction and label propagation before
discussing the challenges faced by these methods.

3.1 Similarity and Semi-Supervised Learning

Assuming the data is already given as a finite set of
points in Rd , d ∈ N, let l ∈ N denote the number
of labeled points, u ∈ N the number of unlabeled
points and n = l+u the total number of points. We
are considering L = {x1, . . . ,xl} ⊆ Rd , the set of
labeled points, and U = {xl+1, . . . ,xn} ⊆ Rd , the
set of unlabeled points, where xi 6= x j for every
i 6= j, i.e. the points are pairwise distinct. The label
of xi is denoted by yi ∈ {0, . . . ,ρ}, ρ ∈ N. In this
paper, we study binary classification, i.e. ρ = 1.
Given {y1, . . . ,yl}, the goal of SSL is to predict
{yl+1, . . . ,yn} as accurately as possible.

The similarity function is a map

σ : L ∪U ×L ∪U −→ R+,(x,x′) 7→ σ(x,x′),

for instance

σγ(x,x′) = fγ(x− x′),

where

fγ : Rd −→ R+, x 7→ e
− ‖x‖

2
2

2γ2

denotes the radial basis function and γ > 0.
Another example makes use of the k nearest

neighbors of x in L ∪U , defined as follows. Let
k ∈ {1, . . . ,n− 1}, x ∈ Rd and x(1), . . . ,x(n) be a
reordering of L ∪U such that

∥∥x(1)− x
∥∥

2 ≤ ·· · ≤
∥∥x(n)− x

∥∥
2.

Then the k nearest neighbors of x in L ∪U are

kNN(x,L ∪U ) = {x(1), . . . ,x(k)}.

Now, we can define

σk(x,x′) =

{
1 x′ ∈ kNN(x,L ∪U )

0 otherwise
. (∗)

Note that for every i ∈ {1, . . . ,n} and every k we
have that xi ∈ kNN(xi,L ∪U ). To avoid this, one
can define kNN(x,L ∪U ) = {x(2), . . . ,x(k+1)}. In-
cluding the distance of x and x′ is possible by using

σk,γ(x,x′) =

{
fγ(x− x′) x′ ∈ kNN(x,L ∪U )

0 otherwise
.

3.2 Construction of the Underlying Graph

The vertices of the underlying graph are given by
L ∪U . Consider the adjacency matrix A ∈ Rn×n

which is derived from the similarity matrix defined
as W = (σ(xi,x j))1≤i, j≤n.

The easiest choice for A is W itself, where σ =
σγ yields a dense, undirected and weighted graph.
As A is usually heavily involved in the classification
of U it is desirable to use a sparse matrix to save
computation time. In particular, a sparse adjacency
matrix results in higher classification accuracy as
noise and spurious relationships are reduced (Zhu,
2008; Ozaki et al., 2011).

Taking σ = σk leads to a sparse, directed and
unweighted graph, σ = σk,γ to a sparse, directed
and weighted graph known as a kNN graph. Usu-
ally, it is transformed into an undirected graph by
choosing the adjacency matrix

Wmax = (max(σ(xi,x j)),σ(x j,xi)))1≤i, j≤n.
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Figure 1: 5NN graph on UCI glass data set, where
vertices with degree larger than 5 are drawn red
and accordingly bigger.

Ozaki et al. (2011) study the mutual kNN graph
which is given by the adjacency matrix

Wmin = (min(σ(xi,x j)),σ(x j,xi)))1≤i, j≤n.

Note that Wmax and particularly Wmin may yield to
a disconnected graph, harming the classification if
there are connected components with few or abso-
lutely no labeled points.

In any case, the use of σk results in self-loops
as σk(xi,xi) = 1 for every i ∈ {1, . . . ,n}. These
can be removed by using the modified version
of kNN mentioned below (∗). Note further that
σk,γ(x,x) = 0 for every x ∈ Rd , i.e. for fixed
i ∈ {1, . . . ,n} there are not k, but k− 1 non-zero
entries in (σk,γ(xi,x j))1≤ j≤n. Again, the modified
version of kNN prevents this behaviour.

3.3 Label Propagation
For the moment, let us assume yi ∈ {−1,1}, i.e.
we replace the label 0 by −1. Given an adjacency
matrix A, the algorithm is given as follows (Bengio
et al., 2006).

Algorithm 1 Label Propagation
Compute A
Compute diagonal D by Dii← ∑n

j=1 Ai j

Initialize Y (0)← (y1, . . . ,yl,0, . . . ,0)
Iterate

1. Y (t+1)← D−1AY (t)

2. Y (t+1)
i ← yi for 1≤ i≤ l

until convergence criterion is satisfied
Denote the result by Y (∞)

Set yi = sgn(Y (∞)
i )

Consequently, the algorithm propagates the in-
formation along the edges of the underlying graph,

Figure 2: Trimmed version of Figure 1, α = 5.

typically until an equilibrium state is reached. The
nodes initially labeled serve as the source of infor-
mation.

A classical assumption in SSL is the cluster as-
sumption: if points are in the same cluster, they
are likely to be of the same class (Chapelle et al.,
2009). Of course, for high-dimensional data, it is
hard to check if this assumption is fulfilled, espe-
cially given that only a small proportion of the data
is labeled. Strictly speaking, this problem should
be overcome by the word embedding algorithm,
not the label propagation algorithm.

4 Improvements to the Graph

Let us now consider the undirected unweighted
kNN graph without self-loops, that is, the graph
G = (L ∪U ,Wmax) with similarity function σk
using the modifed version of kNN.

4.1 ε-Sparsification

Let ε > 0. The ε-sparsification of G is the graph Gε

which is obtained by deleting every edge {xi,x j}
in G where

∥∥xi− x j
∥∥

2 > ε . Therefore, using Gε

instead of G reduces the influence of outliers on
the classification.

4.2 Edge Normalization

Firstly, we propose to transform G into a weighted
graph Gn by performing edge normalization, i.e.
by assigning every edge {u,v} in G the weight

wu,v = (degG(u)+degG(v))
−1.

Note that wu,v is small if u and v have high de-
gree and vice versa, thus counterbalancing the high
amount of edges between vertices with high degree.

Let NG(u) denote the set of neighbors of u in G.
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For every vertex u ∈ G, we have

0 < ∑
v∈NG(u)

wu,v

≤ ∑
v∈NG(u)

(degG(u)+ min
v∈NG(u)

degG(v))
−1

=
degG(u)

degG(u)+minv∈NG(u) degG(v)
< 1,

i.e. the weighted degree in Gn is concentrated on
the unit interval (0,1).

4.3 Edge Trimming
Secondly, one can apply edge trimming to G in
order to obtain Gt , i.e. one deletes edges in G by
the procedure given as follows:

1. Choose a threshold α ≥ k and define
H = {u ∈ G | degG(u)> α}

2. For every u in H , let vu
1, . . . ,v

u
degG(u)

be a reordering of NG(u) such that
degG(v

u
1)≥ ·· · ≥ degG(v

u
degG(u)

)

3. For every u in H remove the edges
{u,vu

1}, . . . ,{u,vu
l } from G (if possible) where

l = degG(u)−bk logk(degG(u))c
Figures 1 and 2 illustrate the usefulness of trim-

ming for the regularization of kNN graphs using
the UCI glass data set (Dua and Graff, 2017).

4.4 Computational Efficiency
Jebara et al. (2009) and Ozaki et al. (2011) reported
that so-called b-matching graphs, a special case of
b-regular graphs, achieve higher classification ac-
curacy than kNN graphs. However, constructing
the b-matching graph takes O(bn3) time (Huang
and Jebara, 2007) which is too long to be useful in
practice when having large amounts of data. There-
fore, regularizing G within a reasonable amount of
time is desirable.

Fredman and Tarjan (1987) showed that the com-
plexity of building G is O(n2 + kn logn). As the
number of edges in G is bounded by kn, the con-
struction time of Gε , Gn or Gt given G is O(kn).
Hence the overall construction time is dominated
by the term O(n2 + kn logn).

Note that approximate kNN graphs can be con-
structed in O(kn) time (Beygelzimer et al., 2006;
Chen et al., 2009; Ram et al., 2009; Tabei et al.,
2010). Combining these with the modifications dis-
cussed above yields a graph construction algorithm
having time complexity O(kn).

NN VV AD Other Total

polar 4028 1810 3621 102 9561
neutral 642 253 254 61 1210

Table 1: Absolute frequencies of POS-tags among
the labeled word vectors.

Figure 3: T-SNE plot (perplexity = 40) of the neu-
tral (green), polar (blue) and unlabeled (red) word
vectors. For sake of clarity, only 20000 red dots
are shown.

Figure 4: Figure 3 rotated around the x-axis.
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Figure 5: Balanced accuracy for label propagation
on the kNN graph.

5 Experiments

In this paper, we use the lemmatized sentiment lex-
ica introduced in (Waltinger, 2010a) and (Waltinger,
2010b) and label propagation for word-level polar-
ity lexicon expansion.

We compare the label propagation algorithm
given above on various graphs in a sentiment po-
larity detection task. More precisely, we consider
G as in section 4 and its modifications as well as
the undirected weighted kNN graph without self-
loops, i.e. the graph Gγ = (L ∪U ,Wmax) with
similarity function σk,γ using the modified version
of kNN. The convergence criterion is given by∥∥Y (t+1)−Y (t)

∥∥
1 < 0.001.

5.1 Dataset and Resources

As there was no public FastText model (Bo-
janowski et al., 2016; Joulin et al., 2016) trained
on a proprietary German news corpus, we trained
our own model. The resulting vocabulary size was
196972 word vectors of dimension 60. The reason
for choosing FastText was the ability of the trained
model to deal with out of vocabulary (OOV) words,
as it is using subword character information.

The labeled word vectors are given by the lem-
matized dictionaries used in (Waltinger, 2010a;
Waltinger, 2010b). We assign the label 1 to the
words annotated positive or negative, i.e. polar,
and 0 to the words annotated neutral, where we
removed the digits and the punctuation symbols
from the neutral dictionary.

We prefer this lexicon over SentiWS (Remus et
al., 2010) and PolArt (Klenner et al., 2009) as it is
the largest one - 10771 words compared to approx-
imately 3450 and 9380, respectively. Furthermore,
SentiWS measures sentiment using the full interval
[−1,1], i.e. first, one has to categorise the senti-
ment value before one can apply label propagation.

In particular, polarity is sparsely embedded in

language, i.e. a model accurately determining po-
larity can be used to extend sentiment dictionaries.

We choose to learn neutral vs. polar as the usu-
ally treated three-way case is significantly harder
on word-level. For instance, the sentiment of ’rise’
is polar, but the precise value depends heavily on
the context (e.g. compare wealth is rising and
poverty is rising).

5.2 Description of Dataset
The ability to embed OOV words is an integral part
of our method as the labeled words are not necessar-
ily contained in the corpus mentioned above. Fig-
ures 3 and 4 show a three-dimensional t-SNE plot
(Maaten and Hinton, 2008; Van Der Maaten, 2014)
of the word vectors, indicating that the dataset is
lying on a low-dimensional manifold.

In total, we have 9561 data points with label
1 and 1210 data points with label 0. Only 163
(≈ 1.5%) of these words have a Part-Of-Speech-
tag (POS-tag) that is not noun (NN), verb (VV) or
adjective (AD) (see Table 1). Therefore we only
consider unlabeled words whose POS-tag is one
of these three, reducing the amount of unlabeled
points to 85759.

We randomly draw a test set of 3000 words from
the set of unlabeled points. The test set is labeled
by one of the authors. 362 words (≈ 12.1%) were
assigned “polar”.

Comparing with an independent annotator, we
have an inter-annotator agreement of Cohen’s κ =
0.4682 showing that word-level sentiment analysis
is a very hard to perform task, even for humans.
Consequently, one cannot expect a model predict-
ing sentiment to be performing as well as prediction
models in different areas of Machine Learning.

This is probably due to the fact that sentiment is
subjective and thus influenced by the emotional as-
sociation of words to experiences of the individual
annotator. There are even studies that suggests that
the voice and audio signal is as important as the text
for semantic purposes. A more fundamental fact is
that sentiment in human language is better identi-
fied given the context, thus rendering the analysis
of word-level sentiment even harder.

5.3 Dimensionality and Information Content
of the Embedded Data

Given the ever increasing dimensionality of em-
beddings, from about 300 in the early Word2Vec
models to more than 3000 in the most recent con-
textualized embeddings like ELMo (Peters et al.,
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Figure 6: Distribution of degree in G.

Figure 7: Distribution of degree in Gt , α = 13.

2018), we study the cumulative explained variation
of the word embeddings given by Principal Compo-
nent Analysis (PCA) (Pearson, 1901) and examine
it for decreasing dimension of the target space.

In every case, there is a decay starting out slowly,
followed by a very sharp drop suggesting that most
of the critical information content of the given word
embedding is lying on a low-dimensional manifold.

5.4 Class Balancing and Parameters

Instead of transforming our labels to −1 and 1
(recall section 3.3), we normalized the labels by
class size, i.e. we used −1/1210 for the neutral

Figure 8: Cumulative explained variation of PCA
on our data embedded using GloVe.

Figure 9: Cumulative explained variation of PCA
on our data embedded using ELMo.

words and 1/9561 for the polar words.
For all experiments, we use the same 9NN graph

G as k = 9 maximizes the balanced accuracy (see
Figure 5). Given the near linear time complexity
of modifying G, we obtained an optimal parameter
configuration using binary search.

Note that word vector models trained on a very
large vocabulary, OOV words almost never occur.
Hence, we also compare our self-trained embed-
ding with different pre-trained ones.

5.5 Comparison of Word Vector Embeddings
and Classification Results

Training a word vector model on the corpus at hand
is usually an expensive and rewarding step at the
same time. We compare our model with three pre-
trained word embeddings:
• FastText,
• ELMo and
• GloVe (Pennington et al., 2014).

Note that ELMo is a contextualized representation
model embedding a word within its sentence. As
we are working on word-level, each sentence is the
word itself. The results are shown in table 2.

Despite being the lowest-dimensional, our self-
trained model captures the nuances of our corpus
better than the other pretrained models. Further,
we can see that ELMo, one of the most recent con-
textualized word embedding models, clearly out-
performs FastText and GloVe, whereas the latter
two roughly score the same.

Table 3 shows the result for Gγ , G and its modi-
fications using the parameters maximizing the F1
score. We can see that Gγ is performing worse than
G and its modifications. In particular, removing
hubs via edge normalization or trimming is improv-
ing classification performance.
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Embedding Dimension F1 Recall Precision Bal. Acc.

FastText (self-trained) 60 000...333444000555 0.6381 000...222333222222 000...666777444333
GloVe 96 0.2084 0.4199 0.1386 0.5308

FastText (pre-trained) 300 0.2016 0.2376 0.1752 0.5420
ELMo 3072 0.2602 000...666444999222 0.1627 0.5954

Table 2: F1 score and balanced accuracy for G with different word embeddings to transform our data into
high-dimensional vectors.

Underlying Graph F1 Recall Precision Bal. Acc.

Gγ , γ = 14 0.3317 0.6630 0.2212 0.6713

G 0.3405 0.6381 0.2322 0.6743
Gε , ε = 110 0.3410 0.6381 0.2326 0.6746

Gn 0.3437 0.6575 0.2326 0.6799
(Gε)n, ε = 110 000...333444444999 0.6602 000...222333333444 0.6813

Gt , α = 13 0.3428 0.6685 0.2305 0.6811
(Gε)t , ε = 120,α = 12 0.3437 000...666777444000 0.2306 000...666888222777

Table 3: F1 score and balanced accuracy for Gγ , G and G with different combinations of the modifications
discussed in section 4. (Gε)n indicates that edge normalization was applied after ε-sparsification.

Figure 10: Distribution of weighted degree in Gn.

5.6 Improvement of Graph Construction

In Figure 6 we can see that G not only contains
vertices of degree 9, but also of degree 20 times
as large. After trimming the edges, the graph is
close to a 9- or 10-regular graph (see Figure 7). In
particular, the maximum degree is 22, a little more
than twice the most frequent degree arising in Gt .

Figure 10 shows the distribution of the weighted
degree in Gn, the normalized version of G. Again,
the maximum degree is a little more than twice
the most frequent degree arising, whereas the mini-
mum degree is comparatively small, i.e. the graph
is not close to a regular weighted graph. However,
the shape of the distribution is quite similar to the
shape seen in Figure 7.

Figure 11 shows the balanced accuracy for Gt

Figure 11: Balanced accuracy for Gt , 9≤ α ≤ 224.
The dotted line shows the balanced accuracy for G.

where α is ranging from 9, the minimum degree in
G, to 224, the maximum degree. For small α , Gt is
close to a regular graph, i.e. hubs were successfully
eliminated yielding a good result. Furthermore, for
large α , Gt is very similar to G and hence the result
is approximately the same. However, there is a no-
table global minimum around α = 35, suggesting
that hub removal should be done either completely
or not at all.

5.7 Towards the Fully Connected Graph

Due to the high amount of memory needed, we can-
not construct the fully connected weighted graph
proposed by Zhu and Ghahramani (2002), that is
the graph given by taking the similarity matrix W
along with the similarity function σγ as adjacency
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Figure 12: Bal. Accuracy for Gγ , 1≤ γ
2 ≤ 10, and

multiple values for k.

matrix A. However, the weighted kNN graph Gγ
with large k is a good approximation as σγ(xi,x j)
is strictly decreasing in

∥∥xi− x j
∥∥

2 and hence, only
the edges having small weight are missing.

As an example, Figure 12 shows the balanced
accuracy for k ∈ {9,99,199,499} (k = 499 is very
close to the maximum value possible on our hard-
ware). We can see that large k harms the clas-
sification, thus confirming the results on sparse
adjacency matrices mentioned in section 3.2.

We do not rule out the fact that there could be a
state change as k ≈ n where the information flow
improves drastically and causes the SSL classifi-
cation performance to spike. We leave this as an
open question for future work.

6 Conclusion

In this paper, we study label propagation for senti-
ment detection on word vectors obtained by train-
ing a FastText model as well as by using pre-trained
models, which clearly perform worse. We showed
empirically that the unweighted 9NN graph per-
forms better on the given task than its weighted
counterpart and the approximation of the fully con-
nected weighted graph.

Furthermore, we propose improvements to state-
of-the-art methods for the construction of the un-
derlying graph. and show that properly chosen anti-
hub routines and mild ε-sparsification improves
the result. In particular, edge trimming is a fast
algorithm to transform a kNN graph into a more
regular one.

7 Future Work

Possible directions for future research include the
development of an online label propagation algo-
rithm based on entropy and data quantization (in
the spirit of (Valko et al., 2012)). The goal is to

improve classification performance for situations
where the word vector embedding of the given data
does not fulfill the cluster assumption perfectly.
Furthermore, the ability of being able to deal with
streaming data is a highly attractive add-on for
practical applications of SSL models.

Another interesting idea is the search for metrics
quantifying the cluster assumption for the embed-
ded data, as discussed above. This can be sup-
plemented by an analysis of the performance of
label propagation conditioned on the scores pro-
vided by the metrics found above and hence, by the
relevance of the word embedding.

Datasets which can be used to examine the per-
formance of the given SSL algorithm include the
annotations on polarity shifters by (Schulder et al.,
2018) and the domain-specific corpora for compu-
tational social science by (Hamilton et al., 2016).
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Abstract

Automatic division of spoken language
transcripts into sentence-like units is a chal-
lenging problem, caused by disfluencies,
ungrammatical structures and the lack of
punctuation. We present experiments on di-
viding up German spoken dialogues where
we investigate the impact of task setup and
data representation, encoding of context
information as well as different model ar-
chitectures for this task.

1 Introduction

Being able to structure natural spoken discourse
into sentence-like units (SLUs) is desirable not only
from a theoretical point of view, but is also a key
requirement for enabling research in corpus linguis-
tics as well as the application of Natural Language
Processing tools (e.g. POS-tagging and parsing) to
transcripts of spoken language. While various pro-
posals have been made for how to divide spoken
language in corpora into smaller units, typically
these divions were not guided by syntactic consid-
erations. Instead, division into inter-pausal units is
common (e.g. Hamaker et al. (1998) for the Switch-
board corpus). Until recently, for most languages
no well-established system existed for detecting
boundaries between sentence-like units that is both
theoretically well-founded and practically opera-
tionalizable for large and diverse corpora of spoken
interaction.

For German, the SegCor project (Westpfahl
and Gorisch, 2018; Westpfahl et al., 2019) de-
veloped guidelines for dividing transcibed speech
into sentence-like units using the topological field
model of German surface syntax. Schmidt and
Westpfahl (2018) subsequently presented a corpus-
based study on how well the length of gaps between
utterances can predict the syntactic boundaries an-
notated in the SegCor corpus.

In this work, we take up the challenge of auto-
matically detecting boundaries between SLUs on
the spoken German of the SegCor transcripts. Fur-
ther, we apply our system not only to the question
whether a gap, a long silence, coincides with a syn-
tactic boundary but to all boundaries in general,
including the ones that occur in continuous speech,
such as interruptions and aborted utterances.

This paper proceeds as follows. We discuss re-
lated work in section 2 and present our dataset in
sesction 3. In sections 4 and 5 we discuss the task
formulations we employ and the features we use.
Our experiments and their results are described in
section 6, followed by a conclusion in section 7.

2 Related Work

In the realm of medially written language, the most
closely related task is sentence boundary detection
(SBD). Typically, this has been framed as decid-
ing for a closed class of interpunctuation symbols
(mainly ’.’,’?’,’!’) whether they represent the end of
a sentence or not, with abbreviations constituting
one of the key sources of error. While tradition-
ally very high accuracies were reported, Read et
al. (2012) show in their overview of SBD that per-
formance can be significantly worse on text other
than news, with machine learning-based systems
often being less robust than rule-based or hybrid
sytems. Comparing Wikipedia pages to topically
related blogs, they also show that within the same
domain, sentence-boundary detection performs less
well the more informal the text type is. Read et al.
(2012) observe that the traditional framing of the
problem overlooks all the cases where sentences
or rather sentence-like units, text sentences in the
sense of Nunberg (1990), end without a punctua-
tion symbol: on the ‘standard’ texts in their collec-
tion, this affects 12.3% of sentences. Read et al.
(2012) therefore argue for a more general approach
‘which considers the positions after every character
as a potential boundary point’.
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In the domain of medially spoken language,
the detection of sentence-like units may use both
textual and prosodic features. Gotoh and Renals
(2000) performed experiments with HMMs on ref-
erence transcripts from BBC radio and tv programs
which included repeated and incorrect speech as
well as disfluencies. They also constructed an
alternative pause duration model alone based on
speech recogniser output aligned with the tran-
scripts. The pause duration model outperformed
the language modelling approach, while a combi-
nation of the two models provided further perfor-
mance gains. Precision and recall scores of over
70% were attained for the task of deciding for each
word whether it represents the last word of a sen-
tence. In his work on sentence boundary detec-
tion on Czech radio news and discussion programs,
Kolář (2008) similarly finds that combining several
models works best.

Liu et al. (2005) evaluate the performance of a
CRF-model on two English corpora (conversational
telephone speech and broadcast news speech) on
both human transcriptions and automatic speech
recognition output. Their experiments show that
the use of prosody improves performance over the
use of word n-grams alone and that the addition of
further features e.g. on pos-tags provides another
improvement.

Roark et al. (2006) use a re-ranking approach to
the detection of SLU boundaries. In a two stage
approach, they first fix a subset of the word bound-
aries as points of division, yielding subsequences
betwen fixed points, which they call fields. In
the second stage, candidate boundaries within the
fields are generated and then ranked.

In our own experiments, we will experiment with
various features and task paramaters used by prior
work such as e.g. POS, gap/pause-length, use of
left and/or right context etc. In addition, we also
explore extra features available with our dataset.

3 Dataset

The data used here is unlike most of the material
used in related work in that it represents conver-
sational speech that was furthermore recorded in
non-laboratory settings. Also, it is characterized by
interactions between two or more speakers. Since
tools based on the automatic processing of the au-
dio signal do not work all that well on our data, we
instead work with the transcripts only. Our dataset
consists of 33 documents with more than 54,000

lexical tokens originating from the FOLK corpus
(Schmidt, 2014) that were divided into sentence-
like units by the SegCor project. This data set was
doubly annotated and disagreements were adjudi-
cated (Westpfahl and Gorisch, 2018). Note that
to avoid confusion, we reserve the term ”segment”
and related forms for the division of speech into
chunks by the transcribers that was guided by si-
lences in the speech signal. For the division of the
material into sentence-like units we will use the
term “SLU boundary detection”.

The raw FOLK transcripts, which we take as our
input and which lack SLU-boundaries, follow the
cGAT conventions (Schmidt et al., 2015). Accord-
ingly, the data uses ”contributions” and ”segments”
as the fundamental units in the data structure. Seg-
ments of speech are the original units of transcrip-
tion: transcribers are instructed to select them as
chunks that can be transcribed in one go given cog-
nitive load and useability of the transcription en-
vironment. Crucially, segment boundaries should
be placed at word boundaries or at the beginning
or end of pauses. Like segments, contributions are
defined without any reference to syntactic consid-
erations (Schmidt et al., 2015, 8):

‘A contribution in a cGAT transcript com-
prises all immediately consecutive seg-
ments attributed to a speaker. Contribu-
tions should not be confused with sen-
tences, which are units of written lan-
guage. Instead, they are to be understood
as dialogue contributions.

Pauses (silences up to 0.2s) may occur between
separate contributions but also within a contribu-
tion. Gaps, silences longer than 0.2s, always sepa-
rate contributions in cGAT.

The relation between the input representation
in terms of contributions and the intended output
representation in terms of sentence-like units is
not always one to one. Common deviations are as
follows. First, a contribution may correspond to
several SLUs as illustrated by (1).

(1) 1 contribution : n SLUs

a. < c >h ich weiß net ich glaub eher
nich h h< /c >

b. < s >h ich weiß net< /s >
< s > ich glaub eher nich h h< /s >

c. ‘I don’t know. I rather think not.’
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Second, several contributions may jointly corre-
spond to one SLU.

(2) n contributions : 1 SLU

a. < c >der beschäftigt sich< /c >
< c >(0.85) < /c >
< c >zwei minuten mit dem< /c >

b. < s > der beschäftigt sich (0.85)
zwei minuten mit dem < /s >

c. ‘He occupies himself with that one
for two minutes.’

Both situations may also occur in combination
so that we get n : m-relations between contributions
and SLUs.

To decide on SLU boundaries, we can use not
only the transcribed word forms but also some fur-
ther kinds of information about the tokens, which
we will use as features (cf. section 5). Further,
while we do not use acoustic features such as word
durations and pitch contours, the transcript does
give us access to temporal information that has
proved useful in previous work (Gotoh and Renals,
2000). We encode pause length and, since we know
which tokens are produced by which speaker, we
also introduce turn boundaries into our representa-
tion.

4 Task formulations

We can approach the SLU boundary detection prob-
lem in various different ways. We discuss the major
points of variation in what follows.

4.1 Granularity

In one line of experiments (coarse), we predict
only whether a token is followed by some type of
syntactic boundary (B) or not (O). In another line
(fine), we also distinguish between several types of
boundaries. From Westpfahl and Gorisch (2018),
we adopt the following B(oundary) types.

S Simple sentential units consist of exactly one
clause. In terms of word order, the clause may
be of any of the types V1 (verb initial), V2
(verb second), V1/2 (cases that are unclear
between V1 and V2) or in rare cases VL (verb
last). The clauses may not have any dependent
clauses.

C Complex sentential units consist of several
clauses that are dependent on one another:

Main clauses with subordinate clauses or rel-
ative clauses, conditional sentences, reported
speech, and matrix-clause with sentient-verbs,
complex pre-pre-fields with main clause, dis-
continuous sentences, and coordinated sen-
tences if and only if the second sentence
shows subject or verb ellipsis.

N Non-sentential units are all units that are not
structured by a finite verb.

A An utterance which is disrupted, i.e. it opens a
projection that subsequently goes unfilled.

U Tokens at the end of a unit whose status could
not be categorized as one of the previous four
cases.

Since in the context of sequence labeling we
need to have a label on every token, we add several
further categories of non-boundary labels. In the
binary setting, these categories are merged into the
non-boundary class (O).

O Words spoken by one of the speakers that are
not followed by a boundary.

X is used for different types of non-verbal infor-
mation: a) speaker turns, and b) pauses. We
distinguish between pauses shorter than 0.2
sec and longer pauses. According to cGat,
longer pauses always occur between two adja-
cent contributions and are not assigned to any
speaker while shorter pauses are considered to
be part of one speaker’s contribution. For in-
stance, the pause in (i) is part of speaker RD’s
contribution as they are just pausing speech
for the purposes of word finding. By con-
trast, the pause in (ii) is not assigned to either
speaker: it is clear that speaker RD has fin-
ished their turn, but speaker LH has not yet
taken the floor.

i RD: ich könnte es ja darüber lösen dass
ich das nicht auf das <pause> ko auf die
konten der seefahrer buch sondern auf
ein verrechnungskonto
‘Well, I could fix it in this way that I don’t
book it on the acc on the accounts of the
sailor but instead to a clearing account’

ii RD: ich versthe nichts davon
‘I don’t know anything about it’
<pause>
LH: okay. ...

In our experiments, both pause types are as-
signed the tag “X”.
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4.2 Views
Since our data comes from multi-party conversa-
tion it lends itself to two views. On the one hand,
we can think of it as an integrated conversation,
where contributions of speakers alternate, with oc-
casional overlaps. The intuition behind adopting
this view on the data is that a speaker’s productions
do depend on / respond to what the other speaker
says. For instance, responses to questions are of-
ten not complete sentential units whether simple or
complex but rather consist of non-sentential mate-
rial. For that reason, it seems important to take into
account what interlocutors are saying.

A second, complementary view of the data treats
it as a set of tracks of speech, each by one spe-
cific person. The intuition behind this view is
that the sentence-like units are local only to the
given speaker’s utterances. For instance, whether
a sentence is simple or complex depends only on
what the current speaker produces. In adopting a
track view (track), we completely ignore the other
speaker’s productions.

Both views potentially have problems handling
certain kinds of so-called split utterances (Purver
et al., 2009). On the conversation view, utterances
that are distributed across multiple contributions
of the same speaker may be interrupted by con-
tributions of other speakers. On the track view,
utterances that are distributed across speakers (that
is, co-constructed turns begun by one speaker but
finished by another) cannot be recovered.

4.3 Instance creation
We define instances for the classifier either in terms
of word windows of varying size or in terms of N
merged contributions.1

4.4 Model type
As demonstrated by the related work, one estab-
lished way to approach the SLU boundary detection
problem is in terms of sequence labeling. The task
consists in algorithmically assigning a categorical
label to each item in a sequence of observed val-
ues. In our task, a token is labeled either as being
followed by a boundary or not.

As a baseline approach, we adopt a classical
Conditional Random Fields (Lafferty et al., 2001)
tagger, using the CRFsuite implementation by

1Other variations are possible such as creating overlapping
instances. For instance, with word windows we could create
one instance from words 1-10 and the next from words 2-11
etc. We could proceed similarly in the case of contributions.

Okazaki (2007), for which we provide our own
feature engineering.

We compare this system with two more recent
neural architectures. The first system is an imple-
mentation of the model of Lample et al. (2016),
using biLSTMs for input encoding, based on word
and character-based embeddings, followed by a
CRF layer on top (Reimers and Gurevych, 2017).2

The second model, the flair sequence tagger (Ak-
bik et al., 2019), has a similar architecture that also
combines biLSTMs and a CRF layer on top. In
addition, flair uses contextual string embeddings
(Akbik et al., 2018) which model words as con-
textualized sequences of characters, resulting in
different embeddings for the same string, depend-
ing on its surrounding context.

5 Features

The data encodes the following information that
we can use as features in our experiments.

Tokens The simplest feature are the raw tran-
scribed tokens.

POS The SegCor data includes automatically pre-
dicted POS tags.

Normalization The normalization layer contains
the canonicalized form for the raw tokens. For
instance, when an instance of the first per-
son present form of the verb verstehen ‘under-
stand’ is pronounced as two syllables, without
its final weak syllable, it is transcribed as ver-
steh. The normalization of the token will be
the expected canonical form verstehe. Also
while all noun tokens appear lowercased in
the transcription, they are written with initial
capitals on the normalization layer.

Lemma The lemma forms for the transcribed data.

6 Experiments

At the highest level, we divide our experiments
depending on the granularity, coarse or fine. Within
these high-level groups, we discuss the experiments
in sets that address a common research question.

We use 70, 10 and 20% of the data for train-
ing, development and testing, respectively. We do
not split up individual transcriptions but put them
whole into either train, dev or test. This makes
the task slightly harder as we test on data from
new speakers that have not been seen during train-
ing, and on new topics that are not included in

2https://github.com/UKPLab/
emnlp2017-bilstm-cnn-crf/
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ID View Instances Macro Acc Macro F1 F1 B F1 O Description

1 track single 83.75 45.58 0.00 91.16 majority class, i.e. no boundaries
2 track single 89.98 74.99 55.63 94.35 boundary at end of contribution

Table 1: Results for rule-based baselines (coarse-grained, track: track-view; singe: single contributions)

ID View Instances Macro Acc Macro F1 F1 B F1 O context features

in
st

an
ce

cr
ea

tio
n

3 track single 94.20 87.25 77.84 96.67 +/-2 word,pos
4 track single 93.66 86.04 75.73 96.36 +/-1 word,pos
5 track merged 94.69 88.33 79.71 96.95 +/-2 word,pos
6 track merged 93.99 86.74 76.93 96.54 +/-1 word,pos
7 track window 94.01 86.58 76.59 96.57 +/-2 word,pos
8 conv. window 93.54 85.42 74.54 96.30 +/-2 word,pos

co
nt

ex
ts

iz
e 9 track merged 94.78 88.56 80.13 97.00 +2 word,pos

10 track merged 93.53 85.60 74.90 96.29 +1 word,pos
11 track merged 89.21 73.25 52.58 93.91 -1 word,pos
12 track merged 88.75 72.86 52.09 93.63 -2 word,pos

si
ng

le
fe

at
s. 13 track merged 93.86 85.87 75.25 96.50 +/-2 word

14 track merged 93.86 86.46 76.46 96.47 +/-2 pos
15 track merged 93.76 85.89 75.36 96.43 +/-2 lemma
16 track merged 94.16 86.88 77.10 96.66 +/-2 normalization

no
rm

. 17 track single 94.14 87.15 77.68 96.63 +/-2 norm, pos
18 track merged 94.78 88.52 80.05 97.00 +/-2 norm, pos

tu
rn 19 track merged 92.56 84.38 73.07 95.68 +/-2 word, pos; no turns

Table 2: Results for sequence labeling with CRFsuite (coarse-grained, track-view; conv.: conversation;
merged: 5 merged contributions; window: 10-word windows)

ID View Instances Macro Acc Macro F1 F1 B F1 O Embeddings Schema

20 track merged 94.14 87.06 77.48 96.63 Reimers2017 word
21 track merged 94.36 87.69 78.63 96.75 Reimers2017 norm

Table 3: Results for biLSTM-CRF sequence tagger (Lample et al., 2016) (coarse-grained, track-view)

ID View Instances Macro Acc Macro F1 F1 B F1 O Embeddings
22 track merged5 95.07 89.59 82.05 97.14 fasttext+flair
23 track merged5 92.28 83.42 71.30 95.54 fasttext
24 track merged5 94.83 89.28 81.56 97.00 fasttext+custom
25 track merged5 95.43 90.23 83.11 97.36 fasttext+flair+custom

Table 4: Results for flair’s sequence tagger with contextual string embeddings (coarse-grained, track-view)
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Figure 1: F1 B-score for word windows of various
sizes (dots: conversations; x’s: tracks; step size=5;
CRFsuite)

the training set. Thus, the classifier cannot adapt
to speaker-specific features and might encounter a
larger amount of unknown words. However, this
setting is more realistic and will give us a better es-
timate of what to expect when applying our models
to new data.

For all non-deterministic models, we report re-
sults averaged over three runs for each configura-
tion.

6.1 Coarse-grained classification

Baselines In addition to using CRFsuite as a
baseline, we calculated the following two rule-
based baselines (table 1). Baseline 1 always assigns
the majority class (no boundary) while baseline 2
predicts a boundary at the last token in each contri-
bution. Recall that the contributions are not gold
sentences but can also cross syntactic boundaries,
which is shown by the less-than-perfect results for
baseline 2 (89.98% acc. and 55.63% F1 for the
Boundary class). As will be shown by the experi-
ments to follow, machine-learning based systems,
unsurprisingly, can yield much better results.

Views and instance creation First, we investi-
gate the impact of view and instance creation on
the performance for varying window sizes. Fig-
ure 1 plots the F1 scores for Boundaries relative to
growing sizes of word windows used to construct
instances. The results are very similar regardless
of whether we use the conversational view or the
track view.

Figure 2 shows the development of the F1 B-
score in relation to the number of contributions that
are assembled into one instance. We observe that,

Figure 2: F1 B-score for track view in relation to
contributions merged (CRFsuite) (dots: conversa-
tions; x’s: tracks)

here too, the results hardly differ between the track
view and the conversational view.

While it should not matter much in practice, we
choose to mainly work with the combination of
merging segments on the track view for the remain-
der of the paper since the highest F1-score that
we obtained in these experiments come from this
combination.

Importance of Context We now focus on the
question where in the context the relevant informa-
tion for boundary detection is. Thus, the second
block of experiments varies the context relative to
our reference experiments 5 and 6 (Table 2), using
either only the left or the right context, or no con-
text at all. The contrast between the results for the
experiments with one-sided context shows that the
right context is clearly more important than the left
one and that the left context by itself does not hold
very much information to begin with.

Individual features Experiments 13–16 present
results for runs with individual features. The results
show that not all forms of generalizing over the con-
crete tokens work equally well. The automatically
assigned lemmatization probably is worst because
on our data it is also often wrong. POS-tags are bet-
ter but the normalized text representation, though
also automatically assigned, is best.

Normalization Following on the observation
about the utility of normalization, in experiments
17 and 18, we use the normalization layer instead
of the transcribed tokens in combination with POS
tags. When contrasting the results of these exper-
iments with those of exp. 3 and 5, we see that
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normalization gives slightly better results only in
the second setting. Given that normalization is
also time-consuming, in later experiments we will
not use the normalization layer but instead use the
transcribed speech as input.

Importance of Sequencing Information In ex-
periment 19, we use a version of the data from
which, unlike for all other track view-based ex-
periments, the representation of turns has been
eliminated. Compared to the matched basic ex-
periment 5, we see a significant drop in Macro F1
and the F1 for the B(oundary) class, which under-
scores the importance of including information on
turns.

Classical CRF vs. biLSTM-CRF Recent ad-
vances in NLP have shown the expressive power of
neural networks. We thus compare the performance
of the classical CRF sequence tagger to two neural
systems, the one of (Lample et al., 2016; Reimers
and Gurevych, 2017) and the flair sequence tagger,
as described in Section 4.4.

Table 3 shows that the neural biLSTM-CRF does
not always improve results over the classical CRF.
The first system uses word and charcter-based em-
beddings as features and predicts the binary labels
{B,O}. This configuration does not outperform
CRFsuite configurations such as 5 where we also
use POS tags as features, in addition to the word
tokens.

The biLSTM-CRF can make better use of the
normalization, as shown in experiment 21. Com-
pared to experiment 16, we gain 1.5% in perfor-
mance. Both systems, however, are outperformed
by the flair sequence tagger with contextual string
embeddings (Table 4, exp 22).

Embeddings used Given that flair outperforms
the model of Lample et al. (2016) despite their sim-
ilar architecture, we now explore variation around
the embeddings used in flair. Experiment 23 shows
the value of flair’s contextual string embeddings:
without them performance decreases by more than
10% for F1 B (see exp. 22).

In our next experiment, we want to test whether
we can increase performance by training our own
contextual string embeddings on text that is more
similar to our data. For this, we train flair embed-
dings for 20 epochs on ca. 11 million ‘sentences’
extracted from the open subtitles corpus (Lison and
Tiedemann, 2016) and an in-house twitter dataset.
These sentences were filtered to be at most 60 char-

acters long and to contain no more than one comma
and one period, question mark or exclamation mark.
The punctuation marks were removed before train-
ing and the data was lowercased. In experiment 24
we use these custom embeddings in combination
with fasttext only without the default forward and
backward embeddings provided by the flair library.

The results show that the custom embeddings are
quite good on their own (exp. 24). Combining them
with flair’s pretrained embeddings further improves
results, showing that our custom embeddings con-
tain complementary information (exp. 25). While
the results suggest that the use of more domain-
similar contextual string embeddings is beneficial,
we cannot be sure that the improvements are really
due to domain similarity. To test this in future work,
we will need to compare our results to another type
of custom embeddings trained on a corpus of equal
size but with different properties that are less simi-
lar to spoken language, such as newspaper text.

6.2 Fine-grained classification
We now turn to the fine-grained setting which
distinguishes between five kinds of boundary la-
bels. For ease of presentation and since the non-
boundary labels are not important to us, we will
report F1 scores for each boundary label with the
exception of the U(ninterpretable) class, which is
conceptually ill-defined since by definition it is un-
clear whether, and what kind of, a boundary occurs.
As well as the global Macro F1 and Macro Ac-
curacy scores, we also report a score “Macro F1
B” which constitutes the macro average over the
boundary labels, including U.

As a reference for the flair sequence tagger, Ta-
ble 5 shows results for CRFsuite for the trackwise
view and instances formed by merging contribu-
tions.3 As shown by the difference in F1-scores
between the fine-grained and the coarse-grained
settings from Table 2, the fine-grained task is much
harder. Again, using word windows of size 10 for
instance creation is worse than merging contribu-
tions.

The gap between CRFSuite and the neural sys-
tem shows the potential of the contextual string
embeddings: Flair outperforms CRFSuite susbtan-
tially (cf. exp. 29 vs. 27). Focusing on the flair
results, we see that the performance on the individ-
ual boundary types strongly depends on their fre-

3For lack of space we do not report results for the biLSTM-
CRF model of (Lample et al., 2016; Reimers and Gurevych,
2017) which again was outperformed by flair.
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Id View Instances Macro F1 Macro Acc F1 A F1 C F1 N F1 S Macro F1 B

26 track window 58.51 97.61 22.79 26.32 73.55 51.01 43.42
27 track merged 58.15 97.65 25.30 26.24 73.92 52.20 44.20

Table 5: Results for fine-grained sequence labeling with CRFsuite

Id View Instances Macro F1 Macro Acc F1 A F1 C F1 N F1 S Macro F1 B
28 track window 68.59 98.10 42.82 45.76 80.16 66.34 56.69
29 track merged5 70.24 98.22 42.93 50.49 81.59 68.95 58.98

Table 6: Results for fine-grained sequence labeling with flair

quency: results for the rarer classes A(borted) and
C(omplex) are substantially lower than the ones
for the more frequent classes N(on-sentential) and
S(imple).

6.3 Error analysis

To get a sense of what the flair sequence tagger is
able to learn, in Table 7 we take a look at the confu-
sion matrix for the best fine-grained experiment 29.
Among the boundary classes, A(borted) segments
are mostly not recognized as having any kind of
boundary, i.e. they receive the label O; smaller
subsets of true A’s are mistaken for non-sentential
units or simple sentences. When A’s get confused
for O’s, this often seems to be due to the boundary
token being an incomplete, partial word such as a
or we.

For C(omplex) segments, being mistaken for a
simple sentence (S) is the most common error, be-
fore not being recognized as any kind of bounded
segment. One class of C-S confusions arises when
subordinate complement clauses lack a comple-
mentizer and verb-second word order is used, as in
example (3).

(3) < c > ich wiederhole das sind tonsteine
(.) mit eingelagerten kalksandsteinbänke

A C N O S U X Total
A 57 3 12 93 20 0 0 185
C 0 98 5 61 75 1 0 150
N 5 6 584 78 36 0 0 709
O 12 26 102 8836 84 2 0 9062
S 7 24 17 128 439 0 0 615
U 1 0 4 6 2 9 0 22
X 0 0 0 0 0 0 2105 2105

Table 7: Confusion matrix for best fine-grained run
(exp. 29; across: predicted; down: gold)

< /c >
‘I repeat [that] these are mudstones with
embedded banks of sand-lime brick.’

Finally, for S(imple) sentences not being recog-
nized as a bounded segment is the most common
error. One subtype of this error that we recognize
are cases where the final token is an unlikely one.
Consider example 4, whose true labeling is given.
The error that flair makes is to include all the to-
kens in a single S(imple) sentence, even though
this means that the resulting simple sentence incor-
rectly has two finite verbs. Potentially, the error
occurs because the adverb angeblich ‘supposedly’
is an unlikely sentence ending token. In example
5, the initial complex sentence is correctly recog-
nized but the following simple sentence receives
no boundary label even though it is followed by a
change of turn. Again, the problem seems to be that
the subject pronoun er ‘he’ is an unlikely sentence-
final token. Other instances concern elliptical cases
where modal verbs occur sentence-finally without
an infinitival complement (e.g. die müssen ‘They
must’). A second subtype of error consists of infre-
quent sentence types. Consider the example in 6.
This is an unusual case because it is a free-standing
subordinate clause, which gets treated as a simple
sentence according to the SegCor guidelines. Flair
marks no boundary here, which results in the main
clause of the following complex sentence having
two finite verbs.

(4) < s >da war des doch fast die älteschte
mutter angeblich< /s >< s >mit siebe-
nungsechzig hat se s kind gekriegt oder
so< /s >
‘She was almost the oldest mother there
supposedly. She had the child at sixty-
seven or thereabouts.’
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(5) < c > was ich gelesen hab (.) muss immer
derjenige äh zu lebzeiten schon seine ein-
verständnis abgegben< c/ > < s >nur die
nimmt er< /s >
‘From what I have read that person al-
ways has to give their consent during their
lifteime. Only those ones he accepts.’

(6) < s > ob ich des hinkriech < /s >
‘[I am wondering] if I can manage that.’

Finally, we want to note that sentence boundary
labeling cannot be done perfectly by humans and
that its diffculty is variable across text types. Westp-
fahl and Gorisch (2018) report an average kappa
of 0.69 across 8 transcripts. Across the transcripts,
the kappa value ranges from 0.53 for a conflict-
ual interaction to 0.76 for a reading child. While
Westpfahl and Gorisch (2018) give no breakdown
of which confusions among boundary types are
most frequent for their human annotators, they do
show a further complication of the task: the differ-
ent sentence types are distributed differently across
different text types and their specific properties also
vary by text type. For instance, in so-called expert
talk, simple sentences are longer than in other texts.
Taken together, these considerations underline the
challenge in the task we tackle.

7 Conclusions and Future Work

We have investigated the problem of detecting
SLUs in spoken German. We found that the choice
of data representation for the classifier is important:
small word windows perform worse than larger
ones but the merging of contributions performs
well in a robust way, no matter the size. Further,
we found that the main challenge of the task is to
recognize sentence beginnings: the right context
is much more important than the left context. We
also verified that using information on turns is im-
portant. Finally, we found that augmenting flair’s
embeddings with domain-similar custom embed-
dings further enhances performance.

Given the success of the contextual string embed-
dings, in future work we would like to investigate
whether other contextualized representations such
as ELMo (Peters et al., 2018) and BERT (Devlin et
al., 2019) can yield further improvements.

Another approach to SLU boundary detection
frames it in terms of sequence-to-sequence learn-
ing, using attention-based neural encoder-decoder
models (Bahdanau et al., 2015). Here, a model is

trained to convert sequences from one domain to
sequences in another domain. A typical applica-
tion scenario for this class of models is machine
translation. In our case, we would translate spoken
German utterances lacking SLU boundaries into
speech with SLU boundaries. While initial experi-
ments showed that sequence-to-sequence models
are also able to learn boundaries for spoken ut-
terances, we did not have enough training data to
achieve competetive results. We will pursue this
avenue in future work, using additional naturalistic
as well as synthetically created training data.

Acknowledgments

This research has been partially supported by the
Leibniz Science Campus “Empirical Linguistics
and Computational Modeling”, funded by the Leib-
niz Association under grant no. SAS-2015-IDS-
LWC and by the Ministry of Science, Research, and
Art (MWK) of the state of Baden-Württemberg.

References
Alan Akbik, Duncan Blythe, and Roland Vollgraf.

2018. Contextual string embeddings for sequence
labeling. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1638–1649, Santa Fe, New Mexico, USA, August.
Association for Computational Linguistics.

Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif
Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
FLAIR: An easy-to-use framework for state-of-the-
art NLP. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
54–59, Minneapolis, Minnesota, June. Association
for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In International Con-
ference on Learning Representations, ICLR 2015.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In The 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL-HLT 2019, pages 4171–4186.

Yoshihiko Gotoh and Steve Renals. 2000. Sentence
boundary detection in broadcast speech transcripts.
In in Proc. of ISCA Workshop: Automatic Speech
Recognition: Challenges for the new Millennium
ASR-2000, pages 228–235.

138



Jonathan Hamaker, Yu Zeng, and Joseph Picone. 1998.
Rules and guidelines for transcription and segmen-
tation of the switchboard large vocabulary conversa-
tional speech recognition corpus. Technical report.
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Abstract

This paper presents a descriptive system
for dependency structures in Greenlandic
and proposes a method for implementing
it using Constraint Grammar (CG) rules.
Our  approach  aims  at  reconciling
traditional  dependency  syntax  with  the
polysynthetic morphology of Greenlandic
by introducing a novel, morphologically
informed  tokenization  model.  For
instance,  verb-incorporated  nominal
arguments  and adverbials  are  treated as
clause-level  constituents  rather  than
morphemes. We discuss and evaluate our
alternative  tokenization  in  a  cross-
language  perspective,  arguing  that  the
method allows the construction of more
universal  dependency  trees,  facilitating
both  lexical  and  syntactic  transfer  in  a
machine translation (MT) context.

1 Introduction

As a polysynthetic language, Greenlandic has a
very  low  word/sentence  ratio,  with  personal
pronouns,  prepositions  and  subordinating
conjunctions largely replaced by inflection, and a
rich  affixation  morphology,  where  each  word
root  can  take  many  bound  affix  morphemes.
Although affixes cannot occur in isolation, they
are semantically equivalent to real words in other
languages,  covering  lexical  ground  otherwise
occupied  by  verbs,  nouns,  adjectives,  adverbs
and quantifiers. In addition, a number of enclitic
particles, among them the two main coordinators,
are  also  orthographically  attached  to  the

preceding word.  As a result,  many words have
what  appears  to  be internal  syntactic  structure,
joining  for  instance  an  incorporated  indefinite
object with a transitive verb and a modal. In an
English translation,  such words will  end up as
noun phrases, verb phrases or even entire clauses
or sentences:

Elsip (Else) Kaali (Karl)
putumavallaarnasugalugu (since she believes 
he has had too much to drink) 
biileqqunngilaa (forbids him to drive)

Rather  than  restricting  syntactic  analysis  to
word-relations,  and  postulating  a  completely
separate  (morphotactic)  grammar  for  word
formation,  we  therefore  advocate  splitting
Greenlandic  words  into  functional  units,  with
dependency relations and ordering rules holding
all  the  way  down  to  (non-inflexional)
morphemes.  Thus,  for all  intents and purposes,
we will treat roots and affixes as "words" in the
dependency grammar approach presented here1.

In  this  approach,  we  follow  Compton  &
Pittman  (2010),  who  also  note  syntactic
principles, such as ordering rules and positional
scope, in Inuit word formation:

"However,  the  presence of  an extra  layer  of
computation  in  the  grammar  (i.e.,  a  generative
morphological  component)  raises  questions
about the role of the syntactic component in such
languages.  In particular, it is not clear that the

1 In a sense, morpheme chaining within a Greenlandic word 
is more rather than less syntactic than word chaining at the 
sentence level, given the strict rules governing morpheme 
ordering and the fact that meaning is order-sensitive.
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operations of such a morphological component
are in any way different from those of syntax."
(p2)

Rejecting  the  notion  of  morphological  or
syntactic  words  (p7),  they  refer  to  Halle  &
Marantz (1993) for the concept of “syntax all the
way  down”,  and  treat  words  as  Chomskyan
"syntactic phrases", i.e. construction steps rather
than absolute units. 

In  a  similar  vein,  Sadock  (1980)  advocates
pre-affixal  syntax2,  claiming  that  (Greenlandic)
noun-incorporating  verbs  should  not  be
represented at the deep-structure level (but rather
broken  up)  for  syntactic  reasons:  Incorporated
objects (incO's) can occur outside the verb, in the
instrumental  case  (INS),  and  incO's  can  be
modified by outside modifiers agreeing with the
case (INS) and number that the incO would have
had in isolation. Also, incorporation of inflected
forms is  possible,  and the type of incorporated
argument  has  syntactic  consequences  –
incorporated objects have their  modifier  left  of
the verb, subject complements have it to the right

Apart  from  formal  syntactic  arguments,  a
word  boundary-transcending  dependency
structure  can  also  be  motivated  on  purely
practical  grounds,  since  it  will  facilitate
alignment,  transfer  and  movement  of  semantic
and functional equivalents between Greenlandic
and  other,  more  isolating  languages  in  an  MT
context,  and create  a  more comparable,  deeper
layer of syntax.

2 Morphosyntactic analysis

The input to our dependency grammar comes
from  a  morphosyntactic  tagger  for
(West-)Greenlandic,  incorporating  a  finite-state
transducer (FST)3 for its morphological analysis
and  a  Constraint  Grammar  (CG)  -based
disambiguator4 that  also  assigns  shallow

2 I.e. syntactic independence of internal word parts
3 Online at: https://oqaasileriffik.gl/sprogteknologi/lookup/?
lookup=oqaasileriffik&meta=
4 Both the FST and the CG grammar were originally 
developed by Per Langgård and his team at the Language 
Secretariat of Greenland (https://oqaasileriffik.gl), and 
continue to be actively developed, for instance for use in 

syntactic function markers.

For  instance,  in  the  3-word  sentence  below
(Anda tungujorumik tujuulussivoq), FST analysis
provides a 6-way ambiguity for the second word,
covering both verbal participle (TUQ derivation)
and adjectival  noun readings (no derivation) in
both  instrumental  (Ins)  and  two  relative  (Rel)
possessum (Poss) inflections.

Anda (Anda)
   Anda+Sem/Mask+Prop+Abs+Sg

tungujortumik (blue)
   tungujor+IV+TUQ+vn+N+Ins+Sg
   tungujor+IV+TUQ+vn+N+Rel+Pl+4PlPoss
   tungujor+IV+TUQ+vn+N+Rel+Sg+4PlPoss
   tungujortoq+N+Ins+Sg
   tungujortoq+N+Rel+Pl+4PlPoss
   tungujortoq+N+Rel+Sg+4PlPoss

tujuulussivoq (sweater-buys/bought)
   tujuuluk+SI+nv+V+Ind+3Sg

In the disambiguated sentence, in CG format,
only one (adjectival noun) reading survives, and
function tags are added for subject  (@SUBJ>),
predicator (@PRED) and modifier (@i->N).

Anda (Anda)
[Anda] Prop Abs Sg @SUBJ> 

tungujortumik (blue) 
[tungujortoq] N Ins Sg @i->N 

tujuulussivoq (sweater-buys/bought)
[tujuuluk] SI+nv V Ind 3Sg @PRED

3 Extended dependency trees

3.1 Syntactic tokenization

In syntactic terms, especially comparative cross-
language  syntax,  even  the  short  Greenlandic
sentence  above  contains  two major  challenges.
First,  in the unadapted system, with a standard
CG tag  set,  the  modifier  tag on  tungujortumik
would have to  be either  @>N (prenominal)  or
@ADVL>  (adverbial),  but  neither  would  be
especially satisfactory, since the former lacks a
surface-syntactic noun as a head (so no tree can
be built),  and the latter does match an existing
head type (verb), but does not express the words
true, attributive function. Second, the predicator

spell checking and machine translation.
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verb  actually  incorporates  its  own  object
(sweater),  with  the  verb  SI  (buy)  added  as  a
nomino-verbal  affix  (nv), a  common
phenomenon in Greenlandic, but one that renders
the  (indefinite)  objects  invisible  in  a  standard
tree structure.

Motivated by a bilingual MT perspective, we
introduced  two  descriptive  modifications,  one
categorical, one structural, to resolve this conflict
and arrive at  a syntactic tree closer to a cross-
lingual deep structure. The first change adds an i-
prefix to syntactic functions whose dependency
head  is  incorporated  ("hidden")  within  another
word.  Thus,  the  tag @i->N is  a variant  of  the
prenominal  @>N  tag,  but  will  not  any  longer
need a surface head noun to allow a well-formed
syntactic tree.  The second change concerns the
core topic of this paper, breaking up Greenlandic
words  into  meaningful  parts  and  introducing
syntactic functions and relations for these parts,
hereby  enabling  the  construction  of  a
semantically  more  complete  and  syntactically
more universal tree.

In the example sentence (fig. 1), there is one
such syntactic fault line to consider — between
the root  tujuuluk (sweater)  and the  verbalizing
affix SI (buy). In the tree notation below, #n->m
means a dependency link from a daughter n to a
head m. 

Fig. 1: Split-word dependency tree

Anda [Anda] (Anda)
   PROP ABS S @SUBJ> #1->4 
tungujortumik [tungujortoq] (blue)
    <adj> N INS S @>N #2->3 
tujuulussivoq  [tujuuluk] (a sweater)
   <i> N (S IDF) @ii->V #3->4 
SI [SI+nv] (buys/bought)
   <der> V IND 3S @PRED #4->0

Note that the prenominal function tag can now be
standardized  to  @>N,  as  it  now  links  to  a
"visible"  noun  entity  with  its  own  tree  node
(tujuuluk). The morphological cohesion between
the  parts  of  the  erstwhile  complex  verb  is
maintained by inserting <i> tags (=internal) for
all  internal  parts  but  the  last,  and  <der>
(=derivation)  tags  for  all  but  the  first.  At  the
function  level,  we  use  dummy  tags  for  word
internal  arguments,  @ii->V  for  internal
arguments  of  verbs,  and  @ii->N  for  internal
arguments of nouns.

Modifiers  and  verb  chain  parts  receive  the
same tags they would have had in ordinary CG.
Consider the following 2-word sentence

timmisartumik [timmi] (a plane)
   TAR+vv TUQ+vn N Ins Sg @MIK-OBJ> 
titartaanianngilanga (I didn't want to draw)
   [titartar] HTR+vv NIAR+vv NNGIT+vv V Ind
1Sg @PRED

After our dependency tree transformation, the
auxiliary affix  NIAR (want) as well as the light
adverb NNGGIT (not) will become tree nodes in
their own right.

timmisartumik [timmisartoq] (plane)
   N INS S @MIK-OBJ> #1->2 
titartaanianngilanga [titartaavoq] (draw)
   <HTR><i><mv> V @ii->V #2->3 
NIAR [NIAR+vv] (want)
  <der><i><hv><aux> V IND 1S @PRED #3->0
NNGIT [NNGIT+vv] (not)
   <adv><der><tam> ADV @<ADVL #4->2

Note that the verbal inflection tags (V IND 1S)
have been "raised" from their  original  position
on  the  last  affix  to  the  auxiliary  head  verb,
freeing the former to become an adverbial affix
and allowing the latter to inherit  the predicator
(@PRED) and become top node of the sentence.
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While splitting off of incorporated arguments,
auxiliaries  and  light  adverbs  clearly  pushes
syntax under the water-line of the word boundary
and helps to create a deeper syntax and a more
universal  dependency  tree,  there  is  also  the
danger of splitting off morphemes that are less
syntactic  in  nature  and part  of  larger  semantic
lexical  units.  For instance,  in  our example,  the
word  for  plane  can  be  morphologically
deconstructed into the root timmi (plane) and the
affixes  TAR  (uses  to)  and  TUQ  (that  which),
literally meaning something (or somebody) that
uses  to  fly.  However,  such  a  deconstruction  is
only  of  etymological  interest,  there  are  no
external  syntactic  reasons for  this  (such as  the
existence of @i->V arguments), and the lexical
minimal  unit  in terms of object  equivalence in
the  real  world  is  clearly  plane.  Similarly,  the
verb  root  titartaavoq  (draw)  is  originally
decomposed by the FST as  titartar(paa)+HTR,
i.e. with a transitive root and an affix denoting
"half-transitivity" (i.e. taking an indefinite object
in instrumental  case).  However,  the  HTR  affix,
while  leaving  morphological  traces,  does  not
correspond  to  a  syntactic  node,  and  since  the
external object is in an oblique case rather than
ordinary  object  case  (absolute),  it  syntactically
"prefers"  the  longer  and  already  half-transitive
form  titartaavoq  as  its  dependency  head  (i.e.
with HTR included).

3.2 Part-of-speech distribution

In  a  sense,  our  automatically  performed word-
splittings  can  be  seen  as  a  retokenization  step
turning  Greenlandic  into  an  orthographically
more "normal" (i.e. not polysynthetic) language.
When compared in  terms of  word class  (POS)
distribution,  the  two  variants  exhibited
interesting differences, with the split Greenlandic
version being closer to a Danish distribution5, a
positive  finding  in  the  context  of  Machine
Translation transfer alignment.

In  table  1,  percentages  are  drawn  from  an
automatically annotated 9.1 million word corpus

5 For the Danish comparison, an annotated version of DSL's 
Korpus2000 was used, similar because of its high 
proportion of news text.

of Greenlandic news text6.  All  in all,  the post-
splitting corpus had 44.4% more tokens.

PoS unsplit
gl

split
gl

not
changed

first
parts

da

N 54.4
N n 37.4 24.3 5.7 21.2
N adj7 4.9 2.1 - 6.7
N adv 2.2 2.0 -
V 24.7
V v 28.6 6.2 8.6 18.4
V adv8 3.9 0.6 -
V prp 0.8 0.8 - 13.1
ADV 3.7 2.6 2.2 ~0 10.1
PROP 11.5 9.6 8.4 0.3 4.7
KC 1.4 3.6 0.8 ~0 4.1
NUM
N num

3.2 2.5 2.3 0.2 2.0

others* 1.1 19.3

Table 1: PoS percentages 80.7
N(oun), V(erb), adv(erb), adj(ective), num(eral)
PROP(er noun),  KC=co-ordinating conjunction

The  original  Greenlandic  annotation  is
dominated  by  nouns  (54%),  but  this  is  only
because  adjectives  are  regarded  as  nominal
derivation of attributive verbs, and because non-
finite clauses and relative clauses are expressed
using nominal affixes (e.g TUQ and NIQ). In the
retokenized  corpus,  the  proportion  between
"semantic" nouns (N n) and "semantic" verbs (V
v) is more balanced (1.3:1), close to the Danish
proportion (1.2:1), with the difference in absolute
numbers  caused  by  the  fact  that  a  third  of  all
Danish  words  are  pronouns,  prepositions  and
subordinators  that  have  only  inflexional
equivalents in Greenlandic, meaning that Danish
N and V counts would be 50% higher,  if  they
would not have to share space with word classes

6 The corpus was compiled by Oqaasileriffik and will be 
made searchable at: 
https://tech.oqaasileriffik.gl/tools/corpus/
7 adjectival "nouns" are morphologically ambiguous with 
relative clauses in Greenlandic, and in a split reading, the 
latter may be forced for syntactic reasons. Adjectival first 
parts remain invisible, because the lexicon forces a "be 
ADJ" verb root instead. 
8 adverbial "verbs" come in two types: (a) Unsplit verbs in 
the contemporative mood functioning adverbially, and (b) 
adverbial affixes, typically last parts.
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that do not exist in Greenlandic. For the minor
word classes, too, after-splitting percentages are
similar  to those found for Danish9.  The proper
noun difference is due to the fact, that the Danish
corpus regard multi-word names as tokens, while
the Greenlandic tagged name parts individually. 

3.3 Affix distribution

All  in  all,  the  fact  that  Greenlandic  can  be
retokenized  to  match  other  languages'  PoS
distribution  is  typologically  interesting  and  a
strong  argument  for  implementing  such  a
tokenization in the face of bilingual tasks such as
alignment and MT. In fact,  the token-for-token
similarity between retokenized Greenlandic and
Danish  becomes  even  more  pronounced  when
looking at a more fine-grained affix distribution.
Thus,  the  outer  affixes  in  a  Greenlandic  verb,
when read in  inverse order  from the verb end,
nicely  corresponds  to  a  Danish  chain  of
auxiliaries and light adverbs in the same order10,
and even the auxiliary/verb proportion is similar
(18.7% in Greenlandic, 21.1% in Danish). 

About a quarter of all words were split, with
each  lexical  first  part  spawning  1.78  split-off
parts on average, or 2.05, when counting parts of
dictionary-wise fused multiple affixes. Of these,
87% were affixes (88.8% when splitting multiple
affixes),  the  rest  enclitic  particles  (e.g.
coordinating  conjunctions).  Verbo-verbal
derivation was most common (+vv, 43.7%), cp.
table 2:

+ verbal affix + nominal affix
verb root (vv) 43.7 % (vn) 22.2 %
noun root (nv) 19.4 % (nn) 14.7 %

Table 2: root-affix pos combinations

From a top-17 list of individual affixes (table
3)  it  can  be  seen  that  a  handful  of  heavily
syntactic  affixes  are  the  most  frequent  ones,

9 For adverbs, this is true after lumping Greenlandic 
"inflexional" N/V adverbs together with "monolithic" 
adverbs and adverbs in the particle class (others).
10 e.g. nerisinnaannginnakku (because I can't eat it)
neri+SINNAA+NNGIT+V-Cau-1Sg-3SgO
spise+kunne+ikke+fordi-jeg-det
eat+can+not+because-I-it

covering in-word subclauses (NIQ, TUQ, TAQ),
incorporated  arguments  (QAR,  GE)  and
predicative-copula  constructions  (U,  IP).  The
second most frequent are auxiliaries for passive
(NIQAR),  future  (SSA(Q)),  "aspect"  (SIMA,
TAR)  and  modality  (SINNAA,  NIAR),  while
there's only one adverb (NNGIT – not) and one
real noun (VIK – place).

Affix Grammar %
NIQ+vn nominal that/ing-clause 12.17
TUQ+nv relative clause, adjectives

attributive nouns
9.85

QAR+nv have ROOT, there is ... 7.92
SSAQ+nn future (of deverbal nouns) 7.88
NIQAR+vv passive (aux) 6.94
IP+nv copula 5.83
SSA+vv future (of verbs, aux) 5.05
U+nv copula 4.83
SIMA+vv have ...ed, durative (aux) 4.66
TAR+vv use to INF (habitually) 4.16
NNGIT+vv negation (adverb) 3.34
SINNAA+vv can (aux) 2.93
TIP+vv make do, inchoative (aux) 2.49
TAQ+vn relative clause passive 2.40
VIK+vn place 2.28
GE+nv have OBJ as ROOT 2.23
NIAR+vv want to (aux) 1.77

Table 3: Affix distribution

4 Complex constructions

The following is a more complex example of a
syntactic tree, with two subclauses (underlined)
both expressed as single words in Greenlandic,
but equivalent to 4-5 words in English or Danish:

Ilulissat  Sermiat  ukiumut  7  kilometerit
tikillugit  sukkassuseqartoq sermip  qanoq
sukkatigisumik  ingerlaarsinnaaneranut
takussutissaalluarpoq.  –  The  Ilulissat  Glacier,
that has a speed reaching 7 km a year, is clearly
an indication of (the fact) how fast the ice  can
move.

As can be seen from the annotation (fig. 2),
the  first  "clause-word"  (sukkassuseqartoq)
functions  as  a  relative  clause,  where  our
algorithm  splits  off  both  the  relative  pronoun
(TUQ)  and  the  verb  (QAR).  However,  a  third
affix, SSUSIQ (the quality of being ADJ), is not
split  off,  because  the  (nominal)  concept  of  an
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attribute  (here:  'speed'  =  'the  quality  of  being
fast')  does  constitute  a  purely  semantic  unit,
without  syntactic  structure,  a  view  that  is
supported by the fact that the concept of "speed"
is recognized/realized as a word unit (rather than
a construction) in many languages. 

Fig 2: Complex dependency tree

Ilulissat [Ilulissat] (Ilulissat)
   PROP REL P @POSS> #1->2 
Sermiat [sermeq] (Glacier)
   N ABS S 3PPOSS @SUBJ> #2->16 
ukiumut [ukioq] (per year)
   N IDF TRM S @ADVL> #3->6 
7 [7] (seven)  NUM ABS @>N #4->5 
kilometerit [kilometeri] (kilometers)
   N ABS P @OBJ> #5->6 
tikillugit [tikippaa] (reaching / up to)
   <prp> V CONT 3PO @CL-ADVL> #6->8 
sukkassuseqartoq [sukkassuseq] (speed)
   <SSUSIQ+vn> <i> N @ii->V #7->8 
QAR [QAR+nv] (has)
   <der> <i> <hv> <mv> V @CL-N< #8->2 
TUQ [TUQ+vn] (that)
   <der> <rel> N ABS S @SUBJ> #9->8 
sermip [sermeq] (ice)

N REL S @SUBJ> #10->14 
qanoq [qanoq] (how)
   <interr> ADV @>N #11->12 
sukkatigisumik [sukkatigisoq] (fast)<adj><TIGE+vv>

<TUQ+vn> N INS S @i-ADVL> #12->13 
ingerlaarsinnaaneranut [ingerlaarpoq] (move)
   <i> <mv> V @ii->V #13->14 
SINNAA [SINNAA+vv] (can)
   <der> <i> <hv> <aux> V @ii->N #14->15 
NIQ [NIQ+vn] (the fact that)
   <der> N TRM S EXPOSS @ADVL> #15->16
takussutissaalluarpoq [takussutissaavoq] (be an 

indication) <UTE+vn><SSAQ+nn> <U+nv> 
<i><mv><hv> V IND 3S @PRED #16->0 

LLUAR [LLUAR+vv] (really) 

   <adv> <der> ADV @<ADVL #17->16 

The  second  "clause-word"  is  a  nominal  (that-)
clause, where the outermost affix (NIQ) can be
said  to  replace  the  complementizer/conjunction
in  Germanic  or  Romance  languages,  while  the
verbal par, an auxiliary (SINNAA 'can') and the
main  verb  (ingerlaarpoq  –  'move')  are
incorporated.  While  a  split  here  is  clearly
syntactic/structural  and  necessary  for  MT
alignment,  it  does  create  a  transformational
problem: One constituent of the new subclause,
the  subject  (sermeq  'ice')  is  inflected  as  a
possessor  (sermip_REL)  and as such attaches to
the  whole  (possessum-inflected)  NIQ-noun,
rather than its internal verb. In order to resolve
this conflict, our grammar changes the function
tag  in  the  former  (@SUBJ)  and  marks  the
possessum-inflection  as  EXPOSS  in  the  latter.
Both "clause-words" also have outside adverbial
dependents, but these are marked as adverbial (or
i-adverbial)  even before  retokenization,  and  do
and not exhibit an adnominal morphology. Thus,
tikillugit ('up to') is a verb in the comtemporative
mood, typical of adverbial clauses or pp-heads,
and  qanoq sukkatigisumik ('how fast')  does  not
have case agreement with the clausal NIQ-noun.

5 Annotation Procedure

In order to assign the dependency links discussed
in  the  previous  section,  we  use  the  CG3
formalism (Bick  & Didriksen  2015),  the  same
method  that  was  originally  used  for
disambiguating the morphosyntactic tags in our
input.  In  this  scheme,  dependency  links  are
assigned  individually,  from  a  target  daughter
token to a specified head type, using contextual
conditions of arbitrary scope and complexity for
both  dependent  and  head  independently.  The
following  rule,  for  instance,  handles  nested
possessor attachment. 

SETPARENT @POSS> + S TO (*1 @POSS> –
POSS  BARRIER  POSS/LU  LINK  pr  POSS
LINK *1A POSS + S BARRIER @POSS>) ;

The rule states that a possessor (@POSS>) in the
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singular (S) attaches (TO) to a word inflected as
a  singular  possessum  (POSS  +  S),  but  it
specifically  targets  the  outer  possessum  in  the
nested structure, since it first looks right (*1) for
another  possessor  without  (BARRIER)  a
possessum or coordinator affix (LU) in between,
then  finds  the  inner  possessor's  already
established  parent  to  the  right  (pr)  and  finally
attaches (A) to its own possessor, with a further
BARRIER  conditions  for  a  possible  third
possessor. Ignoring further constituents, this will
cover  a  construction  like  "Peter's  having_eaten
Anne's  cake" which with a  Greenlandic  syntax
would be "Peter's Anne's cake having_eaten":

(@POSS> #1->4 ((@POSS> #2->3 POSS @i-
ARG> #3->4) POSS #4->?))

All in all,  our dependency grammar contains
251 such attachment  rules  and 319 other  rules
adapting existing function tags (e.g. the change
from possessor to subject)  or  adding new ones
for  the  split-off  word  parts.  In  addition,
secondary  tags  are  added,  marking  e.g.  the
individual  parts  of  a  coordination,  or  the  verb
functions of main verb, auxiliary and head verb11.

Since  our  retokenization  creates  minimal
syntactic  tokens,  the  resulting  Greenlandic
dependency trees are much closer to the structure
of  Indo-European  languages  than  the  original
annotation,  facilitating  machine  translation  into
languages  like  English  and  Danish.  Another
interesting feature is the fact that most pronouns
are  only expressed in  terms of  verb inflection,
and  prepositions  replaced  by  case  marking.
While this is a technical challenge to MT, it also
makes  for  a  small  structural  distance  between
ordinary  syntactic  trees  and  semantic  trees  (or
tectogrammatical trees, as they are called in the
Prague  Dependency Treebank [Böhmová  et  al.
2003]).  Thus,  a  future  mark-up  with  semantic
roles would not have to redraw the tree structure,
because semantic heads are  large equivalent  to
syntactic heads in (retokenized) Greenlandic.

6 Machine translation

With its lack of training data, its low-frequency

11 Top/first/outermost verb of a verb chain

polysynthetic  words  and  its  difficult-to-align
word-internal  syntax,  Greenlandic  is  a  holdout
for rule-based MT. Here, dependency annotation
is a useful tool, if not a necessary prerequisite,
for  at  least  two  important  tasks,  (a)  lexical
transfer  and  (b)  syntactic  transfer  (Bick  2007).
Thus, in a current MT initiative overseen by the
Greenlandic  Language  Secretariat,  contextual
rules for the selection of translation equivalents
can refer to morphosyntactic or semantic features
of  other  tokens in  the  dependency tree:  heads,
dependents,  siblings,  granddaughter  dependents
etc. The transitive Greenlandic verb suliaraa ('to
process'), for instance, translates into a number
of  different  Danish  verbs,  depending  on  the
semantic  class  (<...>)  or  lemma  ("...")  of  its
object (@OBJ) dependent (D):

suliaraa_V :behandle 'treat/process'; 
* D=(<B.*> @OBJ) :dyrke 'grow'
* D=(<(sem|cc-r).*> @OBJ) :udfærdige 'author'
* D=(<act.*> @OBJ) :iværksætte 'launch'
* D=("ameq" @OBJ) :garve 'tan'
* D=("soraatummeerut") :besvare 'answer'

[<B>=plant/botanical, <sem>=semiotic product, <cc-
r>=readable object, <act>=action/activity]

Our  syntactically  motivated  retokenization
will  allow  translation  selection  conditions  to
"see"  also  affixes  and  incorporated  arguments.
Thus,  head  conditions  for  the  adjectival  noun
pikkunaatsoq ('weak') will work even if the head
noun is a verb-incorporated morpheme:

pikkunaatsoq_N <adj> :svag 'weak'
* H=(<(cm-liq|drink)> :tynd, :vandet 'watery' 
* H=(<act>) :tam, :ineffektiv 'ineffective'
* H=(<food.*>) :fad 'tasteless'

[<cm-liq>=liquid, <drink>=drink, <food>=food] 

The other task involves movement of syntactic
"treelets".  For  instance,  in  order  to  change
(Greenlandic)  SOV  order  into  (Danish)  SVO,
object constituents have to be moved right, to a
position  after  the  vp.  Given  a  dependency
description,  this  can  be  expressed  in  one
(simplified)  rule,  where  a  WITHCHILD
condition  means  that  the  object  token  will  be
moved  together  with  all  its  dependents  and
further descendents:
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MOVE WITHCHILD (*) @OBJ 
   (NOT 0 <interr> OR <interr-head>)
   AFTER WITHCHILD @MV< (pr <mv>) ;

(Move  objects  [@OBJ]  with  all  (*)  their  children
after  a  main  verb  <mv> dependency  parent  to  the
right (pr),  but  not if  the object  token in question is
part of an interrogative np <interr>. The main verb
constituent can include verb particles [@MV<]).

Similarly,  adjective  phrases  are  moved from
right to left within an np, and arguments of nouns
(postnominal pp's in Danish) from left to right,
etc.  About 250 movement rules are needed for
Greenlandic-Danish syntactic transfer.

7 Evaluation

In section 3, we have evaluated the quantitative
impact  of  functional  retokenization,  and  the
resulting spread of affix types. However, in the
absence  of  a  gold  corpus,  or  even a  linguistic
consensus  as  to  how  various  Greenlandic
constructions  should look in a retokenized tree
structure,  it  is  difficult  to  do  a  classical
recall/precision evaluation of the performance of
the second step, dependency tagging. Still, it is
reasonable  to  assume  that  morphosyntactic
ambiguities and tagging failures in the input will
affect the dependency layer. Thus, in a raw input
run of the news corpus, 7.9% of non-punctuation
tokens  had  no  morphological  analysis,  though
almost half of these could be heuristically tagged
as proper  nouns.  Tokens that  did have tagging
had on average 1.13 readings (=13% ambiguity),
and 3.2% had no syntactic function tag. 

We  addressed  the  missing-analysis  problem
with  a  post-processor  that  uses  four  different
strategies for assigning heuristic analyses: 

(a) spell-checking (26%)

(b) lexicalized dummy roots (13.2%)

(c) rules for unknown proper nouns (15.3%)

(d) endings-based heuristics (45.3%)

Together,  these  techniques  covered  almost  all
analysis  failures  and  raised  the  syntactic
coverage of the Greenlandic CG to 98.4%. The
remaining  1.6%  were  assigned  heuristic

functions  in  a  postprocessing  grammar,  with
0.6% ending up with a dummy @X tag. It is a
noteworthy consequence of the rich Greenlandic
morphology that techniques (b) and (d) provided
mostly correct POS and inflection (92.5%), and
because  syntactic  function  builds  on  case  and
mood inflection etc., it will also often be correct,
at least at the unsplit level, even in the face of
incorrectly suggested stems.

In order to approximate an evaluation of the
dependency grammar in isolation, we presented
it with input where all morphosyntactic tagging
failures had been remedied heuristically. In this
scenario, while possible errors would still carry
over  from  the  morphosyntactic  annotation,  the
dependency grammar itself produced only 1.3%
of  formal  errors,  i.e.  structurally  unlikely  or
impossible dependency links. About 3/4 of these
were unattached "orphan" tokens, 1/4 were type
mismatches between daughter and head. 

8 Conclusions and outlook

We have presented an affix-splitting dependency
grammar  module  for  a  Greenlandic  NLP pipe,
implemented  as  a  Constraint  Grammar,  with  a
special  focus  on  MT,  arguing  for  a  syntactic
treatment  of  non-inflectional  morphemes.  Our
method increased the token count by 44.4% and
led to a PoS distribution much more similar to
that of the target language, Danish. In connection
with a new heuristic strategy for morphosyntactic
tagging  failures,  the  dependency  module
identified formally acceptable dependency heads
for 98-99% of tokens in retokenized CG input.

At  the  time  of  writing,  the  Greenlandic
FST/CG tagger  was still  very  much in  flux in
both descriptive and performance terms, but once
it  has  stabilized,  a  gold  standard  dependency
treebank  for  Greenlandic  should  be  built
allowing a better  evaluation of the dependency
tool. In the meantime, dependency annotation is
still a very useful prerequisite for ML tasks such
as context conditions in lexical transfer rules and
syntactic movement rules.
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Abstract

This paper presents first steps towards
metaphor detection in German poetry, in
particular in expressionist poems. We cre-
ate a dataset with adjective-noun pairs ex-
tracted from expressionist poems, manually
annotated for metaphoricity. We discuss
the annotation process and present mod-
els and experiments for metaphor detection
where we investigate the impact of context
and the domain dependence of the models.

1 Introduction

Metaphors are commonly used to conceptualise
all aspects of our social and intellectual lives, thus
helping us to make sense of the world around us
(Lakoff, 1987, p.6). Therefore, many studies in
NLP have addressed the task of metaphor detec-
tion for English and other languages, focussing on
everyday language use. But metaphors are also
an important stylistic device in literary texts, and
recently more and more interest in computational
methods for metaphor detection comes from the
newly emerging area of Computational Humanities
(Kesarwani et al., 2017; Tanasescu et al., 2018).

Our work is situated in the context of Compu-
tational Literary Studies. We are interested in the
use of metaphors as stilistic devices in poetry, in
particular in expressionist poems. Expressionism
is an art movement originating in Germany at the
beginning of the 20th century. In contrast to ear-
lier periods such as Naturalism, expessionist artists
focussed on describing the world not according to
its physical properties but from a subjective and
highly emotional perspective.

“Dem Dichter geht es also nicht um eine
Darstellung der empirischen Wirklichkeit, son-
dern darum, wie er sie, nur er sie sieht und wie
er möchte, daß sie auch von anderen gesehen
werde. Er erarbeitet deshalb eine Metapher, die
fähig ist, seine Gestimmtheit auszusprechen und

eine gleiche Gestimmtheit hervorzurufen: eine
Art magische Formel.”1 (Dietz, 1959, p.56)

For illustration, consider the following adjective-
noun pairs from Grodek, a well-known expression-
ist war poem by Georg Trakl. In Grodek, Trakl
creates a nightmarish atmosphere by means of
colour symbolism, imagery, personification and
neologisms, making extensive use of metaphors to
express his inner view of reality (example 1).

(1) a. rotes Gewölk (red clouds)
b. schwarze Verwesung (black decay)
c. zerbrochene Münder (broken mouths)
d. wilde Klage (wild lament)
e. schweigender Hain (silent forest)
f. mondne Kühle (lunar coolness)

To be able to do large-scale investigations of
metaphors in expressionist poems and to compare
the use of metaphors in different literary genres
or in the writings of individual authors, we need
to be able to automatically detect metaphors in
literary text with high precision and recall. This
work presents first steps towards this goal. Our
contributions can be summarised as follows:

• We create a new corpus with adjective-noun
(A-N) pairs from expressionist poems, anno-
tated for metaphoricity.

• We develop a classifier for automatically pre-
dicting A-N metaphors in literary texts.

• We investigate the domain dependence of our
model by creating a second dataset for Ger-
man A-N metaphors, based on the translation
of the English A-N dataset of (Tsvetkov et al.,
2014), extracted from web corpora.

1Engl. translation: “The poet is not interested in a repre-
sentation of empirical reality, but only in his subjective view
of reality, and how he wants it to be seen by others. He there-
fore develops a metaphor that is capable of expressing his
mood and evoking the same mood in others: a kind of magic
formula.”

Proceedings of the 15th Conference on Natural Language Processing (KONVENS 2019)
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The paper is structured as follows. We first re-
view related work on metaphor detection for En-
glish and German (§2). Then we describe the cre-
ation of the two datasets (§3) and present our ex-
periments on metaphor detection for German (§4
and §5). We evaluate and discuss our results and
outline avenues for future work (§6).

2 Related Work
Extensive research on metaphor detection has been
conducted for English. Early approaches rely
on lexical resources such as hyponym relations
in WordNet and word co-occurrence information
(Krish nakumaran and Zhu, 2007). Others have
used abstractness ratings for individual words as
features (Turney et al., 2011; Tsvetkov et al., 2014).
Turney et al. (2011) show that abstractness scores
extracted from a word’s context is an effective indi-
cator of its metaphoricity. The system in Tsvetkov
et al. (2014), which achieves an F-score of 85% on
detecting English adjective-noun metaphors, uses
imageability scores in addition to abstractness, in
combination with WordNet supersenses and word
embeddings.

Shutova et al. (2013) create a statistical model
that does not depend on lexical knowledge from
external knowledge bases but relies on weakly su-
pervised distributional clustering. The more recent
work in Rei et al. (2017) also identifies metaphors
without the need for handcrafted features: a su-
pervised similarity network uses the semantic in-
formation encoded in word embeddings to detect
metaphorical relations. Their system is on a par
with the work of Tsvetkov et al. (2014).

Only few studies have investigated metaphor de-
tection for German, due to the lack of freely avail-
able annotated resources.2 Köper and Schulte im
Walde (2016a) develop a classifier for the identi-
fication of metaphorical uses of German particle
verbs. Among other features, they use affective
ratings for German lemmas (Köper and Schulte im
Walde, 2016a) which we also employ in this work.
Köper and Schulte im Walde (2017) model word
senses for particle verbs and evaluate their model
on metaphor detection, among other tasks.

3 Data & Annotation

In the paper, we focus on metaphorical adjective-
noun (A-N) pairs and conduct experiments on two

2The Hamburg Metaphor DB Project (Lönneker-Rodman,
2008) created a resource for French and (some) German
metaphors. Unfortunately, the data is not publicly available.

datasets: i) one new dataset with A-N metaphors
from German expressionist poems (POEMS) and
ii) a second dataset based on a translation of the
English A-N data of Tsvetkov et al. (2014) (TSV).

3.1 Annotating Metaphors in Poetry

For the first dataset, we extract A-N pairs from
expressionist poems and annotate these pairs for
metaphoricity. The process of creating and anno-
tating the POEMS dataset is described below.

Dataset creation The poems have been collected
from Project Gutenberg3, Deutsches Textarchiv4

and from various poetry websites. We extract the
raw text and predict lemmas and POS tags using the
TreeTagger (Schmid, 1994; Schmid, 1995). Then
we extract lemma pairs that consist of an adjective
followed by a noun.

In addition, we extract context for each A-N
pair. Since the use of punctuation in poems does
not always follow standard German grammar and
sentence length in poetic texts can strongly vary in
length, we choose to extract context information
based on a fixed token window. For each A-N pair,
we extract at most 10 tokens on the left and at most
10 tokens on the right. This approach generates
context that varies only minimally in length.

We also limit the number of context strings
extracted for each A-N pair to avoid that high-
frequency A-N pairs are overrepresented in our
data. For POEMS, we limit the number of context
strings per pair to 20 in the training set and 10 in
the test set. For the out-of-domain TSV dataset, we
use a limit of 129 in the training set and 47 for the
test set. These numbers were determined empir-
ically such that i) no pair is overrepresented and
ii) the original distributions between metaphorical
and literal instances in the data is maintained.

Annotation procedure In the next step, we an-
notate each A-N pair with one of three labels (lit-
eral, metaphorical, ambiguous). The annotators do
not see to the instance’s context but assign the label
ambiguous for instances where context is necessary
to disambiguate between literal and metaphorical
uses. We found that most of the A-N pairs were
unambiguous, making this procedure suitable for
annotation and, at the same time, speeding up the
annotation process by a large margin.

3https://gutenberg.spiegel.de
4http://www.deutschestextarchiv.de/
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Example (2) shows an ambiguous instance from
our corpus where the adjective heiß (hot) can refer
to high temperatures in a literal sense or, metaphor-
ically, to a subject of interest (hot topic). In such
ambiguous cases, human annotators are usually
able to determine the intended sense based on con-
text. This was done in a second pass over the data
where we presented the annotators with context for
the ambiguous instances.

(2) heißes Feld (hot field)

Different approaches have been proposed for
metaphor annotation. One of them is the Metaphor
Identification Procedure (MIP) (Pragglejaz Group,
2007) which first establishes the contextual mean-
ing of a lexical unit, then determines whether a
more basic (concrete, precise, older or more related
to bodily action) meaning exists. It then marks
the unit as metaphorical if the contextual mean-
ing contrasts with the basic meaning while being
understandable in comparison with it.

A similar approach by Shutova (2017) uses
the same definition of basic meaning but extends
the annotation procedure by additionally identify-
ing source and target domains. Shutova (2017)
also highlights problems with the concept of ba-
sic meaning, i.e. the degree of conventionality of
metaphors and the partially unsystematic inclusions
of word senses in dictionaries make the use of dic-
tionaries problematic for the identification of basic
meanings. We encountered the same difficulties
in the early stages of annotation when trying to
use a dictionary as a reference. In consequence,
we choose not to rely on dictionaries during the
annotation process but instead extended our guide-
lines with a categorisation of adjectives and their
interpretation (see A.2 in Appendix).

Do Dinh et al. (2018) address the problem of
conventionalised metaphors by augmenting an Eng-
lish metaphor corpus with scores for metaphor nov-
elty. They compare different approaches for an-
notation and show that best-worst scaling5, while
being more time-consuming, yields the highest
IAA. Their annotations, however, assume that the
metaphors have already been identified.

Our annotation procedure follows previous work
by marking A-N pairs as metaphorical if a more
basic meaning of the adjective can be found. For
example, in durstiges Kind (thirsty child), the ad-
jective’s meaning used to describe the noun can

5In best-worst scaling, annotators select the most novel
and the most conventionalised from a set of four metaphors.

be considered as basic. In contrast, the adjective’s
meaning in durstige Flamme (thirsty flame) is con-
sidered to be different from the basic meaning.

The annotation is performed in several batches
by two annotators. After each batch, the annotators
discuss difficulties and annotation disagreements
to discover grey areas not yet covered in the annota-
tion guidelines, which were continuously improved
during the annotation process.

While Tsvetkov et al. (2014) did not use con-
text information in their experiments, we wanted
to test the hypothesis that the context is useful for
automatically distinguishing metaphors from literal
senses. Therefore, after labeling each instance as
either metaphorical, literal or ambiguous, annota-
tors performed an additional annotation step and
further annotated ambiguous A-N pairs as either
metaphorical or literal by referring to their con-
text. However, both annotators reported that they
found this second step difficult because the con-
text often did not provide enough information for
disambiguation. Consider the following example:

(3) Er schleudert die mächtigen [...] Kurven umher in
der Welt, sie kehren zu ihm zurück, wie dem dunklen
Krieger, der den Bumerang schnellt.

In the example above, dunkler Krieger (dark war-
rior) was labeled as ambiguous in the first round of
annotation since dunkel (dark) could refer to colour
(e.g. of the warrior’s equipment or skin colour) in a
literal sense, or to a gloomy or scary appearance in
a metaphorical sense. Such ambiguities are charac-
teristic for expressionist poems and again illustrate
the use of metaphors as “a magic formula” (Dietz,
1959) to evoke certain emotions in readers.

As only 49 instances had been annotated as am-
biguous, we decided to discard all ambiguous A-
N pairs from the POEMS corpus, keeping only
metaphorical and literal instances. All experiments
described in section 5 are conducted on this two-
class dataset.6

3.2 IAA and Error Analysis
We measured inter-annotator agreement (IAA) for
the different batches during annotation. On aver-
age, we observe an IAA of 0.62 (Fleiss’ κ) and a
percentage agreement of 84,9%.

A particular challenge for annotation are adjec-
tives of measurement. Take, for example, hohe
Kosten (high costs) or ein langer Tag (a long day)

6We make all annotated data publicly available in
form of lists (see https://github.com/ireinig/
metaphor-german-poetry/tree/master/data).
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where it is not clear whether the adjective’s basic
sense should only refer to physical objects with
spatial extensions (length, width, depth, heigth) or
also capture other measures such as monetary val-
ues or the length of time. During annotation, we
discussed these disagreements and extended the
guidelines accordingly. For example, in the case
of groß (big/large), we decided to mark instances
as literal when the adjective refers to a quantifiable
or classifiable attribute, such as size, surface or
intensity, and label all other uses as metaphorically.

While most disagreements concern adjectives
of measurement, we did not observe an annota-
tion bias in terms of one annotator choosing a
particular class particularly more often than the
other. The probability of choosing the literal class
varies between 70-80% for both annotators across
all batches.

3.3 Translating an English Metaphor Dataset
To investigate the domain dependence of our
metaphor detection model, we create a second
metaphor corpus based on the English dataset of
Tsvetkov et al. (2014). The dataset was created
manually using collections of metaphors from the
web (training set) and sentences from the TenTen
Web corpus (test set). The domains in this dataset
range from economics to politics and sports, and
are thus crucially different from our POEMS corpus.

We automatically translated the English A-N
pairs to German using DeepL7. The set of trans-
lated instances was then cleaned up by removing i)
instances that are not A-N pairs (e.g. English A-N
pairs translated to German N-N compounds) and ii)
duplicate instances, resulting from the translation
of two distinct English instances to the same Ger-
man expression (e.g. little chance and slim chance
were both translated to geringe Chance).

We then lemmatise the translated A-N pairs us-
ing the TreeTagger and extract context for each
A-N pair from the sDeWaC German Web corpus
(Faaß and Eckart, 2013). Table 1 shows the size of
the dataset for the original English data (Tsvetkov
et al., 2014) and for the translated TSV dataset.

4 Experimental Setup
Training/test split We divide the data into train-
ing and test sets by putting all A-N pairs that ap-
peared at least twice in the corpus in the training set
while instances occuring only once constitute the

7https://www.deepl.com/en/translator

Lang Set Total metaphorical literal

POEMS dataset

DE Training 578 100 478
DE Test 378 98 280

TSV dataset

EN train 1768 884 884
EN test 200 100 100

DE train 1149 546 603
DE test 142 65 77

Table 1: Number of A-N pairs in the German
POEMS and the English and German TSV datasets.

test set.8 This ensures that none of the test instances
have been seen during training. Table 1 illustrates
the class imbalance in this dataset: approximately
17% (train) and 26% (test) of the instances are
metaphorical while the majority class accounts for
83% and 74% of the data.

4.1 Features
In our experiments, we use the following features
that have been shown to be beneficial for metaphor
detection in the literature.

Word embeddings are dense vector representa-
tions that capture syntactic and semantic properties
of words (Turian et al., 2010). Previous work has
used embeddings for metaphor detection and re-
ported high scores for baseline models that rely
only on word embeddings as features (Tsvetkov
et al., 2014; Bulat et al., 2017; Rei et al., 2017;
Shutova et al., 2016).

For each A-N pair, we extract embeddings
for the adjective and for the noun from the 100-
dimensional SkipGram embeddings of Reimers et
al. (2014).9 We average both vectors and obtain one
100-dimensional compositional embedding vector
for each A-N pair.

Supersenses Our next feature uses the GermaNet
(Hamp and Feldweg, 1997) supersense taxonomy
for adjectives and nouns where word senses (and
the associated lemma forms) are sorted into seman-
tic fields (e.g. Menge (set), Gesellschaft (society)
or Koerperfunktion (bodily functions)).10

8All parameter tuning was done in a cross-validation setup
on the training set.

9The embeddings are available from https://www.
informatik.tu-darmstadt.de/ukp/research_
6/ukp_in_challenges/germeval_2014.

10For the list of supersenses, please refer to http:
//www.sfs.uni-tuebingen.de/GermaNet/
germanet_structure.shtml#Tops
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Following Tsvetkov et al. (2014), we construct
feature vectors by calculating the degrees of mem-
bership for noun and adjective supersenses. Ger-
maNet contains 16 distinct semantic fields for ad-
jectives and 23 for nouns. We extract supersense
features for each A-N pair as follows. For a given
word, we count the number of synsets s it belongs
to. Then, for each semantic field f , we count the
number of synsets s f from the set s that are related
to f . Finally, for each f , we compute the resulting
value by diving s f by s. We thus obtain vectors
of length 16 for adjectives and vectors of length
23 for nouns. The resulting 39-dimensional vector
representation is a concatenation of both vectors.

Affective ratings Tsvetkov et al. (2014) and Tur-
ney et al. (2011) show that abstractness and im-
ageability scores are useful features for metaphor
detection. We use ratings for abstractness, image-
ability, arousal and valence published by Köper and
Schulte im Walde (2016b). The dataset contains
ratings for 351,617 German lemmas, in a range of
0 to 10. According to Köper and Schulte im Walde
(2016b), abstractness characterises anything that
cannot be perceived using our senses, as opposed
to concreteness; imageability refers to words for
which one can easily form a mental image; arousal
refers to the intensity of the emotion linked to a
word and valence describes whether positive or
negative emotions are linked to the word.

We extract affective ratings for each adjective
and each noun, resulting in an 8-dimensional vec-
tor representation. Words for which no rating is
available are assigned the default value of 5.0.

5 Experiments

We investigate the following three hypotheses:

H1 Supersenses, word embeddings and affective
ratings are useful features for A-N metaphor
detection in German poetry.

H2 Context features extracted from the A-N pair’s
surrounding text can further improve classifi-
cation accuracy for metaphor detection.

H3 Metaphors are not domain-dependent but a
general cognitive phenomenon, thus supple-
mentary out-of-domain training data can im-
prove results for metaphor detection in poetry.

Setup We train two SVM models on our datasets,
POEMS and TSV. For model selection, we perform
the following three steps:

1. Algorithm selection and hyperparameter tuning

2. Feature selection for A-N pairs

3. Feature selection for context features

Model and feature selection was done separately
for the POEMS and TSV datasets. We refer to the
models trained on each dataset as POEMS and TSV.

5.1 Model Selection

Following previous work (Turney et al., 2011;
Tsvetkov et al., 2014; Bulat et al., 2017), we exper-
iment with three ML algorithms, i) a Random For-
est classifier (Breiman, 2001), ii) a Support Vector
Machine (SVM) (Joachims, 1998) and iii) logis-
tic regression (Le Cessie and Van Houwelingen,
1992).11 Based on 10-fold cross-validation on the
training set, we select the SVM as the best perform-
ing model for the POEMS and TSV datasets. We
will use this model in all further experiments.

5.2 Class Imbalance in the POEMS Data

As shown in Table 1, the POEMS dataset is highly
imbalanced, with far more instances for the non-
metaphorical class. A common problem when train-
ing classifiers on imbalanced data is the classifier’s
bias towards the majority class. Several techniques
have been proposed to tackle this problem (Chawla,
2010). One example are resampling techniques
where, in the case of oversampling, the minority
class is increased by randomly adding duplicates
from this class to the training set. Undersampling,
on the other hand, reduces the number of instances
from the majority class in order to obtain a more
balanced distribution, at the cost of decreasing the
size of the training data.

Another solution is cost-sensitive learning where
the model is punished harder when misclassifying
instances from the minority class while prediction
errors on the majority class do not lead to high costs.
We determine the best suited approach to deal with
class imbalance using 10-fold cross-validation on
the POEMS training set. We select a cost-sensitive
SVM12 with a Radial Basis Function (RBF) kernel
for the POEMS model. We use this cost-sensitive
model in all further experiments.

11We use the Scikit-learn toolkit (Pedregosa et al., 2011)
implementations for all models.

12In Scikit-learn, this algorithm can be made cost-sensitive
by adapting the parameter class weight, which controls
the weights attributed to each class.
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Features F1 (macro) stdev F1 (M) stdev

All features 72.7 (8.2) 54.7 (14.1)
All - supers. 70.2 (8.8) 51.3 (14.2)
All - embed. 67.8 (7.6) 48.4 (12.5)
All - ratings 71.9 (7.8) 53.6 (13.4)

Table 2: Feature ablation on the POEMS data
(Macro F1 and F1(M): F1 for the minority class;
stdev: standard deviation for cross-validation).

5.3 Feature Selection

We perform feature selection for POEMS and TSV

using feature ablation with 10-fold cross-validation
on the respective training sets. We conduct these
experiments to test our first hypothesis.

By dropping one feature at a time, we can de-
termine the feature’s importance by measuring the
decrease in performance in terms of F1-score. Ta-
ble 2 shows 10-fold cross-validation results for
POEMS. The highest F1-score is bolded while the
lowest is underlined. Removing word embeddings
results in the highest loss in performance, showing
their usefulness for metaphor detection. Since we
obtain highest performance when using all features,
we conclude that all feature types contribute rele-
vant information and keep them for the next set of
experiments.

We conduct the same experiment on the TSV

data. As for the POEMS, best results are obtained
when using all features. Results for the balanced
TSV dataset, however, are much higher with an
F1-score of 82.8% (10-fold cross-validation on the
training set).

We also compare the impact of different em-
beddings types. For POEMS, we obtain best re-
sults for the SkipGram embeddings (Reimers et
al., 2014) while for TSV, 100-dimensional Fast-
Text embeddings (Bojanowski et al., 2017) trained
on the SDeWac corpus (Faaß and Eckart, 2013)
give slightly higher results. We use FastText for all
subsequent experiments on the TSV dataset.

5.4 Context Features

Turney et al. (2011) state the hypothesis that ”the
degree of abstractness of the context in which a
given word appears is predictive of whether the
word is used in a metaphorical or literal sense”.
They support their claim with experiments showing
that i) the abstractness of an adjective’s noun, seen
as context, can be used to predict the adjective’s
metaphoricity and ii) averaged abstractness ratings
of a verb’s context, excluding the verb itself, can

be used to predict the verb’s metaphoricity. In
all experiments, the authors report classification
performances significantly higher than the majority
class baselines and systems from related work.

While Turney et al. (2011) use only the noun
modified by the adjective as context, we extend
their hypothesis and test whether using features
extracted from the A-N pairs’ surrounding context
can further improve classification accuracy (H2).
In addition to affective ratings, we also extract su-
persenses and word embeddings from the context
and add these new features to the feature vectors.

Context feature extraction We extract features
for word embeddings, supersenses and affective rat-
ings from a context window of size 20 for each A-N
pair and concatenate the additional feature repre-
sentations with the feature vectors for the A-N pairs.
Similar to Turney et al. (2011)’s experiments on
verbs, we do not extract features for every word in
the context but limit feature extraction to adjectives,
nouns and verbs. The final context representation
is the average over all individual context features
for a specific A-N pair.

We use the same word embedding types that
gave us best results in the previous experiments. In
other words, we use Reimers et al. (2014)’s word
embeddings for POEMS and FastText word embed-
dings trained on SDeWac for the TSV data.

Context feature selection We now compare the
setting without context, using only features ex-
tracted for the A-N pairs, to models that are also
trained on context features. Again, we perform an
ablation study to measure each context feature’s
importance, doing 5-fold cross-validation on the
training set. The results for POEMS in Table 3
show a slight increase in overall F1-score; however,
the improvement on the minority class is subtle
and the high standard deviations for the different
folds shows that the results are not robust. Since re-
moving context supersenses from the set of context
features lowers the performance, we test another
setting in which we add only context supersense
features to the feature set. This setting corresponds
to the last row in Table 3. Since the cross-validation
results suggest that context supersenses might in-
clude relevant information for the metaphor detec-
tion model, we add them to the feature vector.

We run the same experiment for TSV. For this
model, we achieve highest F1-scores without addi-
tional context features. This means that we found
no evidence to support hypothesis H2 that con-
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Cont. features F1 (macro) stdev F1 (M) stdev

None 73.8 6.2 54.3 10.9
All 74.0 4.4 54.2 8.2
All - supers. 72.9 4.3 52.3 8.0
All - embed. 74.4 3.4 55.0 6.3
All - ratings 73.5 4.9 53.1 9.2

Only supers. 74.5 3.5 55.3 6.3

Table 3: POEMS context feature selection (in addi-
tion to features extracted from A-N pairs)

text features can provide useful information for
metaphor detection for A-N pairs.

This is in contrast to Turney et al. (2011) who
did report positive results for employing context
features for metaphor detection. There are, how-
ever, some crucial differences between their and
our setup. For adjectives, Turney et al. (2011) used
only the adjectives’ nominal heads as context but
did not include additional context features extracted
from the local context of the A-N pair. Thus, their
experiments only show improvements for using
context for verbal metaphors where they do extract
abstractness features for all nouns, adjectives and
verbs in a sentence.

As a result, we do not know whether the use
of additional context features might only be rele-
vant for verbs where we would add information
for verbal arguments that might be useful for dis-
ambiguation. For adjectives, we already include
their syntactic heads in our setup and the surround-
ing context might not be as relevant as for verbal
metaphors.

It might also be possible that our setup for ex-
tracting context information from a fixed-size win-
dow around the target A-N pair is suboptimal and
that a different approach might be more successful.
We leave this to future work.

Results on the test sets All experiments reported
above were run in a cross-validation setup on the
training sets and served to determine the best model
and feature combinations for each dataset. We now
report results on the test sets for the selected mod-
els and compare them to two baselines (Table 4).
The majority baseline simulates a rule-based sys-
tem that always predicts the majority class (i.e. lit-
eral) while probability matching corresponds to a
classifier that makes random predictions according
to the training set class distribution. For POEMS,
we also report the performance using supersense
context features in addition to the features extracted
from A-N pairs (All features + cont.).

Model Features macro F1 F1 (M)

POEMS Majority 42.6 0.0
Probab. matching 53.2 26.3
All features 62.9 42.8
All + supersense cont. 61.7 37.1

TSV Majority 35.2 0.0
Probab. matching 45.0 43.5
All features 79.7 76.3

Table 4: Baselines and test set results for POEMS

and TSV. All features corresponds to the best
model from the previous experiments.

For the POEMS, the features we investigate pro-
duce a model that substantially outperforms both
baselines and seems to be able to distinguish be-
tween metaphorical and literal uses of adjectives.
The improvements over the baselines, however,
are not statistically significant. In addition, the
supersense context features selected using cross-
validation on the training set do not generalise to
new data. We speculate that this might be related
to the dataset’s class imbalance in addition to its
relatively small size. Thus, increasing the size of
the dataset is highly recommendable and should be
the next step for future work.

For the balanced TSV dataset, results for the se-
lected model (last row of Table 4) are much higher
with an average F1 of 79.7% and an F1 for the
metaphorical class of 76.3%. Here, results are also
significantly better than both baselines.13

5.5 Domain impact

In our last experiment, we test the usefulness of
out-of-domain training data for metaphor detection
in German poetry (H3).

The datasets used for POEMS and for TSV

present several differences: the former is unbal-
anced, as opposed to the latter, and of smaller size.
Moreover, both datasets originate from different
domains, namely i) poetry and ii) a range of differ-
ent genres from the web. To test our hypothesis that
out-of-domain data can be used to improve results
for metaphor detection in poetry, we conduct the
following experiment.

We merge the training sets from the TSV and PO-
EMS datasets and shuffle the resulting dataset with
a fixed random state for reproducibility. We obtain
a training set consisting of 624 metaphorical and
1,047 literal instances, which form a total of 1,617
training instances; we denote this new training set

13Using McNemar’s test, both p-values are below 0.000001.
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Model Training set # F1 (macro) F1 (M)

Poems Original 578 62.9 42.8
Merged 1,671 58.8 32.9

TSV Original 1,149 79.7 76.3
Merged 1,671 81.2 78.3

Table 5: Test set results of POEMS and TSV using
merged in comparison to original training sets

as merged. We then train the best models selected
for POEMS and TSV on the merged training set and
test the models on the original two test sets.

Table 5 shows results for the models trained on
the merged training set; results using the original
training sets are repeated for comparison. Adding
out-of-domain training data to the POEMS did not
improve results, meaning that we cannot confirm
H3 (repeated below).

H3: Metaphors are not domain-dependent but a
general cognitive phenomenon, thus supple-
mentary out-of-domain training data can im-
prove results for metaphor detection in poetry.

The performance for the TSV data, however, did
increase when adding the additional training data
from the poetry corpus. At first glance, this is
somewhat surprising as adding the TSV data to the
poems results in a more balanced training set. This,
however, might not be the best idea when the dis-
tribution in the test set is highly imbalanced. As a
result, the classifier might have lost crucial infor-
mation about the class distribution, which might
explain the decrease in results.

To test whether this loss of information is respon-
sible for the results, we run another experiment
where we downsample both data sets so that both
training and test sets have the same size and class
distribution (table 6). Then we retrain and test our
models on the resized datasets.14 Table 7 shows
the same trend as before: training on POEMS does
not decrease results for TSV while training on TSV

yields substantially lower results for the POEMS.

14We report averaged results over 10 trials of sampling with
replacement.

train (M/L) test (M/L)

POEMS (orig) 100/478 98/280
TSV (orig) 546/603 65/77
DOWN-SAMPLED 100/217 65/77

Table 6: Train size and distribution of Metaphorical
/ Literal instances in the datasets.

Model Train-Test Prec. Rec. F1 stdev

Poems Poems-Poems 63.4 62.2 61.9 3.8
Poems-TSV 75.0 65.9 64.1 2.0

TSV TSV-TSV 75.1 65.2 63.0 2.3
TSV-Poems 59.5 52.9 44.3 3.6

Table 7: Cross-domain results for downsampled
datasets (averaged over 10 runs).

These results should be taken with a grain of salt
as the datasets are very small. In future work, we
would like to validate our findings on larger data.

For now, we cannot confirm that the difference
in class distribution in the training and test sets is
the underlying reason for our negative results re-
garding H3. We thus have to assume that the use of
metaphors in expressionist poetry is crucially dif-
ferent from the one in every-day life, as described
by Dietz (1959).

6 Conclusions & Outlook
In the paper, we presented first steps towards
metaphor detection in German literature, in par-
ticular, in expressionist poetry. We created two
datasets with adjective-noun pairs, manually an-
notated for metaphoricity, and evaluated models
for metaphor detection for German. Our results
show that features that have been used for other lan-
guages work well for German, too, and that word
embeddings in particular are valuable features. We
tested whether additional context information can
improve classification accuracy, with negative re-
sults. We also explored the domain-dependence
for metaphor detection by adding supplementary
out-of-domain training data. Here, the results were
mixed and require future investigation.

One important finding of our work is that results
for metaphor detection are highly dependent on the
class distribution in the dataset, and that balanced
corpora give overly optimistic and thus misleading
results.

For future work, the most important step is to
increase the size of the datasets and to add anno-
tations for other metaphors types, such as verbal
metaphors. Metaphor annotation is a challenging
task where agreement between annotators is often
low. As has been noted before (Shutova, 2017;
Gibbs, 1984), metaphoricity can be seen as a con-
tinuum. Thus, it might be recommendable to an-
notate metaphors on a scale instead of categorising
them into binary classes. This would allow annota-
tors to capture shades of gray and give them more
flexibility while avoiding arbitrary decisions.
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Maximilian Köper and Sabine Schulte im Walde.
2017. Applying Multi-Sense Embeddings for Ger-
man Verbs to Determine Semantic Relatedness and
to Detect Non-Literal Language. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
2, Short Papers, volume 2, pages 535–542.

Saisuresh Krishnakumaran and Xiaojin Zhu. 2007.
Hunting elusive metaphors using lexical resources.
In Workshop on Computational Approaches to Figu-
rative Language, pages 13–20.

George Lakoff. 1987. Women, Fire, and Dangerous
Things. Chicago University Press.

Saskia Le Cessie and Johannes C. Van Houwelingen.
1992. Ridge Estimators in Logistic Regression.
Journal of the Royal Statistical Society: Series C
(Applied Statistics), 41(1):191–201.

Birte Lönneker-Rodman. 2008. The hamburg
metaphor database project: issues in resource
creation. Language Resources and Evaluation,
42(3):293–318.
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A.1 List of authors for the POEMS dataset
The following table lists the authors of the poems included in the POEMS corpus, with the number of
poems for each author.

Author # poems Author # poems
Gottfried Benn 10 Johannes R. Becher 6
Julius Maria Becker 24 Frieda Bettingen 22
Ernst Blass 68 Paul Boldt 8
Theodor Däubler 62 Gerrit Engelke 66
Max Herrmann-Neisse 12 Georg Heym 87
Jakob van Hoddis 8 Oskar Kanehl 4
Georg Kulka 28 Else Lasker-Schueler 151
Heinrich Lersch 47 Alfred Lichtenstein 123
Oskar Loerke 45 Ernst Wilhelm Lotz 19
Ludwig Rubiner 21 Gustav Sack 65
Daniel Schiebeler 4 Ernst Stadler 116
August Stramm 71 Ernst Toller 5
Georg Trakl 91 Franz Werfel 35
Alfred Wolfenstein 2

Authors of poems in the dataset POEMS

A.2 Categorisation for adjectives and annotation criteria
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Abstract

Contextualized word embeddings (CWE)
such as provided by ELMo (Peters et al.,
2018), Flair NLP (Akbik et al., 2018), or
BERT (Devlin et al., 2019) are a major re-
cent innovation in NLP. CWEs provide se-
mantic vector representations of words de-
pending on their respective context. Their
advantage over static word embeddings has
been shown for a number of tasks, such
as text classification, sequence tagging, or
machine translation. Since vectors of the
same word type can vary depending on the
respective context, they implicitly provide
a model for word sense disambiguation
(WSD). We introduce a simple but effective
approach to WSD using a nearest neigh-
bor classification on CWEs. We compare
the performance of different CWE mod-
els for the task and can report improve-
ments above the current state of the art
for two standard WSD benchmark datasets.
We further show that the pre-trained BERT
model is able to place polysemic words into
distinct ‘sense’ regions of the embedding
space, while ELMo and Flair NLP do not
seem to possess this ability.

1 Synonymy and Polysemy of Word
Representations

Lexical semantics is characterized by a high degree
of polysemy, i.e. the meaning of a word changes
depending on the context in which it is currently
used (Harris, 1954). Word Sense Disambiguation
(WSD) is the task to identify the correct sense of
the usage of a word from a (usually) fixed inven-
tory of sense identifiers. For the English language,
WordNet (Fellbaum, 1998) is the most commonly
used sense inventory providing more than 200K
word-sense pairs.

To train and evaluate WSD systems, a number
of shared task datasets have been published in the
SemEval workshop series. In the lexical sample
task (Kilgarriff, 2001; Mihalcea et al., 2004), a
training set and a test set is provided. The rel-
atively large data contains one sense-annotated
word per training/test instance. The all-words task
(Edmonds and Cotton, 2001; Snyder and Palmer,
2004) only provides a small number of documents
as test data where each ambiguous word is anno-
tated with its sense. To facilitate the comparison
of WSD systems, some efforts have been made
to provide a comprehensive evaluation framework
(Raganato et al., 2017), and to unify all publicly
available datasets for the English language (Vial et
al., 2018b).

WSD systems can be distinguished into three
types — knowledge-based, supervised, and semi-
supervised approaches. Knowledge-based systems
utilize language resources such as dictionaries, the-
sauri and knowledge graphs to infer senses. Su-
pervised approaches train a machine classifier to
predict a sense given the target word and its con-
text based on an annotated training data set. Semi-
supervised approaches extend manually created
training sets by large corpora of unlabeled data to
improve WSD performance. All approaches rely
on some way of context representation to predict
the correct sense. Context is typically modeled via
dictionary resources linked with senses, or as some
feature vector obtained from a machine learning
model.

A fundamental assumption in structuralist lin-
guistics is the distinction between signifier and
signified as introduced by Ferdinand de Saussure
(Saussure, 2001) in the early 20th century. Com-
putational linguistic approaches, when using char-
acter strings as the only representatives for word
meaning, implicitly assume identity between signi-
fier and signified. Different word senses are simply
collapsed into the same string representation. In
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this respect, word counting and dictionary-based
approaches to analyze natural language texts have
been criticized as pre-Saussurean (Pêcheux et al.,
1995). In contrast, the distributional hypothesis not
only states that meaning is dependent on context.
It also states that words occurring in the same con-
texts tend to have a similar meaning (Harris, 1954).
Hence, a more elegant way of representing mean-
ing has been introduced by using the contexts of
a word as an intermediate semantic representation
that mediates between signifier and signified. For
this, explicit vector representations, such as TF-
IDF, or latent vector representations, with reduced
dimensionality, have been widely used. Latent vec-
tor representations of words are commonly called
word embeddings. They are fixed length vector
representations, which are supposed to encode se-
mantic properties. The seminal neural word embed-
ding model Word2Vec (Mikolov et al., 2013), for
instance, can be trained efficiently on billions of
sentence contexts to obtain semantic vectors, one
for each word type in the vocabulary. It allows
synonymous terms to have similar vector repre-
sentations that can be used for modeling virtually
any downstream NLP task. Still, a polysemic term
is represented by one single vector only, which
represents all of its different senses in a collapsed
fashion.

To capture polysemy as well, the idea of word
embeddings has been extended to encode word
sense embeddings. Neelakantan et al. (2014) first
introduced a neural model to learn multiple em-
beddings for one word depending on different
senses. The number of senses can be defined by
a given parameter, or derived automatically in a
non-paramentric version of the model. However,
employing sense embeddings in any downstream
NLP task requires a reliable WSD system in an ear-
lier stage to decide how to choose the appropriate
embedding from the sense inventory.

Recent efforts to capture polysemy for word
embeddings give up on the idea of a fixed word
sense inventory. Contextualized word embeddings
(CWE) do not only create one vector representa-
tion for each type in the vocabulary, they also they
produce distinct vectors for each token in a given
context. The contextualized vector representation
is supposed to represent word meaning and context
information. This enables downstream tasks to ac-
tually distinguish the two levels of the signifier and
the signified allowing for more realistic modeling

of natural language. The advantage of such contex-
tually embedded token representations compared to
static word embeddings has been shown for a num-
ber of tasks such as text classification (Zampieri
et al., 2019) and sequence tagging (Akbik et al.,
2018).

Contribution: We show that CWEs can be uti-
lized directly to approach the WSD task due to their
nature of providing distinct vector representations
for the same token depending on its context. To
learn the semantic capabilities of CWEs, we em-
ploy a simple, yet interpretable approach to WSD
using a k-nearest neighbor classification (kNN) ap-
proach. We compare the performance of three dif-
ferent CWE models on four standard benchmark
datasets. Our evaluation yields that not all con-
textualization approaches are equally effective in
dealing with polysemy, and that the simple kNN
approach suffers severely from sparsity in training
datasets. Yet, by using kNN, we include prove-
nance into our model, which allows to investigate
the training sentences that lead to the classifier’s
decision. Thus, we are able to study to what extent
polysemy is captured by a specific contextualiza-
tion approach. For two datasets, we are able to
report new state-of-the-art (SOTA) results.

2 Related Work

2.1 Neural Word Sense Disambiguation

Several efforts have been made to induce differ-
ent vectors for the multiplicity of senses a word
can express. Bartunov et al. (2016), Neelakantan
et al. (2014), or Rothe and Schütze (2015) induce
so-called sense embeddings in a pre-training fash-
ion. While Bartunov et al. (2016) induce sense em-
beddings in an unsupervised way and only fix the
maximum number of senses per word, Rothe and
Schütze (2015) require a pre-labeled sense inven-
tory such as WordNet. Then, the sense embeddings
are mapped to their corresponding synsets. Other
approaches include the re-use of pre-trained word
embeddings in order to induce new sense embed-
dings (Pelevina et al., 2016; Remus and Biemann,
2018). Panchenko et al. (2017) then also use in-
duced sense embeddings for the downstream task
of WSD. Camacho-Collados and Pilehvar (2018)
provide an extensive overview of different word
sense modeling approaches.

For WSD, (semi-)supervised approaches with re-
current neural network architectures represent the
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current state of the art. Two major approaches were
followed. First, Melamud et al. (2016) and Yuan et
al. (2016), for instance, compute sentence context
vectors for ambiguous target words. In the predic-
tion phase, they select nearest neighbors of context
vectors to determine the target word sense. Yuan et
al. (2016) also use unlabeled sentences in a semi-
supervised label propagation approach to overcome
the sparse training data problem of the WSD task.
Second, Kågebäck and Salomonsson (2016) em-
ploy a recurrent neural network to classify sense
labels for an ambiguous target word given its sur-
rounding sentence context. In contrast to earlier
approaches, which relied on feature engineering
(Taghipour and Ng, 2015), their architecture only
uses pretrained GloVe word embeddings (Penning-
ton et al., 2014) to achieve SOTA results on two
English lexical sample datasets. For the all-words
WSD task, Vial et al. (2018a) also employ a recur-
rent neural network. But instead of single target
words, they sequentially classify sense labels for
all tokens in a sentence. They also introduce an
approach to collapse the sense vocabulary from
WordNet to unambiguous hypersenses, which in-
creases the label to sample ratio for each label,
i.e. sense identifier. By training their network on
the large sense annotated datasets SemCor (Miller
et al., 1993) and the Princeton Annotated Gloss
Corpus based on WordNet synset definitions (Fell-
baum, 1998), they achieve the highest performance
so far on most all-words WSD benchmarks. A sim-
ilar architecture with an enhanced sense vocabulary
compression was applied in (Vial et al., 2019), but
instead of GloVe embeddings, BERT wordpiece
embeddings (Devlin et al., 2019) are used as in-
put for training. Especially the BERT embeddings
further improved the performance yielding new
state-of-the-art results.

2.2 Contextualized Word Embeddings

The idea of modeling sentence or context-level se-
mantics together with word-level semantics proved
to be a powerful innovation. For most downstream
NLP tasks, CWEs drastically improved the perfor-
mance of neural architectures compared to static
word embeddings. However, the contextualization
methodologies differ widely. We, thus, hypothesize
that they are also very different in their ability to
capture polysemy.

Like static word embeddings, CWEs are trained
on large amounts of unlabeled data by some vari-

ant of language modeling. In our study, we in-
vestigate three most prominent and widely applied
approaches: Flair (Akbik et al., 2018), ELMo (Pe-
ters et al., 2018), and BERT (Devlin et al., 2019).

Flair: For the contextualization provided in the
Flair NLP framework, Akbik et al. (2018) take a
static pre-trained word embedding vector, e.g. the
GloVe word embeddings (Pennington et al., 2014),
and concatenate two context vectors based on the
left and right sentence context of the word to it.
Context vectors are computed by two recurrent neu-
ral models, one character language model trained
from left to right, one another from right to left.
Their approach has been applied successfully es-
pecially for sequence tagging tasks such as named
entity recognition and part-of-speech tagging.

ELMo: Embeddings from language models
(ELMo) (Peters et al., 2018) approaches contextual-
ization similar to Flair, but instead of two character
language models, two stacked recurrent models for
words are trained, again one left to right, and an-
other right to left. For CWEs, outputs from the
embedding layer, and the two bidirectional recur-
rent layers are not concatenated, but collapsed into
one layer by a weighted, element-wise summation.

BERT: In contrast to the previous two ap-
proaches, Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2019)
does not rely on the merging of two uni-directional
recurrent language models with a (static) word em-
bedding, but provides contextualized token embed-
dings in an end-to-end language model architec-
ture. For this, a self-attention based transformer
architecture is used, which, in combination with a
masked language modeling target, allows to train
the model seeing all left and right contexts of a
target word at the same time. Self-attention and
non-directionality of the language modeling task re-
sult in extraordinary performance gains compared
to previous approaches.

According to the distributional hypothesis, if the
same word regularly occurs in different, distinct
contexts, we may assume polysemy of its mean-
ing (Miller and Charles, 1991). Contextualized
embeddings should be able to capture this prop-
erty. In the following experiments, we investigate
this hypothesis on the example of the introduced
models.
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SE-2 (Tr) SE-2 (Te) SE-3 (Tr) SE-3 (Te) S7-T7 (coarse) S7-T17 (fine) SemCor WNGT

#sentences 8,611 4,328 7,860 3,944 126 245 37,176 117,659
#CWEs 8,742 4,385 9,280 4520 455 6,118 230,558 1,126,459

#distinct words 313 233 57 57 327 1,177 20,589 147,306
#senses 783 620 285 260 371 3,054 33,732 206,941

avg #senses p. word 2.50 2.66 5.00 4.56 1.13 2.59 1.64 1.40
avg #CWEs p. word & sense 11.16 7.07 32.56 17.38 1.23 2.00 6.83 5.44

avg k′ 2.75 - 7.63 - - - 3.16 2.98

Table 1: Properties of our datasets. For the test sets (Te), we do not report k′ since they are not used as
kNN training instances.

3 Nearest Neighbor Classification for
WSD

We employ a rather simple approach to WSD us-
ing non-parametric nearest neighbor classification
(kNN) to investigate the semantic capabilities of
contextualized word embeddings. Compared to
parametric classification approaches such as sup-
port vector machines or neural models, kNN has
the advantage that we can directly investigate the
training examples that lead to a certain classifier
decision.

The kNN classification algorithm (Cover and
Hart, 1967) assigns a plurality vote of a sample’s
nearest labeled neighbors in its vicinity. In the most
simple case, one-nearest neighbor, it predicts the
label from the nearest training instance by some
defined distance metric. Although complex weight-
ing schemes for kNN exist, we stick to the simple
non-parametric version of the algorithm to be able
to better investigate the semantic properties of dif-
ferent contextualized embedding approaches.

As distance measure for kNN, we rely on cosine
distance of the CWE vectors. Our approach consid-
ers only senses for a target word that have been ob-
served during training. We call this approach local-
ized nearest neighbor word sense disambiguation.
We use spaCy1 (Honnibal and Johnson, 2015) for
pre-processing and the lemma of a word as the tar-
get word representation, e.g. ‘danced’, ‘dances’ and
‘dancing’ are mapped to the same lemma ‘dance’.
Since BERT uses wordpieces, i.e. subword units
of words instead of entire words or lemmas, we
re-tokenize the lemmatized sentence and average
all wordpiece CWEs that belong to the target word.
Moreover, for the experiments with BERT embed-
dings2, we follow the heuristic by Devlin et al.
(2019) and concatenate the averaged wordpiece
vectors of the last four layers.

1https://spacy.io/
2We use the bert-large-uncased model.

We test different values for our single hyper-
parameter k ∈ {1, . . . ,10,50,100,500,1000}. Like
words in natural language, word senses follow a
power-law distribution. Due to this, simple base-
line approaches for WSD like the most frequent
sense (MFS) baseline are rather high and hard to
beat. Another effect of the skewed distribution are
imbalanced training sets. Many senses described in
WordNet only have one or two example sentences
in the training sets, or are not present at all. This is
severely problematic for larger k and the default im-
plementation of kNN because of the majority class
dominating the classification result. To deal with
sense distribution imbalance, we modify the ma-
jority voting of kNN to k′ = min(k, |Vs|) where Vs

is the set of CWEs with the least frequent training
examples for a given word sense s.

4 Datasets

We conduct our experiments with the help of four
standard WSD evaluation sets, two lexical sam-
ple tasks and two all-words tasks. As lexical sam-
ple tasks, SensEval-2 (Kilgarriff, 2001, SE-2) and
SensEval-3 (Mihalcea et al., 2004, SE-3) provide
a training data set and test set each. The all-words
tasks of SemEval 2007 Task 7 (Navigli et al., 2007,
S7-T7) and Task 17 (Pradhan et al., 2007, S7-T17)
solely comprise test data, both with a substantial
overlap of their documents. The two sets differ
in granularity: While ambiguous terms in Task 17
are annotated with one WordNet sense only, in
Task 7 annotations are coarser clusters of highly
similar WordNet senses. For training of the all-
words tasks, we use a) the SemCor dataset (Miller
et al., 1993), and b) the Princeton WordNet gloss
corpus (WNGT) (Fellbaum, 1998) separately to
investigate the influence of different training sets
on our approach. For all experiments, we utilize
the suggested datasets as provided by the UFSAC
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Model SE-2 SE-3 S7-T7 (coarse) S7-T17 (fine)
SemCor WNGT SemCor WNGT

Flair 65.27 68.75 69.24 78.68 45.92 50.99
ELMo 67.57 70.70 70.80 79.12 52.61 50.11
BERT 76.10 78.62 73.61 81.11 59.82 55.16

Table 2: kNN with k = 1 WSD performance (F1%).
Best results for each testset are marked bold.

framework3 (Vial et al., 2018b), i.e. the respective
training data. A concise overview of the data can
be found in Table 1. From this, we can observe
that the SE-2 and SE-3 training data sets, which
were published along with the respective test sets,
provide many more examples per word and sense
than SemCor or WNGT.

5 Experimental Results

We conduct two experiments to determine whether
contextualized word embeddings can solve the
WSD task. In our first experiment, we compare
different pre-trained embeddings with k = 1. In
our second experiment, we test multiple values of
k and the BERT pre-trained embeddings4 in order
to estimate an optimal k. Further, we qualitatively
examine the results to analyze, which cases can be
typically solved by our approach and where it fails.

5.1 Contextualized Embeddings
To compare different CWE approaches, we use
k= 1 nearest neighbor classification. Table 2 shows
a high variance in performance. Simple kNN with
ELMo as well as BERT embeddings beats the state
of the art of the lexical sample task SE-2 (cp. Ta-
ble 3). BERT also outperforms all others on the
SE-3 task.

However, we observe a major performance drop
of our approach for the two all-words WSD tasks
in which no training data is provided along with
the test set. For S7-T7 and S7-T17, the content and
structure of the out-of-domain SemCor and WNGT
training datasets differ drastically from those in
the test data, which prevents yielding near state-
of-the-art results. In fact, similarity of contextual-
ized embeddings largely relies on semantically and
structurally similar sentence contexts of polysemic
target words. Hence, the more example sentences
can be used for a sense, the higher are the chances

3Unification of Sense Annotated Corpora and Tools. We
are using Version 2.1: https://github.com/getalp/
UFSAC

4BERT performed best in experiment one.

k SE-2 SE-3 S7-T7 S7-T17

1 76.10 78.62 81.11 59.82
2 76.10 78.62 81.11 59.82
3 76.52 79.66 80.94 59.38
4 76.52 79.55 80.94 59.82
5 76.43 79.79 81.07 60.27
6 76.43 79.81 81.07 60.27
7 76.50 80.02 81.03 60.49
8 76.50 79.86 81.03 60.49
9 76.40 79.97 81.03 60.49

10 76.40 80.12 81.03 60.49
50 76.43 79.66 81.11 60.94

100 76.43 79.63 81.20 60.71
500 76.38 79.63 81.11 60.71

1000 76.38 79.63 81.11 60.71

MFS 54.79 58.95 70.94 48.44
Kågebäck (2016) 66.90 73.40 - -

Yuan et al. (2016) - - 84.30 63.70
Vial et al. (2018a) - - 86.02 66.81
Vial et al. (2019) - - 90.60 71.40

Table 3: Best kNN models vs. most frequent sense
(MFS) and state of the art (F1%). Best results
are bold, previous SOTA is in italics and our best
results are underlined.

that a nearest neighbor expresses the same sense.
As can be seen in Table 1, the SE-2 and SE-3 train-
ing datasets provide more CWEs for each word
and sense, and our approach performs better with
a growing number of CWEs, even with a higher
average number of senses per word as is the case
in SE-3.

Thus, we conclude that the nearest neighbor ap-
proach suffers specifically from data sparseness.
The chances increase that aspects of similarity other
than the sense of the target word in two compared
sentence contexts drive the kNN decision. More-
over, CWEs actually do not organize well in spher-
ically shaped form in the embedding space. Al-
though senses might be actually separable, the non-
parametric kNN classification is unable to learn a
complex decision boundary focusing only on the
most informative aspects of the CWE (Yuan et al.,
2016, p. 4).

5.2 Nearest Neighbors

K-Optimization: To attenuate for noise in the
training data, we optimize for k to obtain a more ro-
bust nearest neighbor classification. Table 3 shows
our best results using the BERT embeddings along
with results from related works. For SensEval-2
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and SensEval-3, we achieve a new state-of-the-art
result. We observe convergence with higher k val-
ues since our k′ normalization heuristic is activated.
For the S7-T*, we also achieve minor improve-
ments with a higher k, but still drastically lack be-
hind the state of the art.

Senses in CWE space: We investigate how well
different CWE models encode information such as
distinguishable senses in their vector space. Fig-
ure 1 shows T-SNE plots (van der Maaten and Hin-
ton, 2008) of six different senses of the word “bank”
in the SE-3 training dataset encoded by the three
different CWE methods. For visualization pur-
poses, we exclude senses with a frequency of less
than two. The Flair embeddings hardly allow to dis-
tinguish any clusters as most senses are scattered
across the entire plot. In the ELMo embedding
space, the major senses are slightly more separated
in different regions of the point cloud. Only in the
BERT embedding space, some senses form clearly
separable clusters. Also within the larger clusters,
single senses are spread mostly in separated regions
of the cluster. Hence, we conclude that BERT em-
beddings actually seem to encode some form of
sense knowledge, which also explains why kNN
can be successfully applied to them. Moreover, we
can see why a more powerful parametric classifi-
cation approach such as employed by Vial et al.
(2019) is able to learn clear decision boundaries.
Such clear decision boundaries seem to success-
fully solve the data sparseness issue of kNN.

Error analysis: From a qualitative inspection of
true positive and false positive predictions, we are
able to infer some semantic properties of the BERT
embedding space and the used training corpora. Ta-
ble 4 shows selected examples of polysemic words
in different test sets, including their nearest neigh-
bor from the respective training set.

Not only vocabulary overlap in the context as in
‘along the bank of the river’ and ‘along the bank of
the river Greta’ (2) allows for correct predictions,
but also semantic overlap as in ‘little earthy bank’
and ‘huge bank [of snow]’ (3). On the other hand,
vocabulary overlap, as well as semantic relatedness
as in ‘land bank’ (5) can lead to false predictions.
Another interesting example for the latter is the con-
fusion between ‘grass bank’ and ‘river bank’ (6)
where the nearest neighbor sentence in the training
set shares some military context with the target sen-
tence. The correct sense (bank%1:17:01::Sloping

Land) and the predicted sense (bank%1:17:00::A
Long Ridge or Pile [of earth]) share high semantic
similarity, too. In this example, they might even
be used interchangeably. Apparently this context
yields higher similarity than any of the other train-
ing sentences containing ‘grass bank’ explicitly.

In Example (10), the targeted sense is an action,
i.e. a verb sense, while the predicted sense is a
noun, i.e. a different word class. In general, this
could be easily fixed by restricting the classifier de-
cision to the desired POS. However, while example
(12) is still a false positive, it nicely shows that the
simple kNN approach is able to distinguish senses
by word class even though BERT never learned
POS classes explicitly. This effect has been in-
vestigated in-depth by Jawahar et al. (2019), who
found that each BERT layer learns different struc-
tural aspects of natural language. Example (12)
also emphasizes the difficulty of distinguishing
verb senses itself, i.e. the correct sense label in
this example is watch%2:39:00::look attentively
whereas the predicted label and the nearest neigh-
bor is watch%2:41:00::follow with the eyes or the
mind; observe. Verb senses in WordNet are very
fine grained and thus harder to distinguish automat-
ically and by humans, too.

5.3 Post-evaluation experiment

In order to address the issue of mixed POS senses,
we run a further experiment, which restricts words
to their lemma and their POS tag. Table 5 shows
that including the POS restriction increases the
F1 scores for S7-T7 and S7-T17. This can be ex-
plained by the number of different POS tags that
can be found in the different corpora (c.f. Table 6).
The results are more stable with respect to their rel-
ative performance, i.e. SemCor and WNGT reach
comparable scores on S7-T17. Also, the results for
SE-2 and SE-3 did not change drastically. This can
be explained by the average number of POS tags a
certain word is labeled with. This variety is much
stronger in the S7-T* tasks compared to SE-*.

6 Conclusion

In this paper, we tested the semantic properties of
contextualized word embeddings (CWEs) to ad-
dress word sense disambiguation.5 To test their
capabilities to distinguish different senses of a par-
ticular word, by placing their contextualized vector

5The source code of our experiments is publicly available
at: https://github.com/uhh-lt/bert-sense
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Example sentence Nearest neighbor

SE-3 (train) SE-3 (test)

(1) President Aquino, admitting that the death of Ferdinand
Marcos had sparked a wave of sympathy for the late
dictator, urged Filipinos to stop weeping for the man
who had laughed all the way to the bank[A Bank Building].

They must have been filled in at the
bank[A Bank Building] either by Mr Hatton himself
or else by the cashier who was attending to him.

(2) Soon after setting off we came to a forested valley along
the banks[Sloping Land] of the Gwaun.

In my own garden the twisted hazel, corylus avellana
contorta, is underplanted with primroses, bluebells and
wood anemones, for that is how I remember them grow-
ing, as they still do, along the banks[Sloping Land] of the
rive Greta

(3) In one direction only a little earthy bank[A Long Ridge]
separates me from the edge of the ocean, while in the
other the valley goes back for miles and miles.

The lake has been swept clean of snow by the wind,
the sweepings making a huge bank[A Long Ridge] on our
side that we have to negotiate.

(4) However, it can be possible for the documents to be
signed after you have sent a payment by cheque pro-
vided that you arrange for us to hold the cheque and not
pay it into the bank[A Financial Institution] until we have
received the signed deed of covenant.

The purpose of these stubs in a paying – in book is for
the holder to have a record of the amount of money he
had deposited in his bank[A Bank Building].

(5) He continued: assuming current market conditions do
not deteriorate further, the group, with conservative bor-
rowings, a prime land bank[A Financial Institution] and a
good forward sales position can look forward to another
year of growth.

Crest Nicholson be the exception, not have much of
a land bank[Supply or Stock] and rely on its skill in land
buying.

(6) The marine said, get down behind that grass
bank[A Long Ridge], sir, and he immediately lobbed a
mills grenade into the river.

The guns were all along the river bank[Sloping Land] as
far as I could see.

SemCor S7-T17

(7) Some 30 balloon[Large Tough Nonrigid Bag] shows are held
annually in the U.S., including the world’s largest con-
vocation of ersatz Phineas Foggs – the nine-day Albu-
querque International Balloon Fiesta that attracts some
800,000 enthusiasts and more than 500 balloons, some
of which are fetchingly shaped to resemble Carmen
Miranda, Garfield or a 12-story-high condom.

Homes and factories and schools and a big wide federal
highway, instead of peaceful corn to rest your eyes
on while you tried to rest your heart, while you tried
not to look at the balloon[Large Tough Nonrigid Bag] and
the bandstand and the uniforms and the flash of the
instruments.

(8) The condom balloon[Large Tough Nonrigid Bag] was denied
official entry status this year.

Just like the balloon[Large Tough Nonrigid Bag] would go
up and you could sit all day and wish it would spring a
leak or blow to hell up and burn and nothing like that
would happen.

(9) Starting with congressman Mario Biaggi (now serving a
jail sentence[The Period of Time a Prisoner Is Imprisoned]), the
company began a career of bribing federal, state and
local public officials and those close to public officials,
right up to and including E. Robert Wallach, close friend
and adviser to former attorney general Ed Meese.

When authorities convicted him of practicing medicine
without a license (he got off with a suspended
sentence[The Period of Time a Prisoner Is Imprisoned] of three
years because of his advanced age of 77), one of his vic-
tims was not around to testify: he was dead of cancer.”

(10) Americans it seems have followed Mal-
colm Forbes’s hot-air lead and taken to bal-
loon[To Ride in a Hot-Air Balloon] in a heady way.

Just like the balloon[Large Tough Nonrigid Bag] would go
up and you could sit all day and wish it would spring a
leak or blow to hell up and burn and nothing like that
would happen.

(11) Any question as to why an author would believe this
plaintive, high-minded note of assurance is necessary
is answered by reading this book[A Published Written Work]
about sticky fingers and sweaty scammers.

But the book[A Written Version of a Play] is written around
a somewhat dizzy cartoonist, and it has to be that way.

(12) In between came lots of coffee drinking while watch-
ing[To Look Attentively] the balloons inflate and lots of
standing around deciding who would fly in what balloon
and in what order [. . . ].

So Captain Jenks returned to his harbor post to
watch[To Follow With the Eyes or the Mind; observe] the scout-
ing plane put in five more appearances, and to feel the
certainty of this dread rising within him.

Table 4: Example predictions based on nearest neighbor sentences. The word in question is marked in
boldface, subset with a short description of its WordNet synset (true positives green, false positives red).
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(a) BERT (b) Flair (c) ELMo

Figure 1: T-SNE plots of different senses of ‘bank’ and their contextualized embeddings. The legend
shows a short description of the respective WordNet sense and the frequency of occurrence in the training
data. Here, the SE-3 training dataset is used.

k SE-2 SE-3 S7-T7 S7-T17
SemCor WNGT SemCor WNGT

1 76.10 78.62 79.30 85.23 61.38 61.98
3 76.52 79.66 79.44 85.01 60.94 62.64
7 76.50 80.02 79.35 85.05 62.50 62.20

10 76.40 80.12 79.40 85.10 62.72 62.20
30 76.43 79.66 79.40 85.14 63.17 61.98
70 76.43 79.61 79.35 85.23 62.95 61.98

100 76.43 79.63 79.35 85.32 62.95 61.98
300 76.43 79.63 79.35 85.32 62.95 61.98

Table 5: Best POS-sensitive kNN models. Bold
numbers are improved results over Table 3.

representation into different regions of the shared
vector space, we used a k-nearest neighbor ap-
proach, which allows us to investigate their proper-
ties on an example basis. For experimentation, we
used pre-trained models from Flair NLP (Akbik et
al., 2018), ELMo (Peters et al., 2018), and BERT
(Devlin et al., 2019). Further, we tested our hypoth-
esis on four standard benchmark datasets for word
sense disambiguation. We conclude that WSD can
be surprisingly effective using solely CWEs. We
are even able to report improvements over state-of-
the-art results for the two lexical sample tasks of
SenseEval-2 and SensEval-3.

Further, experiments showed that CWEs in gen-
eral are able to capture senses, i.e. words, when
used in a different sense, are placed in different
regions. This effect appeared strongest using the
BERT pre-trained model, where example instances
even form clusters. This might give rise to future
directions of investigation, e.g. unsupervised word
sense-induction using clustering techniques.

Noun Adj Verb Other
avg #POS
per word

SE-2 (tr) 41.32 16.57 42.11 0.00 1.0
SE-2 (te) 40.98 16.56 42.46 0.00 1.0
SE-3 (tr) 46.45 3.94 49.61 0.00 1.0
SE-3 (te) 46.17 3.98 49.86 0.00 1.0
S7-T7 49.00 15.75 26.14 9.11 1.03
S7-T17 34.95 0.00 65.05 0.00 1.01
SemCor 38.16 14.70 38.80 8.34 1.10
WNGT 57.93 21.57 15.55 4.96 1.07

Table 6: Percentage of senses with a certain POS
tag in the corpora.

Since the publication of the BERT model, a num-
ber of extensions based on transformer architec-
tures and language model pre-training have been
released. In future work, we plan to evaluate also
XLM (Lample and Conneau, 2019), RoBERTa (Liu
et al., 2019) and XLNet (Yang et al., 2019) with our
approach. In our qualitative error analysis, we ob-
served many near-misses, i.e. the target sense and
the predicted sense are not particularly far away.
We will investigate if more powerful classification
algorithms for WSD based on contextualized em-
beddings are able to solve this issue even in cases
of extremely sparse training data.
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Abstract
In recent years the study of social media
communities has come into the focus of
research. One open but central question
is which properties stimulate user inter-
action within communities and thus con-
tribute to community building. In this pa-
per, we provide a first step towards answer-
ing this question by identifying features
in the Jodel microblogging app that trig-
ger user responses as one form of attention.
Jodel is a geographically restricted app that
allows users to post threads and comments
anonymously. The absence of displayed
user information on Jodel makes the posted
content the only trigger for user interac-
tion, making the language the one and only
means for users to gather contextual impli-
cations about their discourse partners. This
enhanced function of language promises
a revealing baseline investigation into lin-
guistic behavior on social media.

To approach this issue, we conducted a se-
quence of lexico-grammatical analyses and

subjected the quantitative results to various
statistical tests. While a Principal Compo-
nent Analysis did not show a significant dif-
ference between the grammatical structure
of original posts with and without answers,
a negative binomial regression model fo-
cusing on the interpersonal meta-function
yielded significant results. A further analy-
sis of these features correlated to shorter or
longer response times showed significant
results for the interrogative mood. Addi-
tionally, keyword analyses revealed signif-
icant differences between posts with an-
swers and without answers. Our study pro-
vides a promising first step towards under-
standing textual features triggering user in-
teraction and thereby community building
– an unresolved problem of practical rele-
vance to social network operation.

1 Introduction

Social media in general and microblogging in par-
ticular create social spaces that are different from
any we encounter in the physical world. In such
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online spaces, we can communicate with others
independently of geographical or social distance.
This form of communication is typically enriched
with meta information, e.g. user profiles, profile
pictures or status messages. The social space takes
on yet another form if posted content is not en-
riched by any data regarding the author – a new
type of microblogging.

One such space is created by the app Jodel. It
provides forums that are based solely on a user’s
location, i.e., only content in the user’s proximity
is shown. The users’ feeds automatically change as
soon as they move to a different location, forming
individual local communities. As there is no way
to use the app to intentionally get in touch with
the same people repeatedly, the purpose cannot be
to establish contacts or find specific like-minded
users, but rather to participate in a local commu-
nity/crowd. The only gain from posting on Jodel
comes in the form of upvotes/downvotes and re-
sponses, i.e. in receiving attention in one way or
another, something not every post is able to achieve.
Many original posts (original Jodels, or OJs), pass
by unnoticed, some generate only votes, others trig-
ger lively and long-lasting discussions.

The absence of any user-related information
makes the communication entirely anonymous and
leaves the discourse partners to draw conclusions
about each other on the basis of language only.
Using Jodel and its content-specific form of com-
munication therefore enables us to study language
specific properties that trigger user interaction.

The aim of this study is to find out whether there
are linguistic features which decide on or influence
the success of a post in terms of it generating an-
swers. We assume that certain topics, keywords
and lexico-grammatical features trigger different
response behavior patterns and intra-thread refer-
ences; in some threads, we can mainly find refer-
ences to the author of the OJ, while others entail
active discussions during which participants refer
to each other. These response-related patterns cre-
ate networks that are structured very differently
and, in future work, can work as a basis of compar-
ing anonymous communication as on Jodel with
non-anonymous discourse on platforms like Twitter
or Facebook.

In the following sections, we will briefly review
related work in the area of social media and in-
troduce Jodel in some more detail. Section 4 will
outline the dataset and methodology, before sec-

tion 5 will then present the results and conclusions
drawn from them. As this is an exploratory study,
we will outline future research perspectives, with a
focus on transdisciplinary approaches and goals.

2 Research on Microblogging

Social media is subject to several lines of research.
Generally, social media and the language that is
used on respective platforms present a challenge
to research in linguistics and communication sci-
ence, as the discourse format is fairly recent and
unusual and spelling and punctuation are less stan-
dardized (Golding et al., 2017). Analyses into
this field require interdisciplinary approaches (Bou-
vier, 2015) as well as part of speech-tagging for
highly non-standardized social media texts (Ne-
unerdt, 2016). The most related lines of research
can be summarized in four categories.

I) Firstly, the discourse patterns that are used
on or caused by social media are a main focus.
Conversational analyses have been conducted on
Twitter (D’Heer and Verdegem, 2015; Freelon
and Karpf, 2015) and Facebook (Androutsopou-
los, 2015; Bolander and Locher, 2015), including
also considerations on the function of such plat-
forms as news hubs and multipliers (Cataldi et al.,
2010). Many analyses in this field focus on indi-
vidual events, like election campaigns (Enli, 2017),
social or political movements (Poell, 2014; Kavada,
2015; Treré, 2015), natural disasters (Liu et al.,
2016) or controversial criminal cases (McEnery et
al., 2015); in short, events that often increase the
use of social media and produce high frequency
rates of the production of new content by the users.

Other studies focus on very concrete features of
social or linguistic nature, but independent of any
single (type of) event, thereby identifying character-
istics that are more generalizable for social media.
The topics here are very diverse and range from the
creation of virtual friendships and groups (Wang et
al., 2009; Chambers, 2013) to the linguistic man-
ifestation of such affiliations (Zappavigna, 2012),
dialectology (Eisenstein, 2018; Hovy and Purschke,
2018), humour (Locher and Bolander, 2015), lan-
guage change and awareness (Dooly, 2018) and
expectations towards peers (French and Bazarova,
2017), to name but a few.

II) Related, though not often explicitly con-
nected to this strand are sociological investigations
into the emergence of networks on social media
platforms. Even more so than studies into linguis-
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tic aspects, these analyses are almost exclusively
limited to one platform, as their functions are too
different to generalize findings or even permit the
creation of similar network structures. Some, such
as Facebook or Google+, work on the level of indi-
viduals as well as groups. They include fan-pages
and promote the use of private chats and groups,
and primarily make content visible to friends and
contacts. Others, like Twitter or Instagram, rely on
the profiles of individuals and, despite the function
to ‘follow’ users, make content publicly visible.
They are therefore used for different purposes, and
network structures vary considerably. The dynam-
ics of news production and trends, regardless of
the topic, makes this a very interesting field of re-
search.

III) Furthermore, as a special form of this dy-
namic structure, a number of studies analyses the
implications of social media platforms on web 2.0.
The vast majority of services does not provide a
differentiation between laymen and experts, and all
users can provide content and comment on events
without being subject to moderation or quality con-
trol (Laux and Schmitt, 2017). Political, economic,
scientific and mass media elites have discovered
social media as a means of self-promotion and, as
individuals or members of the organization, are
clearly influencing the course of debates. While
the tweets of regular users often have no (greater)
resonance, well-known personalities attract a lot
of attention and can use and increase social cap-
ital accumulated in other contexts. Reputation is
mirrored in the number of ‘followers’ (Laux and
Schmitt, 2017). This holds true for laymen as well,
and social media platforms have become a major
channel for aspiring models, musicians and other
celebrities.

IV) Lastly, every online space has to cope with
users that do not follow rules and produce fake
news and abusive content. A lot of research is
being conducted into creating means of identify-
ing and filtering such content (Waseem and Hovy,
2016; Mondal et al., 2017; Baider, 2018; Ruzaite,
2018), and platform providers are eager for success
in this field so as to avoid criticism and face poten-
tial consequences in the future. Especially since
political parties and stakeholders have taken to so-
cial media and Donald Trump’s election in 2016
was accompanied by many accusations regarding
“fake news”, this field of research has gained impor-
tance and has acquired an ideological dimension as

well. From an economic point of view, failing to
prevent harmful content can seriously harm a plat-
form and drive away users, as the downfall of the
Jodel-alike app YikYak demonstrated quite clearly
(Safronova, 2017).

In sum, popular platforms such as Twitter and
Facebook are the dominant focus in research. On
platforms like these, however, users always pro-
mote themselves to a certain degree and can be
assumed to adapt their content and language to the
image they wish to convey of themselves. Jodel,
being anonymous and therefore useless for self-
promotion, does not require its users to adapt to
anything. The discourse here is much rawer and
fewer variables interfere with or influence the lan-
guage, making the analysis of this discourse a
sound potential basis for research into other social
media channels.

3 Jodel Explained

Jodel is a mobile-only microblogging app.
Launched in 2014, it has been widely adopted in
several European and the GCC countries. Like
Twitter, Jodel enables users to share short posts of
up to 250 characters and images (or short videos).
Unlike Twitter and other traditional social media
platforms, Jodel a) does not have user profiles,
thereby making user to user communication anony-
mous (although users are enumerated within a
thread, enabling interactions), and b) displays con-
tent only in the proximity of the user’s location,
forming local communities.

Jodel is based on a community-driven filtering
and moderation scheme to avoid adverse or abusive
content. As stated above, effective moderation is
a key parameter for the success of any social net-
work or group messaging app. In Jodel, content
filtering relies on a distributed voting scheme in
which every user can raise or lower a post’s vote
score by upvoting (+1) or downvoting (-1), simi-
lar to the mechanisms on other platforms such as
StackOverflow or 9gag. OJs reaching a cumulative
vote score below a negative threshold (e.g., -5) are
not displayed anymore and can therefore not be
commented or voted on any longer. Within threads,
posts below this threshold are suppressed, but can
sill be clicked on to read, should anyone need their
content to understand the whole discussion.

Depending on the number of vote contributions,
this scheme filters out bad content while also po-
tentially boosting mainstream content. As a second
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line of defense, Jodel selects community moder-
ators who have the authority to cast a moderator
vote on posts that have been flagged (i.e. reported)
by other users. On this superordinate level, the de-
cision is again made by cumulative vote scores
calculated when several moderators have made
their choice. These moderators are supposed to
decide on the basis of the app’s official guidelines,
which forbids insults, sexually explicit pictures,
any means of identification and other controversial
content that can be clearly defined. Posts that are
voted out on this level are automatically blocked
entirely.

4 Method

For our analysis, the Jodel network operator pro-
vided us with anonymized data of their network.
Our corpus (cf. Table 1) contains posts from the
city of Aachen, Germany, from April 1 to August
31, 2017, as well as metadata on the individual
posts. The focus on a single location and an ar-
guably short time frame enabled us to focus on a
more homogeneous group of users in the dimen-
sions of content and time. All analyzed data has
been publicly posted and thus been visible to all
other Jodel users.

Metric Entries
#Threads 182,413
#Responses 1,275,763
#Users 21,282
#Tokens 19,627,690

Table 1: Corpus

The corpus data was preprocessed with
SoMeWeTa (Proisl, 2018), a part of speech-tagger
for German social media and web texts. This tag-
ger includes several tags specific to language used
in social media texts in addition to the tags from
the Stuttgart Tübingen Tag Set (STTS). Using a
broad range of lexico-grammatical features as typ-
ically done in register analysis (Biber and Con-
rad, 2009; Neumann, 2014; Fest, 2016) allows us
to explore linguistic variation in general, which
might reflect differences between posts that begin
a thread and receive answers from those that do
not. These features range from lexical based mea-
sures (e.g., Lexical Density, Nominal Density) to
approximations of clausal complexity (e.g., finite
verbs per sentence). Frequency counts of these
lexico-grammatical features were performed in the

Corpus Workbench (Evert and Hardie, 2011) with
the help of a query script based on the example of
a script developed by Neumann et al. (2017) for
English and Dutch. The script exploits on part of
speech-annotation in combination with positional
information and word lists. Some queries address
features specific to social media texts. The latter
were queries for some of the additional tags pro-
vided by the SoMeWeTa, foreign language mate-
rial, words specific to social media or the platform
Jodel (OJ, Heimatjodel, etc.), colloquialisms and
the metadata tags (hashtags, mentions, channels)
used on Jodel.1

In order to explain answer behaviour patterns
and determine potential triggers of successfully
generating responses, we used exploratory and
confirmatory techniques. The first analysis is ex-
ploratory and is a global linguistic assessment
of posts that start a thread (OJs) to find out if
specific linguistic patterns emerge from a multi-
tude of linguistic features that distinguish response-
generating OJs from those that remain unanswered.
This allows us to find out if successful OJs (OJs
with at least one answer) are associated with par-
ticular sets of grammatical behavior(s). A total of
68 features was included after discarding collinear
features (r> |0.9|). Each post is thus represented
as a vector in a 68 dimensional space.

To reduce the dimensionality of the data, we first
applied a Principal Component Analysis (PCA) to
a random sample of the OJs in the Jodel corpus
(n=10,000). The frequency results of the queries
for the individual features were normalized with
respect to appropriate units of measurement. For
example, sentences were given per post, lexical
measures such as nouns are included as the ratio of
nouns to tokens, whereas passives and tense related
features are given as the proportion of sentences.
We also included measures of lexical density, which
comes closest to a lexical indicator of the features
considered. All values were standardized as z-
scores, bringing the indicators to the same scale.
Additionally, the indicators were transformed us-
ing a signed logarithm to reduce the skew of some
of the variables that may have made it difficult to
interpret the PCA. Based on these standardized in-
dicators, a vector was built for each post which
assumes a position in the multidimensional space.

In a second step, we shifted from the exploratory
analysis to a confirmatory one and used regression

1For a list of all queried features, see appendix A.
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modelling with a set of linguistic features that we
deemed reflective of social interaction. We decided
to include first and second person pronouns, each
per total amount of pronouns. Unfortunately, the
second person plural pronoun ihr (’you’ pl.) is
indistinguishable from ihr (’her’ sg.) in its third
person singular sense, so there might be some over-
lap between both categories. We also included the
number of imperatives, salutations and vocatives as
well as the number of interrogatives per sentence.
Additionally, we added the numbers of hashtags
and emojis per total amount of tokens. Lastly, we
controlled for number of words per sentence to
account for length effects. Due to overdispersion
issues with Poisson regression we used a negative
binomial regression model. We hypothesized that
it may also be specific content and not only lin-
guistic behaviour per se, that triggers answers from
the Jodel community. To this end, we conducted
keyword analyses to filter out unusually frequent
words in posts that gathered answers as opposed to
those that did not.

5 Results

5.1 Grammatical Analysis

For the PCA, we assume that the Euclidean dis-
tances between feature vectors are suitable mea-
sures of (dis)similarity between data points (the
OJs) with respect to the geometric configuration of
vectors in multidimensional space and that these
distances can be visualized using orthogonal projec-
tions to draw conclusions about the data. Clusters
of posts that become apparent in the orthogonal
projections can be interpreted as posts with differ-
ent grammatical features. One or more clusters
may be associated with grammatical features that
attract answers.

Figure 1 visualizes the first three orthogonal di-
mensions. Most of the variance in the data is ex-
plained by the first dimension. Variance explained
by the first three dimensions was 0.122, 0.058 and
0.052.

The PCA does not suggest a clear separation of
OJs with and without answers. Separate clusters
are virtually absent in the first three PCA dimen-
sions and with respect to answers we could not
identify a clear location of posts with no answer
within the single big cluster.

According to Halliday et al. (2014), a significant
part of the meaning potential of language revolves
around interpersonal meanings, that is, around the

Figure 1: PCA Posts with answers / without an-
swers

ways a writer uses to enact a social relationship
with a reader. We hypothesized that features that
can be associated with this kind of meaning could
allow a more fine-grained understanding of lin-
guistic features concerning the answer behavior of
Jodel users. We therefore selected variables that we
associated with indicators of dialogic interaction
(cf. Table 2) and ran generalized linear regression
models. This has the advantage that the effect of
each variable on answering activity can be directly
measured. We ran the regression models with the
same 10,000 OJs but only a subset of the linguistic
features from the prior analysis and predicted the
number of answers.

No. of Answers Estimate Std. Error z p

word S 0.024 0.002 10.97 <0.001
emoji T -0.374 4.174 -0.09 0.929
hashtag T -2.728 0.161 -16.979 <0.001
p1pronoun Pr 0.364 0.048 7.59 <0.001
p2pronoun Pr -0.236 0.09 -2.632 <0.01
ihr Pr 1.048 0.118 8.878 <0.001
imperative S -0.166 0.126 -1.315 0.188
salutation S 0.184 0.129 1.434 0.152
vocatives S -0.095 0.211 -0.451 0.652
interrogative S 0.377 0.043 8.766 <0.001

Table 2: Results for negative binomial regression
model for the number of answers

The results show that several conversational fea-
tures correlated positively and statistically signifi-
cantly with the number of answers per OJ. These
are words per sentence, interrogatives, first person
pronouns, second person pronouns – particularly
ihr and hashtags. Interestingly, an increased use of
hashtags led to fewer responses, as did second per-
son pronouns. Because we hold constant the effects
for the second person plural ihr, this effect likely
reflects the second person singular du (’you’). Why
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Answer Delay Estimate Std. Error z p

word S -0.001 0.004 -0.155 0.877
emoji T 1.894 9.693 0.195 0.845
hashtag T 0.95 0.475 2.001 <0.05
p1pronoun Pr -0.032 0.097 -0.334 0.738
p2pronoun Pr -0.413 0.17 -2.43 <0.05
ihr Pr -0.151 0.235 -0.644 0.52
imperative S 0.555 0.283 1.961 <0.05
salutation S -0.307 0.263 -1.169 0.243
vocatives S -0.268 0.428 -0.627 0.531
interrogative S 0.228 0.087 2.614 <0.01

Table 3: Results for binomial logistic regression
model for the time passed between OJ and the first
answer (> 5 minutes resp. < 5 minutes). A pos-
itive sign indicates that a quick response is more
likely than a slow response (e.g. interrogative mood
makes a quick response more likely.)

an OJ would single out a specific addressee via du
(’you’ sg.) is somewhat interesting because Jodel
is anonymous. A closer look at the data revealed
that frequently this is used as an indefinite pronoun
and often occurs in posts that reproduce dialogues
of some kind or in reports of personal experience
where the du actually refers to the OJ him-/herself
and almost has the character of an internet meme:

“Wenn du morgens aufstehst, dich für die Uni
fertig machst und losfährst und dann merkst, dass
du anstatt zur Uni zu deiner alten Schule gefahren
bist.” (’When you get up in the morning, get ready
for university and start driving and then realize
that you’ve driven to your old school instead of
university.’)

This kind of du thus refers to the OJ in the first in-
stance and to others in a second instance, i.e. Jodel
members that have made a similar experience or
can relate to OJ. Syntactically it could be replaced
with the pronoun man (’one’ sg.), yet the achieved
effect would be less personal. As a further anal-
ysis of the answer behavior we tested the time it
took for the first person to answer the OJ with the
same set of variables using a logistic binomial re-
gression model. We categorized the answer time
as “quick” (<5 minutes) and “slow” (>5 minutes)
and predicted the likelihood of a quick answer com-
pared to a slow answer. We chose to use a binomial
model here because the model residuals were not
normally distributed.

The model yielded significant results for inter-
rogative mood, second person pronouns, impera-
tives and hashtags. The higher the ratio of hashtags
per number of tokens, the more quickly a response

was issued – probably due to reasons of visibility.
Second person pronouns lead to slower responses.
In the light of the example above, the use of du
may not actually invite responses (neither quantita-
tively nor temporally) and may rather be reflective
of the OJ’s need to express themselves. Typical
conversational features that we also observe in face
to face conversation (interrogative mood and im-
perative mood) were more likely to trigger quick
responses. This is noteworthy because this is not
face to face conversation but anonymous texting.
The findings suggest that a variety of mood aspects
elicit answers from the Jodel community and that
asking questions and the use of hashtags trigger
responses quickly. The latter, however, does not
generate many answers at the same time.

5.2 Keyword Analysis

The last step of our investigation was keyword
analyses to examine the content level and deter-
mine which topics are likely to generate answers
on Jodel. Table 4 shows the keywords and their sig-
nificance for OJs that generated answers in contrast
to those that did not.

word raw freq. keyness2 meaning/used as

ihr 18,099 907.91 pl. pronoun you
jhj 7,504 762.87 hashtag, jodler helps jodler
oder 11,949 462.89 or
kann 15,524 444.16 can, 3. p. sing.
jemand 13,124 373.00 someone/anyone
habe 11,410 295.32 have, 1. p. sing.
wo 6,041 256.10 where
und 53,899 254.31 and
habt 3,191 245.02 have, 2. p. pl.
tipps 1,296 242.77 advice

Table 4: Top 10 Keywords for Jodels with answers
(vs Jodels without answers)

As can be seen, the hashtag #jhj, which signals
a request for help from others, is one of the highest
ranking keywords. The list furthermore includes
kann in the 3rd person singular, which often collo-
cates with jemand, indicating interrogatives. Habt,
in 2nd person plural, is a direct address, and with
wo, a direct question word is sixth in the list. The
last item of the top ten keywords explicitly refers
to advice.

Of those OJs which generate answers, we fur-
ther examined the keywords for those that received
the first answer within 5 minutes, in contrast to

2The keyness was calculated using Log-Likelihood and a
threshold of p<0.05
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word raw freq. keyness meaning/used as

jhj 6,512 886.35 hashtag, jodler helps jodler
was 14,293 150.73 what
freundin 3,548 125.64 (girl-)friend
freund 3,066 117.36 (boy-)friend
frage 2,138 103.53 question
balloon 231 103.26 emoji
jodel 4,109 90.45
er 5,932 83.27 he
warum 2,600 81.38 why
nicht 18,776 81.34 not

Table 5: Top 10 Keywords for Jodels with an an-
swer delay < 5 min. (vs Jodels with an answer
delay > 5 min.)

those that had to wait longer. As Table 5 shows,
direct questions appear even stronger here, with the
interrogative pronouns was, warum and the noun
Frage being key. Again, #jhj is strong, meaning
that not only does this hashtag trigger responses
as such, but fast ones, too. This is particularly in-
teresting as hashtags in general, as was described
above, have proven to be counterproductive as a
discussion starter; #jhj appears to be a significant
exception.

The results confirm the assumption that Jodel
contains a certain service function showing itself in
the active answering of questions other users might
have.

Another interesting finding that can be gathered
from the quick response keywords is that one topic
shows to be particularly popular, which is relation-
ships. Freund and Freundin are the only nouns
apart from Frage in the ten strongest keywords.
To further investigate this assumption, we split the
OJs that had received answers into nine subgroups,
based on how many answers they received (cf. Ta-
ble 6).

OJs 42,419 27,367 30,648 23,845
#ANS 1-2 3-4 5-8 9-16

11,925 4,388 1,137 248 47
17-32 33-64 65-128 129-256 257-∞

Table 6: OJs with specific numbers of answers

As expected, the majority of OJs received only
few answers; 42,419 (i.e. 30%) were answered
only once or twice. Others were followed by long
discussions of over 100 contributions. As an ex-
ploratory test, we contrasted the 1-2 answer-group
with the other groups and then gradually moved

the border of contrast upwards. For a contrast of
posts with up to 64 answers to those with 65 and
more, only 19 keywords were significant at all for
the long threads. 6 of these are directly linked to
relationships and sex: Männer (’men’), Beziehung
(’relationship’), Kerle (’guys’), w (for weiblich, ’fe-
male’), and treu, (’honest’/’faithful’). Another 6
are personal pronouns, and the emoji of the colour-
ful rainbow, referring to LGBT communities, also
features in the list.

5.3 Discussion

The results give some clear indications as to the
formats and contents which most likely generate
answers and discussions on Jodel for the Aachen
community from April 2017 to August 2017, and
also offer interesting insights into the particularities
of the dynamics within an anonymous network. In
contrast to other social media channels, where state-
ments are made to produce reactions and users pro-
mote themselves and compete for followers, Jodel
seems to be driven to a considerable degree by post-
ing questions and getting answers. Regarding the
popular topic of relationship and sex, it is likely
that the anonymity on the platform is used to treat
personal and sensitive issues which users would
not discuss quite as openly elsewhere.

Because of its anonymity, the platform does not
function as a public accumulation of status or so-
cial capital, in the form of likes or retweets, and the
success of a post is not connected to a person or
individual. Neither, of course, is failure of a post or
disagreement to the posted content, which makes
Jodel attractive to publish also controversial ques-
tions and opinions. The image of a person, which
is at the center of interest on platforms like Twitter
and Facebook, is of no consequence on Jodel and
is therefore never at stake should anything not be
received positively by the community.

Nevertheless, it can be seen that the Aachen
Jodel users within our corpus indeed protect an
image, if not their own. Questions are answered
– and very often quickly – and especially calls for
help generate fast responses. #jhj is such an exam-
ple, and yet the answers to it are not always posi-
tive. The hashtag is key for posts that receive down-
votes, particularly when the questions are very obvi-
ously either self-explanatory or could have been an-
swered with little effort by the OJ. “Why don’t you
just google it?” or “Learn how to google!” are com-
mon answers in such instances, showing that users
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take the time to reprimand someone although they
have no immediate gain from that action, solely
for the purpose of enforcing the community’s rules
and keeping up its identity. At this point, therefore,
the attempt is made to maintain the image of the
platform, part of which is that the questions asked
should not be too trivial and that the content can be
controversial, but should definitely be original and
exciting.

Cultural and local identity is also mirrored in
the topics that are received with most enthusiasm.
Many general topics are discussed on the platform
– from politics, university and job life, the city and
parties to the weather and current events – and all of
them receive various amounts of answers, but noth-
ing sparks so much interest as relationships and
sex. In Aachen, a city with a technical university
and student population that is 68% male (RWTH
Aachen University, 2018), how to get a partner, a
one-night-stand or any other contact with the oppo-
site sex are ever-present questions that are at times
so dominant that the city’s Jodel community has
coined the term geiern (’to vulture’) for males that
hit on women all too obviously and persistently.

Taking all this into account, we can conclude
that the anonymous character of Jodel leads to the
creation of conventions – within the framework of
the general user guidelines – at the center of which
is not the identity of the user, but the image of a
local community on the platform. This identity
is cherished and protected, which in turn triggers
an entirely unexpected and hard to define type of
abusive content for a specific community, namely
insulting anyone who does not abide by the self-
imposed laws of the community.

6 Outlook and Future Work

As this last point already shows, an analysis into
abusive content and hate speech is certainly promis-
ing on an anonymous platform. The community’s
identity is built and under constant negotiation, and
users that offend the community’s sense of self
in some way have to expect to be discriminated
against, even if they do not post anything objec-
tively offensive. Finding and automatically filtering
such instances is very difficult, yet we can assume
that we can find similar mechanisms on other social
media platforms as well. In future work, therefore,
the understanding obtained by taking this focused
perspective on the social network of Jodel can be
extended to a broader set of locations and time

frames.
Some next steps within the present line of re-

search are very apparent; by widening the dataset
in a spatial and temporal dimension for a broader
analysis, more complex models and classifiers as a
predictor for a community’s responsiveness can be
developed. Also, we plan to extend our feature set
to include metadata variables and examine more
closely the role of hashtags and emojis.

As yet a different angle, a comparative approach
to platforms like Facebook and Twitter seems
promising. The differences in the contexts pro-
vided to the users by the platforms allow for the
emergence of different social spaces, which in turn
affects the purpose of using the platform as well as
its communities and networks. This is reflected for
instance in the use of hashtags. While a first look
at hashtag usage on Jodel has shown that in many
cases, such as the mentioned #jhj, hashtags define
content of a category as they do on Twitter, many
other hashtags on Jodel are means of content rather
than of categorization (Fest et al., 2019; Reelfs et
al., 2019). The negative effect of the hashtags on
the likelihood of receiving answers indicates that
this method, although frequently used, might not
be too popular with the community.

On Twitter on the other hand, the function of
hashtags is of a more exclusively categorizing
nature, including the possibility to feature one’s
tweets in discussions on topics they are not related
to simply by including the most trending hashtags
of the moment. On both platforms, however, hash-
tags are a context marker – and the differences in
usage therefore pose a window on just how context
can be perceived and created.
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Appendix A. Queried linguistic features

Feature Details

lexical density Number of lexical words divided by the number of tokens
nn T Number of nouns divided by the number of tokens
ne T Number of proper nouns divided by the number of tokens
nominal T Number of nominalizations divided by the number of tokens
neoclass T Number of neoclassical compounds divided by the number of tokens
poss T Number of possesive pronouns divided by the number of tokens
pronouns T Number of pronouns divided by the number of tokens
p1pronoun Pr Number of 1st person personal pronouns divided by the number of pronouns
p2pronoun Pr Number of 2nd person personal pronouns divided the number of by pronouns
p3pronoun Pr Number of 3rd person personal pronouns divided the number of by pronouns
ihr Pr Number of instances of the pronoun ihr divided by the number of pronouns
es Pr Number of instances of the pronoun es divided the number of pronouns
pospers1 Pr Number of all 1st person pronouns divided by the number of pronouns
pospers2 Pr Number of all 2nd person pronouns divided by the number of pronouns
pospers3 Pr Number of all 3rd person pronouns divided by the number of pronouns
adv T Number of adverbs divided by the number of tokens
adj T Number of adjectives divided by the number of tokens
atadj T Number of attributive adjectives divided by the number of tokens
prep T Number of prepositions divided by the number of tokens
finite S Number of finite verbs divided by the number of sentences
finite V Number of finite verbs divided by the number of verbs
pasttense F Number of past tense verbs divided by the number of finite verbs
perfect F Number of perfect verbs divided by the number of finite verbs
plusquamperfect F Number of instances of past perfect divided by the number of finite verbs
will F Number of instances of the modal verb werden used to signal future divided by the number of finite verbs
modalverb V Number of modal verbs divided by the number of verbs
verb T Number of verbs divided by the number of verbs
infinite verbs F Number of infinitives with zu divided by the number of sentences
passive S Number of instances of passive voice divided by the number of sentences
coordination S Number of coordinating conjunctions divided by the number of sentences
subordination S Number of subordinating conjunctions divided by the number of sentences
interrogative S Number of instances of interrogative mood divided by the number of sentences
imperative S Number of instances of imperative mood divided by the number of sentences
politeimperative S Number of polite imperatives divided by the number of sentences
subjunctive S Number of modal verbs in subjunctive mood divided by the number of sentences
title T Number of titles divided by the number of tokens
salutation S Number of salutations and greetings (eg. Hallo, Tschüss, Viele Grüße) divided by the number of sentences
placeadv T Number of adverbs of place divided by the number of tokens
timeadv T Number of adverbs of time divided by the number of tokens
vocatives S Number of vocatives divided by the number of sentences
nptheme S Number of nominal elements in theme position divided by the number of sentences
numbertheme S Number of numbers in theme position divided by the number of sentences
pptheme S Number of prepositions in theme position divided by the number of sentences
advtheme S Number of adverbs in theme position divided by the number of sentences
textheme S Number of conjunctions in theme position divided by the number of sentences
whtheme S Number of wh-elements in theme position divided by the number of sentences
disctheme S Number of discourse markers in theme position divided by the number of sentences
nonfinite verbstheme S Number of infinitives with zu in theme position divided by the number of sentences
subordconjtheme S Number of subordinating conjunctions in theme position divided by the number of sentences
verbtheme S Number of verbs in theme position divided by the number of sentences
incompletesentences S Number of incomplete sentences divided by the number of sentences
cohesiveadverbs T Number of cohesive adverbs divided by the number of tokens
emoji T Number of emojis divided by the number of tokens
hashtag T Number of hashtags divided by the number of tokens
jodelwords T Number of instances of Jodel specific words (eg. jodel, karma) divided by the number of tokens
socialmediawords T Number of instances of social media specific words (eg. upvote) divided by the number of tokens
colloqialisms T Number of colloquialisms divided by the number of tokens
fm T Number of foreign language material divided by the number of tokens
emojitheme S Number of emojis in theme position divided by the number of sentences
emojionly S Number of sentences consisting only of emojis divided by the number of sentences
hashtagtheme S Number of hashtags in theme position divided by the number of sentences
hashtagonly S Number of sentences consisting only of hashtags divided by the number of sentences
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reftheme S Number of references to another user in theme position divided by the number of sentences
correctiontheme S Number of corrections in theme position divided by the number of sentences
personaldetails P Number of personal details (e.g. gender and age) divided by the number of sentences
modalpart T Number of modal particles divided by the number of tokens
focuspart T Number of focus particles divided by the number of tokens
multipart T Number of multi-word particles divided by the number of tokens
contrverbpron T Number of contractions with a verb and a pronoun (eg. gehts, habs) divided by the number of tokens
contrpronpron T Number of contractions with two pronouns (eg. ers, sies) divided by the number of tokens
contrkoupron T Number of contractions with a conjunction and a pronoun (eg. weils, obs) divided by the number of tokens
contrpreart T Number of contractions with a preposition and an article (eg. beim, am) divided by the number of tokens
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Abstract

For various purposes of narrative text anal-
ysis, it is helpful to identify speech and
thought events: material that is uttered
or imagined by some protagonist. This
task commonly distinguishes between di-
rect and indirect speech, but we will also
consider free indirect and reported speech
here. Specifically, we build upon earlier
work by Brunner (2015), who presented
an annotated German corpus of narrative
texts as well as an automatic analysis sys-
tem. We propose a variety of extensions
and are able to substantially improve on the
original results for all four categories.

1 Introduction

Identifying speech, thought and writing (henceforth
STWR) of characters is a central task in automati-
cally understanding narrative text. It is commonly
divided into several categories, the most widely-
researched (on the computational side) being direct
speech. In the following example from Fontane’s
Effi Briest, the speech content is marked by italics
and the so-called ‘inquit formula’ by boldface:

(1) “Warum lacht ihr?”, sagte Effi pikiert. “Was
soll das heißen?”
(”Why are you laughing?”, said Effi slightly of-
fended. ”What is it supposed to mean?”)

The next example, taken from the same novel,
illustrates indirect speech, which is commonly ex-
pressed with dependent clauses (italics) and a fram-
ing clause (boldface):

(2) In diesem Augenblick trat Wilke vom Saal her
ein und meldete, dass er alles schon nachgezählt
und alles vollzählig gefunden habe;
(At this point Wilke entered from the hall and an-
nounced that he has counted everything and found
it to be complete;)

In free indirect speech the character speaks with
the narrators voice, which we also illustrate with
an example from Effi Briest, with Effi’s thought
process in italics:

(3) Sie hatte Mühe, sich zurechtzufinden. Wo war
sie? Richtig, in Kessin, im Hause des Landrats
von Innstetten, und sie war seine Frau, Baronin
Innstetten.
(She had trouble with orientation. Where was she?
Right, in Kessin, in the house of Instetten, and she
was his wife, Baroness Innstetten.)

Finally, reported speech has the most distance to
the actual words produced by the character, which
the narrator may summarize, as in this example
from the same source:

(4) Sie sprachen noch eine Weile so weiter, wobei
sie sich ihrer gemeinschaftlichen Schulstunden
und einer ganzen Reihe Holzapfelscher Unpassend-
heiten mit Empörung und Behagen erinnerten.
(They talked like that for another while, remember-
ing with indignation and with pleasure the common
school hours and a number of Holzapfel’s inappro-
priate moments.)

More detailed descriptions of the STWR types
can be found in narratological studies, such as
Genette (1998), Jessing et al. (2007), or Martinez
and Scheffel (2012).

From the computational viewpoint, attributing
speech, thought and writing to the characters pro-
ducing them is a fundamental step in following the
storyline of a narrative, and the first central step
is to be able to identify STWR material. This, in
turn has two steps: making the distinction between
direct/indirect/free ind./reported, and that between
speech, thought and writing. For German, there
has not been a lot of work on these tasks, and only
one sizable annotated corpus was available at the
time of our system’s development.1 It was com-

1In the meantime, a bigger corpus with STWR annotations
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piled by Brunner (2015), and her work constitutes
the starting point of our study. Our main contribu-
tion is to propose an extended set of features used
by an automatic classifier, as well as a few other
improvements that substantially improve on Brun-
ner’s original results and thus can be regarded as a
new state of the art for this dataset.

The paper is structured as follows: After intro-
ducing the corpus and briefly reviewing earlier re-
search in Section 2, we explain our experiments in
Section 3, report and discuss the results in Section
4, and then conclude in Section 5.

2 Corpus and Related Work

2.1 Corpus

The corpus annotated by Brunner (2015) is made
up of thirteen short German narratives. The texts
were written between 1787 and 1913 and consist
of overall roughly 57,000 tokens. They were an-
notated for the 12 categories that result from com-
bining speech, thought and writing each with the
four different types direct, indirect, free indirect
and reported. Several attributes, mostly signaling
border cases of annotation, were also included.

The corpus has several strengths and weaknesses.
It is not a balanced dataset, insofar as the number of
instances for each class differ considerably. This is
most pronounced in the case of free indirect STWR
which only amounts to 110 instances compared to
1038 instances for direct STWR. Furthermore, the
whole corpus was annotated by a single person,
Brunner herself, thus making the annotations sus-
ceptible to subjectivity.

On the other hand, the texts of the corpus were
carefully chosen to represent a wide selection of
narrative texts. Complete short texts were selected,
rather than excerpts (with two exceptions). The
texts have diverse dates of origin spanning over
a 100 years, and authors of both genders are rep-
resented. Also, care was taken to ensure a mix
of different narrative perspectives, first person and
third person. The texts differ in the punctuation
schema used as well as in orthography. We pro-
pose that these characteristics provide a realistic
set-up for developing a system for practical use in
literary studies.

has been beta-released by the Redewiedergabe-Projekt (Brun-
ner et al., 2019). This newly released corpus could not be used
in the present study though because of time constraints.

2.2 Earlier research

Most earlier work on speech event identification
targets a different genre, viz. news text. For in-
stance, Krestel et al. (2008) develop a rule-based
system for extracting direct and indirect speech
from newspaper articles. Their system consists
of two components: a reporting verb marker and
a reported speech finder, which uses six patterns
combining a reporting verb, a speech source, and
one or two clauses containing the speech content.
The authors evaluate their system on seven news-
paper articles from the Wall Street Journal corpus
with a total of 6100 words and report a recall of
0.83 and a precision of 0.98 on this test set.

Sarmento and Nunes (2009) develop a system,
which they call verbatim, for the extraction of di-
rect and indirect quotes from Portuguese news texts.
Their system uses 19 patterns and a list of 35 speech
words to extract quotes along with the respective
speakers and speech acts. The system is evaluated
manually: of 570 extracted quotes, 68 are consid-
ered errors, yielding a precision of 0.88; recall is
not reported.

Pareti et al. (2013) train and evaluate two ma-
chine learning (ML) approaches to extract direct,
indirect and mixed quotes from two news cor-
pora. In order to avoid compiling a list of com-
mon speech verbs, which cannot account for all
verbs used as cues for quotations, the authors train
a classifier to identify attribution verb cues. They
experiment both with a token-based approach and
with a system that classifies parse nodes. These
experiments result in F1 measures of up to 0.60 for
indirect and 0.94 for direct quotations with exact
boundary matching.

Turning to narrative, Brunner (2015) (see also
(Brunner, 2019)) implemented both a rule-based
and an ML based system for the automatic annota-
tion of the STWR categories in German narrative.
The best F1 scores that were achieved with her
systems range from 0.40 for free indirect STWR
to 0.87 for direct STWR. For the types reported
and indirect STWR the best F1 values are 0.58
resp. 0.71. These results were achieved with sen-
tences as a basic unit: Brunner considers a sen-
tence as belonging to a certain STWR class, if at
least one STWR instance belonging to this class
appears somewhere within it. If a sentence contains
instances of several different STWR classes, it re-
ceives multiple labels. In addition, Brunner also
experimented with segments of sentences, which
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roughly correspond to clauses, but she discarded
that approach because it lowered the performance
of her system. Brunner presented her implemen-
tations as prototypes and suggested that further
features be explored for potentially improving the
systems. Our experiments reported below build
directly on Brunner’s work.

3 Experiments

3.1 Approach

While Brunner’s work focuses on sentence-based
classification, our work targets the automatic recog-
nition of sub-sentential boundaries. Hence, we
train our classifiers on the segments of sentences
Brunner used for her “extra” experiments. In or-
der to also allow the annotation of unseen texts,
we reimplemented the tokenization algorithm de-
scribed by Brunner and slightly extended it toward
a broader quotation recognition method by adding
heuristics for disambiguating apostrophes and quo-
tation marks, following Percillier (2017).

3.2 Training and balancing

We follow Brunner in training a binary classifier
for each STWR type, to allow multiple labels per
segment, as STWR instances can naturally occur
in nested form. After extracting STWR instances
from the corpus per type, each training data set is
transformed into feature representations. At this
point the segments are still in the order as they ap-
pear in the texts, allowing us to also build sequence-
based features (and we will specifically test their
impact on the results). For the SVM classifier, the
feature representations are also being scaled for
efficiency reasons. The transformed data set is
then split into stratified train and test sets. This
step differs from Brunner, who did not set aside
a dedicated test set, but rather evaluated the ML
classifiers via cross validation (CV). on the whole
training set. As she for the most part abstains from
parameter tuning, the CV results are probably not
biased.2 For our study, on the other hand, we want
to run parameter tuning in order to find the optimal
configurations for the ML methods. Thus, 25%
of the data for each class are set aside for testing.
Due to this difference in evaluation data, some of

2She mentions experiments with different ML methods and
ways to remove class imbalances, but does not give concrete
results. Her reported results were all achieved by the same
configuration: a Random Forest with 500 trees, which can
each inspect eight features when adding a new node.

our results presented in Sct. 4 cannot be directly
compared to Brunner’s results.

Experiments and parameter tuning were per-
formed via stratified ten-fold cross validation on the
training set. For feature scaling, the test-train split
and cross validation, implementations provided by
Scikit-learn 0.20.2 (Pedregosa et al., 2011) are used.
In every fold the train set is further adjusted to
tackle the class imbalance problem, which is espe-
cially pronounced in the case of the free indirect
class. Brunner used the technique of oversampling
on the training data to achieve an equal class distri-
bution. For this technique instances are drawn ran-
domly from the smaller class until an equal class
distribution is achieved. While the training data
can be adjusted to achieve equal class distribution,
data set aside for evaluation or validation stays un-
touched to ensure reliable results.

Specifically, we use two alternative strategies
to counter the class imbalance problem and com-
pare them to the oversampling technique used by
Brunner. The Synthetic minority over-sampling
technique (SMOTE) (Chawla et al., 2002) uses a
combination of undersampling the majority class
and oversampling the minority class. Furthermore,
the oversampled instances are synthetically created
by adjusting features in the direction of one of the
k nearest neighbors of the instance. For this, we
use the imbalanced-learn package (Lemaı̂tre et al.,
2017), version 0.4.3.

While SMOTE is domain agnostic, our second
balancing strategy is a domain-specific data aug-
mentation method. Here, features that were ex-
pected to be variable in naturally occurring data
were manually selected for each class. As with
oversampling, instances are drawn from the minor-
ity class until an even class distribution is achieved.
For each drawn instance, a random subset of the
augmentation features for this class are chosen and
the instance’s respective feature values are changed:
Boolean features are negated and real-valued fea-
tures are substituted by a random value within the
interval of possible values for this instance.

3.3 Classifiers

Our reporting type classifier consists of four sep-
arate binary classifiers that determine whether an
instance contains at least one occurrence of the
class direct, indirect, free indirect and reported, re-
spectively. We do not use a multiclass approach be-
cause an instance can contain nested or sequentially
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appearing STWRs that belong to different classes.
Furthermore, the STWR annotations which have
the ambiguous attribute belong to two classes.

We evaluate three different ML techniques on
our task: Random Forest, Support Vector Ma-
chines (SVM) and Multi-Layer Perceptron (MLP).
For all three ML techniques implementations pro-
vided by Scikit-learn 0.20.2 (Pedregosa et al., 2011)
are used: RandomForestClassifier, SVC and MLP-
Classifier. Some parameters, for example the num-
ber and size of the hidden layers (MLP) or the
minimal number of samples per leaf (Random For-
est), were adjusted via grid search and cross val-
idation on the training data. For the others, we
largely adopted the default parameter options, but
the MLP’s early stopping parameter was set to
True instead of False (default) and the tolerance
for the optimization (tol) was set to 0.01 instead of
0.0001 (default). These settings achieve an early
stop of the training process when the loss or val-
idation score does not improve by at least tol for
ten consecutive iterations. This is a regularization
measure to prevent overfitting, which is important
given the small number of training samples. The
SVC’s tol parameter was also set to 0.01 for the
same reasons.

Following the annotations performed by the re-
porting type classifier, a simple rule-based system
adds a further layer of annotation: The detected
STWR instances are categorized as either speech,
thought or writing. The direct and free indirect
classes are always annotated with their majority
class. For the indirect and reported classes, we
search the respective segment for occurrences of
words in a reporting word list (see below). If ex-
actly one such word is found in the segment, it is
marked correspondingly as speech, thought or writ-
ing. In the absence of a reporting word, we use the
majority class.

3.4 Features

We now describe our extensive feature set, which
was developed on the basis of Brunner (2015) –
henceforth: B15 – and was extended with features
adapted from other literature or devised by us.

In order to keep track of sequential features, we
use a backlog with information about the previous
ten segments’ labels. We see this as potentially use-
ful because certain STWR types tend to appear in
blocks, for example when a conversation between
characters is reported. B15 also reported this ob-

servation, but did not use corresponding features.
Our set-up of the data flow is such that only gold

labels can be used for the sequential features in-
stead of real predictions by the system, which can
only be made after the system has been trained,
i.e. after the dataset is already split into stratified
train- and test-sets. Those sets lose segment order
information, as they are constrained to contain the
same distribution of classes. More sophisticated
experiments with system-generated sequential fea-
tures are left for future work. However, to ascertain
their general influence, we evaluated our classifier
both with and without the gold label features, thus
providing upper and lower bounds for performance.

In the course of feature extraction the following
tools and packages are used: pandas 0.21.0
(McKinney and others, 2010) for data handling,
numpy 1.13.3 (Walt et al., 2011) for vector
operations, spaCy 2.0.12 (Honnibal and Montani,
2019) for most linguistic processing tasks (e.g.
part of speech (POS) tagging, and named entity
recognition), scipy 1.0.0 (Jones et al., 2001)
for computing cosine distances, gensim 3.1.0
(Řehůřek and Sojka, 2010) for the handling of
word vectors and the RFtagger3 (Schmid and
Laws, 2008) for morphological analysis. As
spaCy’s German lemmatizer turned out to not
work well, GermaLemma 0.1.1 (Konrad, 2019)
was used as an alternative.

3.4.1 Token features
POS: distribution of POS tags, using both the
TIGER Treebank tags and Google Universal POS
tag set. B15 used the STTS tagset and a self-made
broader tagset that combined some related tags of
the STTS .

Named Entities: Presence of NEs and their
types (person, location, organization, misc). Sim-
ilar features were also used by Fernandes et al.
(2011) and Pareti et al. (2013).

Special tokens: Presence of colons (also used by
B15), question marks (Cohn (1978) mentions in-
terrogations as one of the characteristic traits of
free indirect thought) and quotation marks (gen-
erally used in the literature for finding direct
speech).4 Like B15, we also use segment-end fea-

3http://www.cis.uni-muenchen.de/
˜schmid/tools/RFTagger/

4We use the number of opening and closing quotation
marks within the segment; whether the segment is in quotes;

186



tures: comma (as indicator of a following inquit
formula for direct STWR), emphatic punctuation
marks (? ! - –), and special combinations associ-
ated with the direct class.

3.4.2 Morphological features
Person: The change from third to first/second
person is often considered an indicator of a change
from narration to characters’ words (Cohn, 1978).
We use the frequency of first and second person pro-
nouns in the segment as separate features (whereas
B15 and Mamede and Chaleira (2004) put both pro-
noun types into the same category); frequency of
third person pronouns (cf. B15); Boolean features
indicating whether only third person, only first per-
son or a mixture of first and third person was used
in the previous five segments. These features give
a broader picture of the usage of person in the text.

Mode: Partly adapted from B15, we use Boolean
features indicating whether any verb and whether
all verbs in the segment are in indicative or in sub-
junctive mode.5

Tense: The basic tense of narration is often past
tense while characters’ words mostly use present
tense (Cohn, 1978). Free indirect STWR is an
exception, as it displays features of the narrator’s
voice, e.g. by using the same tense (Jessing et
al., 2007; Martinez and Scheffel, 2012). We use
Boolean features indicating whether any verb and
whether all verbs in the segment are in a form of
present tense and past tense, respectively.

3.4.3 Grammatical features
This group comprises a set of Boolean features
indicating whether

(i) the previous segment ended with a comma
and this segment contains a verb, suggesting an em-
bedded sentence. Embedded sentences, according
to B15, are frequently part of indirect STWR, es-
pecially if they contain verbs in subjunctive mode.

(ii) the segment contains a form of the verb
würden in combination with an infinitive verb or
by itself. Fabricius-Hansen (2002) observes the
combination of würde (‘would’) with an infinitive
verb as a possible indicator of free indirect STWR.
B15 also adapted this observation in her system.

number of contiguous previous segments in quotes (meant to
prevent errors caused by missing closing quotation marks).

5Martinez and Scheffel (2012) mention the verb form of
first person indicative with present tense as one of the typical
features of direct speech.

(iii) any reporting word within the segment has
a noun or prepositional complement, which B15
treated as an indicator of reported STWR. (Report-
ing words are further described below.)

(iv) any reporting word within the segment has a
sentence or infinitive complement, which B15 saw
as an indicator of indirect STWR.

3.4.4 Candidate speaker features
Candidate speakers are usually extracted with the
aim to attribute quotes to their speakers, e.g. (El-
son and McKeown, 2010; Mamede and Chaleira,
2004). Here, the idea is that the appearance of a
candidate speaker might also be useful for detect-
ing STWR. We regard pronouns, named entities
of the person type and head nouns that belong to
the Person category as possible speakers. The list
of nouns that belong to the Person category was
gathered by recursively extracting the hyponyms
of all synsets of the word Person from GermaNet
(Henrich and Hinrichs, 2010). The process for ex-
tracting candidate speakers is adapted from Elson
and McKeown (2010) and Jannidis (2017).

Our feature set consists of a Boolean feature indi-
cating whether the segment’s subject is a candidate
speaker; the number of candidate speakers in the
segment; and the candidate speaker features of the
previous segment.

3.4.5 Reporting word features
We used the list of reporting words that B15 com-
piled by combining three sources: a linguistically
motivated list of reporting verbs, words from a
corpus that were extracted via pattern matching,
and related words (verbs and nouns) mined from
a thesaurus. Each word was given a penalty value
representing the degree of “typicality” for a report-
ing word. If a word can refer to exactly one type
of reporting act (speech, thought or writing), this
type is recorded in the list — examples are sagen
(‘say’) for the speech category and denken (‘think’)
for the thought category. For some words, a marker
is set to indicate that the word can not be used as a
framing clause of direct or indirect STWR but only
for the reporting type. Examples of such words are
plaudern (‘chat’) and befragen (‘interrogate’).

Reporting word list features (i) For each
penalty value, Boolean features indicate whether at
least one reporting word of this value or of lower
value appears in the segment. (Adapted from B15.)

(ii) Boolean features indicating whether the seg-
ment contains any reporting word that is a verb and
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whether it contains any that is a noun.
(iii) For each penalty value, Boolean features in-

dicate whether at least one reporting word with
lower or equal penalty value with a reporting
marker is contained within the segment. (B15 dis-
tinguishes these reporting words in her rule-based
approach, but not in the ML implementation.)

(iv) For each penalty value, the number of re-
porting words of this (or a lower) value that are
contained in the segment.

(v) Numbers of reporting verbs and reporting
nouns contained in the segment.

(vi) For each penalty value the number of report-
ing words of this (or a lower) value with a reporting
marker within the segment.

(vii) The reporting word features of the previous
segment.6

Word vector features: Lists of reporting words
are often used for quotation extraction, see e.g.
(Krestel et al., 2008; Clergerie et al., 2009; Sar-
mento and Nunes, 2009; Brunner, 2015), but their
inherent inflexibility poses a problem. STWR in-
stances can be framed very differently. Especially
literary texts can convey reporting acts with poten-
tially infinite variance. Pareti et al. (2013) try to
circumvent this problem by implementing a sepa-
rate classifier for detecting reporting words. Glass
and Bangay (2007) use a list of features to deter-
mine whether a verb is a reporting verb. Here, we
implemented a different approach to the problem.

In addition to looking up words in the reporting
word list, similarity values of word vectors were
used to achieve a more general indication of the
appearance of reporting words. To this end, proto-
typical word vectors for reporting words and for re-
porting words with the reporting marker were com-
puted. This was done by averaging all word vectors
representing the words in the reporting word list
with penalty 0 (i.e. the most typical words) and
those with penalty 0 and a reporting marker. These
average vectors can be considered as prototypical
representations of the general reporting word group.
All lemmata of the words contained in a segment
were compared in turn to the two prototypical word
vectors using the cosine similarity measure. The
maximum similarities to each of the vectors were

6As B15 stated in her description of the segment-based
ML experiments, instances of indirect reporting are almost
always split up into two segments: the framing clause and the
dependent clause. Adding the reporting word features of the
previous segment should reestablish the connection between
the two segments.

then added as features. This way the appearance
of a word which is not contained in the reporting
word list, but which is nonetheless sometimes used
as a reporting word, can be detected.

Two word vector models were compared to each
other in the experiments: a model trained on the
KOLIMO corpus7 (Herrmann and Lauer, 2017) and
a model trained on the German Wikipedia and a
corpus of German news articles. The Wikipedia
model is available as a pretrained model8 (Müller,
2018). Its suitability for the present task is not
clear because of the genre difference to our task
(contemporary non-narrative texts versus narrative
written between 1787 and 1913). The data of the
KOLIMO corpus is in principle better suited for the
task because it contains German narrative with a
focus on Modernism, a period which roughly spans
the years 1880 to 1930. KOLIMO is a broad corpus
though, comprising also many texts from earlier
periods, as well as non-narrative. Furthermore, the
KOLIMO distribution is a beta release, which still
contains some noise and does not have a consistent
format (Herrmann and Lauer, 2017). Therefore,
both models have their merits and disadvantages.

For preprocessing and training of the KOLIMO
word vectors, the toolkit provided by Müller (2018)
was used. This toolkit builds on Google’s word2vec
tool as described by Mikolov et al. (2013).

3.4.6 Other word features

(i) The percentage of deictic words in the segment.
The list of deictic expressions was taken from B15:
heute, morgen, gestern, jetzt, hier (today, tomorrow,
yesterday, now, here). Deictic words can indicate
the speaker’s perspective, i.e. whether the speaker
is likely a character, who is situated in the narra-
tive’s here and now, or whether the speaker is a
narrator whose frame of reference can be different
from the intratextual one (Cohn, 1978).

(ii) A Boolean feature indicating whether the
segment begins with a conjunction that can indi-
cate the indirect class. The list is taken from B15:
dass (‘that’), ob (‘whether’), wo (‘where’), etc.

(iii) The percentage of modal particles in the
segment, whose appearance can be an indicator
of character speech. The list of modal particles
was also taken from B15: ja, nein, wohl, schon,
eigentlich, sowieso, eben (‘yes’, ‘no’, ‘already’,

7https://kolimo.uni-goettingen.de
8https://devmount.github.io/

GermanWordEmbeddings/
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‘anyway’ and various particles with no English
equivalent).

(iv) The percentage of words within the segment
that are associated with negation. Our list contains
nein (‘no’), nicht (‘not’), kein (‘no’). This feature
was added because B15 observed in her description
of the STWR corpus that the classes indirect and
reported often display markers of negation and non-
factuality. She did not use respective features in
her own implementations.

(v) Boolean features indicating the appearance
of words describing facial expressions, gestures
and voice. These features were inspired by Ten-
chini (2010)’s narratological study on the function
and relevance of coverbal language in literature.
The reasoning is that the appearance of words in-
dicating coverbal language might be an alternative
way to recognize the context of an STWR instance
in the absence of reporting words. Word lists were
manually crafted for each category:

• facial expressions: Gesicht (‘face’), Mund
(‘mouth’), Augenbraue (‘brow’), Auge (‘eye’),
Stirn (‘forehead’), Lippe (‘lip’), Nase (‘nose’),
Nasenflügel (‘side of nose’)

• gestures: Hand (‘hand’), Arm (‘arm’),
Handfläche (‘palm’), Finger (‘finger’), Schul-
ter (‘shoulder’), Faust (‘fist’)

• voice: Stimme (‘voice’), Ton (‘sound’),
Tonhöhe (‘pitch’), Tonfall (‘tone’), Stimmlage
(‘register’), Atem (‘breath’)

(vi) A Boolean feature indicating whether any
word in the segment is repeated. According to
Cohn (1978) the repetition of words can be a fea-
ture of characters’ language.

3.4.7 Sequential label features
For each reporting type, we compute (i) Boolean
features that indicate whether the previous segment
and whether any of the previous five segments
was labeled with this type, and (ii) the number of
segments among the previous ten segments which
were labeled with the respective STWR type (this
should help to detect blocks of STWR). Our fi-
nal feature in this group is the overall number of
STWR instances of all reporting types annotated
within the previous ten segments.

3.4.8 Length/position features
In the last group, we use these features: (i) Token-
and character-based lengths of the current and the

previous segment, as an approximation of the style
of the segment by indicating whether longer or
shorter words are used. (B15 only used the token-
based sentence/segment length.)

(ii) The sum of the token-based lengths of the
current and the previous segments and the sum of
the character-based lengths.

(iii) Boolean features indicating whether the cur-
rent or the previous segment constitutes the end of
a paragraph (taken from B15).

4 Results and discussion

Below we report our results on overall performance,
in comparison to the segment-based results of B15
as far as possible. We will explore the difference
between using sequential label features and ignor-
ing them, and between the two word vector models.
Regarding the various balancing techniques, we
found that oversampling and our own data augmen-
tation method outperformed the SMOTE method.
As for the different ML approaches, Random For-
est yielded the best performance for the overall
best configurations (BEST-ALL). These were eval-
uated on the test set, results are shown in Table
2. Note that the BEST-ALL configurations are not
always the same as the best configurations within
each individual class (BEST-IND), which were de-
rived by CV on the training data, and whose results
are listed in Table 1, sometimes stemming from
other classifiers than Random Forest (for reasons
of space, we do not provide the detailed compari-
son). The BEST-ALL configurations were picked
by adding the F1 values for each of the four classes
and choosing the combination which achieves the
highest sum.

The BEST-ALL configuration with sequential
label features uses the Random Forest model with
KOLIMO word vectors and oversampling. Both
KOLIMO vectors and oversampling were chosen
as frozen parameters for the ML parameter adjust-
ment phase, which may have influenced the result.
For the indirect and reported classes considered in-
dividually (BEST-IND), the Random Forest model
with KOLIMO word vectors and data augmentation
slightly outperforms the BEST-ALL configuration,
indicating untapped potential in data augmentation.

Without sequential label features the BEST-
ALL configuration is the Random Forest model
with Wikipedia word vectors and oversampling.
Three out of four BEST-IND models also use the
Wikipedia word vectors. This result is somewhat
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surprising, as noted earlier, and may indicate that
word vector models trained on non-narrative data
can be used for work on narrative texts.

For all four classes, the BEST-IND F1 scores
achieved with CV and gold sequential label fea-
tures outperform the models without sequential
label features. The free indirect class profits most
from the sequential label features, with an increase
of 52.17 points F1 score.9

The baseline of Brunner’s system was only com-
pared to the results of the BEST-IND models with-
out sequential features, derived via CV, in order to
ensure a fair comparison. The system developed in
this study outperforms Brunner’s for every class,10

with improvements of 17.02 points F1 score for the
indirect class and 15.81 points for the direct class.
The reported and free indirect classes show the
least improvement with an additional 9.70 points
resp. 11.39 points F1 score.

The BEST-ALL configurations with and with-
out sequential label features were evaluated on the
test set. A simple baseline was also evaluated to
provide an additional point of comparison. This
baseline uses the same configuration as the STWR
classifiers, but it only has one feature, viz. the seg-
ment’s character-based length. Results on the test
set are listed in Table 2. The results of the sim-
ple baseline are considerably lower than the ML
model’s results, both with and without sequential
label features. For all STWR types except the free
indirect class the results achieved on the test set are
within a range of two points on either side of those
achieved with CV on the training set. Results that
can be reproduced on the test set are considered
reliable. For the free indirect class, the F1 scores
on the test set, with and without sequential label
features, are more than 10 points lower than those
achieved via CV. This is likely a consequence of
overfitting to the training set, which is difficult to
avoid for such a small dataset.

Overall, the results of the models with sequential
label features are promising, with an F1 score of

9This substantial increase could be attributed to the fact
that most of the free indirect samples in the STWR corpus can
be found in one text, Der Irre by Georg Heym. Therefore, if
a sample’s sequential label features contain instances of free
indirect, there is a high probability that the sample belongs to
this particular text.

10The BEST-IND results were used as the point of compari-
son to Brunner’s baseline, but the BEST-ALL configuration
also improves upon Brunner’s baseline in every class. Brun-
ners sentence-based results are not reported here, as they can-
not be compared to the segment-based results of the present
system.

95.01 for the direct class, 79.48 for the indirect and
70.13 for the free indirect class. Only the reported
class, with a score of 49.28, is still not recognized
well. The difference of the scores achieved with
and without sequential label features, i.e. between
the upper and lower bounds of evaluation, are sim-
ilar to those observed for CV. Free indirect is the
class that suffers the most severe decline in accu-
racy with the loss of the sequential label features,
i.e. 58.37 points F1 score, compared to a loss of
52.17 points F1 score for CV. This dependency
on the gold labels shows that the class by itself is
not well recognized by the classifier. The problem
might be alleviated by using a bigger training data
set. The reported class on the other hand is the
class that loses least accuracy when the sequential
label features are removed, indicating that reported
STWR does not often occur blockwise within the
STWR corpus.

Finally, we evaluated the second classifier (for
distinguishing speech, thought and writing) on the
test set. Results are listed in Table 3. Note that
only positively classified instances (real predic-
tions, not gold labels) are further annotated with
speech, thought and writing. The classification
scheme based on the majority class works well for
the classes direct and free indirect. The direct class
is classified correctly as speech with an F1 score of
over 90 points. Thought and writing are minority
classes with counts of up to eleven instances, and
thus can be ignored. The free indirect class only
consists of instances that are correctly labeled with
the majority class thought, the F1 score reaches 90
points with sequential label features and 60 points
without. This shows the influence of the first clas-
sifier’s performance, because instances that do not
belong to a class but are incorrectly recognized as
such, are also incorrectly classified with one of the
types speech, thought or writing. The results for
the indirect and reported classes are mixed. These
types are more heterogeneous than the other two,
i.e. their majority class covers a smaller percentage
of the instances. Before defaulting to the majority
class, the classifier attempts to classify reported
and indirect instances by searching for reporting
words. The F1 scores for the classes with more
than zero members range between 28.57 and 69.46.
This shows that the classification methods do not
completely fail in the case of minority classes but
that there is still room for improvement.
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Model STWR Seq Prec. Recall F1
Brunner direct - 71.00 66.00 69.00
STWR direct - 83.25 86.58 84.81
STWR direct + 96.47 95.19 95.80
Brunner indirect - 40.00 38.00 39.00
STWR indirect - 65.46 49.12 56.02
STWR indirect + 84.50 74.80 79.21
Brunner free ind - 28.00 15.00 20.00
STWR free ind - 23.79 47.15 31.39
STWR free ind + 87.79 80.46 83.56

Brunner reported - 39.00 31.00 34.00
STWR reported - 39.61 49.63 43.70
STWR reported + 42.56 62.93 50.51

Table 1: Results (BEST-IND) of the parameter
tuning process via cross validation compared to
Brunner’s segment-based results.

Model STWR Seq Prec. Recall F1
Baseline direct - 28.39 59.21 38.37
STWR direct - 87.09 83.26 85.13
STWR direct + 96.54 93.51 95.01

Baseline indirect - 10.85 43.84 17.40
STWR indirect - 61.82 50.25 55.43
STWR indirect + 84.07 75.37 79.48

Baseline free ind - 03.27 72.73 6.26
STWR free ind - 42.86 06.82 11.76
STWR free ind + 81.82 61.36 70.13

Baseline reported - 12.00 39.56 18.41
STWR reported - 41.10 49.45 44.89
STWR reported + 43.64 56.59 49.28

Table 2: Results (BEST-ALL) of the evaluation of
the STWR classifiers on the test set.

5 Conclusion

We were able to substantially improve the origi-
nal classification results on a German corpus an-
notated for speech, thought and writing (Brunner,
2015). This is largely due to changes in the fea-
ture set, which we described in detail. In addi-
tion, we tested techniques for handling class imbal-
ance: oversampling, SMOTE and our own (domain-
specific) data augmentation method. Also, we
demonstrated the utility of sequence based features
(experiments with predicted values are left for fu-
ture work, though), and we compared the contribu-
tions of two different word vector models.
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Abstract

We formulate argumentative relation clas-
sification (support vs. attack) as a text-
plausibility ranking task. To this aim,
we propose a simple reconstruction trick
which enables us to build minimal pairs of
plausible and implausible texts by simulat-
ing natural contexts in which two argumen-
tative units are likely or unlikely to appear.
We show that this method is competitive
with previous work albeit it is considerably
simpler. In a recently introduced content-
based version of the task, where contextual
discourse clues are hidden, the approach
offers a performance increase of more than
10% macro F1. With respect to the scarce
attack-class, the method achieves a large in-
crease in precision while the incurred loss
in recall is small or even nonexistent.

1 Introduction

Argumentative relation classification (ARC) is ded-
icated to determining the class of the relation which
may hold between two arguments or elementary
argumentative units, EAUs1. For instance, consider
the following premises given the topic or conclu-
sion (0) “Overall, marijuana is detrimental to your
health.”:

(1) Use of marijuana causes chronic bronchitis
and airflow obstruction.

(2) Cannabis does not need to be smoked to receive
its potential health benefits.

In this case, (1) has a positive stance towards
the conclusion (0); in contrast to (2), which has a
negative stance towards the conclusion. Addition-
ally, but not less importantly, we can say that (2)

1Here, we use the term elementary argumentative units to
denote clauses or small clause-complexes – e.g., (0), (1) or
(2)) – which can be ‘instantiated’ in an argumentative debate.
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Figure 1: A small argumentation graph contain-
ing two general types of relations: premise-topic
relations (class: negative/positive) and premise-
premise relations (class: supports/attacks).

weakens (1) – it casts doubt about its generality by
hinting at cannabis application methods which do
not involve combustion or inhalation. In this work,
we summarize all relations which aim at under-
mining or weakening another argument or premise
(‘undercut’, ‘rebuttal’, etc.) as attack.2 The EAUs
from our example and their connecting relations
are outlined in the graph in Figure 1.

In a rhetorically structured argumentative text3,
(1) and (2) may appear in configurations such as
On the one hand (1), on the other (2); (1), however,
(2), etc. Under these circumstances, discourse con-
text can predict argumentative relations very well.
However, when moving from such ‘closed scenario’
to a more ‘open-world setting’, e.g., where EAUs
have been mined from heterogeneous documents,
we need to determine relations based on their con-
tent. In this paper, we show that our method works
well in both scenarios. In fact, it is in the more
general and more difficult content-based setting,
where our method provides the most benefits over
previous work.

Systems which have learned to predict general
argumentative relations have a decisive advantage
when compared to systems that have ‘only’ learned
to predict argumentative stances: in an argumenta-

2For a more ‘in-depth’ view and discussion of argumen-
tative relations we refer the reader to, e.g., Pollock (1995),
Walton (2009) and Besnard and Hunter (2014).

3E.g., an argumentative essay.
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tive debate, often a debater does not choose to bring
forth any argument which supports their stance on
the topic. Instead, or additionally, they may choose
to select an argument which also attacks the oppo-
nent’s most recent argument. Therefore, we need
not only knowledge about the stances of arguments
towards topics, but also about relations to other ar-
guments. Our experiments show that our approach
is a step towards this goal.

The remainder of this paper is structured as fol-
lows: After discussing related work in Section 2,
we propose a simple reconstruction trick which al-
lows us to embed an argumentative source-target
pair in a relational discourse context yielding a
plausible and implausible text variant (Section 3).
In Section 4, we conduct experiments and abla-
tion studies using (i) a standard task setup, where
systems are allowed to see EAUs in their docu-
ment context and (ii) a more difficult ‘content-
focused’ task setup where systems are only allowed
to see the spans of the EAU clauses. The code for
this paper is available at https://gitlab.cl.
uni-heidelberg.de/opitz/pr4arc

2 Related work

In this section, we first provide an overview of the
data, and the data issues people are confronted with
when developing argumentative relation classifica-
tion (ARC) systems. We proceed with an overview
of existing ARC approaches and conclude by touch-
ing on other related tasks.

Argumentative relation data For general argu-
mentative relations, not many data sets have been
developed. One of the largest data sets consists of
402 argumentative student essays and is henceforth
denoted by ESSAY (Stab and Gurevych, 2014; Stab
and Gurevych, 2017). It has been annotated, i.a.,
with EAU clauses and more than 3,000 relations
which hold among them. By ESSAY-CONTENT,
we denote a version of ESSAY from which dis-
course context is stripped and systems can only
access the spans of EAU clauses (Opitz and Frank,
2019b). This setup is more difficult since systems
have to learn to model the content of two EAUs in
order to successfully predict their relation. ESSAY

and ESSAY-CONTENT will be more extensively de-
scribed in Section 4.1, where we also show that our
method is efficient across both setups.

Another data set which is annotated with in-
depth argumentative annotations is the Microtext
corpus covering a variety of political debates in

Germany (Peldszus and Stede, 2016). While it has
been annotated with a more fine-grained set of re-
lations (e.g., rebutting attack, undercutting attack,
linked support, example support) it is rather small
in size (the recently extended version (Skeppstedt
et al., 2018) contains about 700 relation tuples).
Similar to ESSAY-CONTENT, a variant of the Mi-
crotext corpus exists where argumentative units
are detached from discourse context (Wachsmuth
et al., 2018). We believe that systems that have
learned to predict argumentative relations based on
the content of argumentative units have advantages
over systems which focus too much on contextual
discourse clues. For example, content-focused sys-
tems can better be expected to solve large-scale
cross-document tasks where EAUs are mined from
many heterogeneous documents. Our reconstruc-
tion trick provides one step towards this goal: it
exploits potential discourse configurations without
depending on seeing the true discourse context.

A key reason for the data scarcity of annotated
general argumentative relations is that creating
high-quality data for ‘premise-premise’ relations is
a challenging task. Perhaps, it is more challenging
than creating data for argumentative stance detec-
tion since topics or conclusions are often ‘a-priori’
well understood (e.g., Cannabis should be legal-
ized) and always occur as the stance-relation target.
In that sense, it may be easier and quicker to tell
if an argument supports a conclusion compared
to deciding whether an argument supports another
argument.

ARC systems A linear SVM classifier that is
trained on a diverse set of features provides compet-
itive performance on ESSAY (Stab and Gurevych,
2017). A subsequent joint global graph optimiza-
tion step, similarly to (Peldszus and Stede, 2015;
Hou and Jochim, 2017), yields no further improve-
ment for classifying the relations in this data. The
SVM classifier incorporates features extracted from
the EAU spans as well as their context (e.g., leading
or trailing words). On ESSAY-CONTENT, where
systems only see the EAU clause spans, the perfor-
mance of the SVM suffers a loss of more than 10 pp.
macro F1 (Opitz and Frank, 2019b) – an analysis
indicates that the SVM focuses immoderately on
features extracted from the EAU context and tends
to neglect their actual content. This underpins the
need for argumentative relation classification sys-
tems with deeper understanding of argumentation,
i.e., systems that base their prediction on the actual
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content of two EAUs – the method we present in
this paper aims at this.

The first neural approach for ARC (Cocarascu
and Toni, 2017) proposes a neural network with a
Siamese structure (Koch et al., 2015; Mueller and
Thyagarajan, 2016; Cocarascu and Toni, 2017).
By means of a shared weight space it projects
source and target EAU to a joint distributional vec-
tor space. Finally, it classifies the vector offset
using a softmax-function. The authors conduct ex-
periments on a data set which comprises texts about
movies, technology and politics.

A similar model has been adopted recently
where (symbolic) knowledge from large back-
ground knowledge-graphs is injected into the
Siamese model by concatenating highly abstracted
multi-hop knowledge paths to the source-target off-
set (Kobbe et al., 2019). Although there are con-
sistent gains observed by including the knowledge,
the gains appear to be relatively small. In this as-
pect, we believe that incorporating knowledge of
the right form could make it possible to further
enhance the system we propose in this paper. How-
ever, as of now, it is an active topic of discussion
whether (symbolic) background knowledge may
help in automatic argumentation and, even more
so, which (form of) knowledge would be needed.

Computational argument mining and analysis
Argumentation is ubiquitous and argumentative
structures can be recovered from a broad spectrum
of texts. For example, they can be recovered from
online dialogue (Swanson et al., 2015; Budzyn-
ska et al., 2014) and scientific research articles
(Lauscher et al., 2018a; Lauscher et al., 2018b),
where, e.g., researchers may directly or indirectly
convey arguments for why some method is better
than another. By now, there exists a substantial
body of research publications covering a variety of
argument analysis topics. For a general overview,
we refer the reader to Lippi and Torroni (2016) and
Peldszus and Stede (2013).

Plausibility ranking Another task that can be
addressed as a text plausibility ranking task is the
resolution of difficult pronouns in the Winograd
Schema Challenge (Levesque et al., 2012; Opitz
and Frank, 2018). To resolve shell nouns and ab-
stract anaphora (e.g., ‘I like that’.) Marasović et al.
(2017) utilize syntactic patterns to gather plausible
candidate resolutions from a background corpus in
order to extend the scarce training data.

3 Context reconstruction and model

In this section, we first propose a simple reconstruc-
tion trick which allows us to build minimal pairs
of plausible and implausible argumentative texts.
Then, we describe a Siamese neural sequence rank-
ing model which addresses the task of ranking texts
according to their plausibility.

Constructing plausible and implausible argu-
mentative discourse contexts Consider two
EAU clauses a2 (source) and a1 (target) where we
need to decide whether a2 supports a1 or a2 attacks
a1. In the absence of contextual discourse clues4,
a system must learn to predict this relation by con-
sidering the semantic content of a1 and a2. We
approach this task by offering two alternative con-
text reconstructions and asking our model in what
context a1 and a2 are more likely to appear. More
precisely, our reconstruction trick is as follows:

(a) a1. Additionally, a2 .

(b) a1. Admittedly, a2.

where (a) signals that two argumentative units
likely stand in a support-relation and (b) sig-
nals the opposite (‘attack’). In our experiments
(Section 4), we also examine other possible dis-
course connectors for our reconstruction (e.g.,
moreover/however). From here, we ask our model
which of the two reconstructions leads to a more
plausible ‘reading’: (a) or (b)? E.g., consider the
cannabis-example from Section 1; applying our re-
construction trick yields the following implausible-
plausible minimal pair (r−,r+):

(3a) [r− Use of marijuana causes chronic bron-
chitis and airflow obstruction. Additionally,
cannabis does not need to be smoked to re-
ceive its potential health benefits.]

(3b) [r+ Use of marijuana causes chronic bron-
chitis and airflow obstruction. Admittedly,
cannabis does not need to be smoked to re-
ceive its potential health benefits.]

Clearly, (3b) constitutes a more plausible recon-
struction compared with (3a). Exactly this is what
we desire our model to learn: assessing the fine-
grained differences between two texts which differ

4To name just one situation: consider a cross-document
relation classification setup where a1 stems from a different
document than a2. Any specific textual discourse context
would not only be more or less unimportant, but also bears the
potential to confuse the system.
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Reading Encoder

 Use of marijuana causes chronic bronchitis  (...). 
 Additionally, cannabis does not need to be smoked (...).

Use of marijuana  causes chronic bronchitis (...). 
Admittedly, cannabis does not need to be smoked (...).

Plausibility Prediction

         score score

rank loss

Figure 2: Siamese model outline. Two competing
reading-reconstructions are fed through a Siamese
encoder (Reading Encoder). The vectors are then
mapped by means of a (Siamese) linear combina-
tion and a selu-activation onto two corresponding
plausibility scores (Plausibility Prediction). By
reducing the ranking loss, we force the model to
assign higher scores to more plausible readings.

in only one phrase. This phrase, however, deter-
mines whether the text in its entirety is implausible
or plausible.

3.1 Loss and model

Ranking loss We argue that a ranking approach
(which reading is more plausible?) is more suit-
able for addressing our problem compared with
a classification approach (plausible vs. implausi-
ble). The reason is that ranking allows for a more
relaxed and graded notion of textual plausibility:
we want the model to prefer one variant and not
to choose one variant. This is accomplished by
reducing the margin ranking loss on the training
data {(r+i ,r−i )}n

i=1:

Lθ =
1
n

n

∑
i=1

[
1− scoreθ (r+i )+ scoreθ (r−i )

]
, (1)

where score(·) is a plausibility prediction model
parameterized by θ . The plausibility-prediction
model which we use is described in detail in the
following paragraphs. Since Lθ is differentiable
with respect to the model’s parameters θ , we can
learn them with gradient descent.

Model overview We desire the score(·) function
to return a number p ∈ R reflecting the plausibility

of a text sequence made up of words w1, ...wn. In
our case, this function is instantiated with (i) a
Siamese reading encoder (Reading Encoder, Figure
2) and a Siamese plausibility prediction layer for
producing a plausibility score for any given text
(Plausibility Prediction, Figure 2). Now, we will
describe these two components more closely.

Reading encoder First, we use a contextual lan-
guage model5 to infer a sequence of word em-
beddings: e1, ...,en, which correspond to words
w1, ...wn. Here, we hope that already the contex-
tual language model provides statistical informa-
tion indicating whether a specific word sequence
may be considered as rather plausible or rather
implausible (‘inductive bias’). The sequence of
word embeddings e1, ...,en is further multiplied by
a sequence of positive indicator coefficient embed-
dings: e1 · c1, ...,en · cn.6 This allows the model
to learn to better distinguish between the source,
target and the connector text (we learn three cor-
responding indicator embeddings). The resulting
sequence is further processed by (ii) a Bi-LSTM
(Hochreiter and Schmidhuber, 1997) to construct
hidden states H = h1, ...,hn (we concatenate hid-
den states of forward and backward read) and (iii) a
four-headed scaled dot-product self-attention mech-
anism (Vaswani et al., 2017), where in our case we
use H = Q = K =V :

Heads(Q,K,V ) = [head1; ...,head4]W O

headi = Attention(QW Q
i ,KW K

i ,VWV
i )

Attention(Q,K,V ) = so f tmax(
QKT
√

dk
)V,

where W (·)
(·) are parameters of the model. Finally,

we compute a weighted average of the final se-
quence of hidden states to construct a vectorized
reading representation v (Felbo et al., 2017):

et = Heads(·)tW A at =
exp(et)

∑T
i=1 exp(ei)

v =
T

∑
i=1

aiHeads(·)i,

where Heads(·)t is the vector corresponding to
time step t computed by the previous scaled dot-

5We use BERT (Devlin et al., 2019) to infer the contextual
embeddings. In our ablation experiments, we also present
results based on ELMo embeddings (Peters et al., 2018)

6Similar to Opitz and Frank (2019a).
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abbreviation ‘support’ ‘attack’

A/A Additionally, Admittedly,
A/D I agree, I disagree,
M/H Moreover, However,
Y/N Yes, No,

Table 1: Argumentative discourse connector sen-
tence adverbials and the argumentative relation
class which they are likely to signal.

product attention step and v is a final vectorized
representation of the input reading.

Plausibility prediction At plausibility predic-
tion time, the vector representation v, which we
obtained by the previous step, is mapped to a sin-
gle score by means of a linear combination with a
weight vector. Lastly, a selu-function (Klambauer
et al., 2017) produces the desired plausibility-score:

p = selu(vT w). (2)

This score, computed once for each of the two
competing reconstructions, allows a comparison
with respect to their (predicted) plausibility. For
our ARC experiments, where we desire a final clas-
sification, we predict the argumentative relation
class by inspecting the discourse connector of the
reconstruction which obtains a higher plausibility
score. E.g., if score(EAU1,additionally,EAU2)≥
score(EAU1,admittedly,EAU2) we predict the ar-
gumentative ‘support’ relation – otherwise we pre-
dict the ‘attack’ relation.

4 Experiments

We begin this section by describing the experimen-
tal setup used to evaluate our neural plausibility
ranker. Next, we present our main results and fi-
nally perform several analyses and study the effects
of ablating model components.

4.1 Setup

Discourse links To construct plausible and im-
plausible texts, we experiment with eight different
discourse connectors which have the potential to
‘signal’ argumentative relation types. They make
up, in total, four minimal pairs (Table 1).

Data We use the student essay corpus v02 (Stab
and Gurevych, 2017) in two versions: ESSAY and
ESSAY-CONTENT. What is common to both is that

they contain data from the same 402 argumenta-
tive essays written by students about a variety of
topics. The essays have been annotated with, i.a.
spans of argumentative units and their relations
with each other (support vs. attack). Since only the
argumentative clauses have been annotated, we can
clean EAUs from their discourse context, which
yields ESSAY-CONTENT. For example, consider
EAU1. To add on this, EAU2. While in ESSAY, a
system is allowed to see EAU-surrounding tokens
(to add on this), in ESSAY-CONTENT, systems are
allowed to see only the spans of the EAUs to pre-
dict their relation (i.e., EAU1,EAU2). In the easy
case, to add on this may be enough to predict a
support relation with high confidence and accu-
racy without even seeing the content of the EAUs
– in the hard case, however, a system must learn
to assess the actual content of the premises. In
ESSAY-CONTENT, the performance of the feature-
based SVM described by Stab and Gurevych (2017)
drops by more than 23% macro F1 compared to the
standard setup (ESSAY) where shallow discourse
context is accessible (Opitz and Frank, 2019b).

Baselines We display the results of a competitive
feature based SVM. It requires, i.a., syntactic pars-
ing, constituency-tree sentiment annotation (Socher
et al., 2013) and discourse parsing (Lin et al., 2014)
as pre-processing steps (Stab and Gurevych, 2017;
Opitz and Frank, 2019b). In contrast, our method
does not depend on any pre-processing.

Model instantiation For each possible minimal
pair, we instantiate a different model based on the
pre-trained BERT model (the BERT model remains
fixed during optimization). More specifically, we
infer the word embeddings and average over the last
four layers to produce a sequence of vectors with
1024 dimensions. Forward and backward LSTM
have 256 neurons each. For development purposes
we split off 1149 examples from the training data.
The rank loss (Eq. 1) is minimized by performing
stochastic gradient descent with Adam (Kingma
and Ba, 2014)7. After each epoch, the model is
evaluated on the development data. Finally, we se-
lect the parameters from the epoch with maximum
F1 score on the development data.

In our tables, each model is denoted
ArgRankerdcs where dcs indicates which pair of
discourse connectors was used for reconstruc-

7The learning rate is set to 0.001, the mini-batch size to 64
and the maximum number of epochs to 25.
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System ESSAY ESSAY-CONTENT

majority baseline 47.8 47.8
SVM with features 68.0 57.3

ArgRankerA/A 67.2±1.0 58.6±1.4

ArgRankerA/D 69.2±2.4 59.2±0.7

ArgRankerM/H 68.8±1.7 63.8±2.1

ArgRankerY/N 67.3±0.8 58.3±1.8

ArgRankervote 70.9±0.7 60.7±1.7

Table 2: Macro F1 results. underlined: best re-
sult; bold: improves against SVM withstanding
standard deviation.

tion. ArgRankervote denotes a model where we
aggregate the predictions over the four different
minimal-pair single models (‘ensemble model’).
All results are averaged over five runs.

4.2 Results

Macro F1 results Table 2 lists the macro F1 re-
sults8 of our experiments.

On ESSAY, our method is competitive with the
SVM that relies on extensive pre-processing. On
ESSAY-CONTENT, where models are forced to
learn to assess the content of EAUs, our method
outperforms the feature-based SVM across all con-
figurations. The best performance on this data
is provided by ArgRankerM/H , which is trained
on Moreover-However reconstructions (+6.5 pp.
macro F1, relative improvement: 11%). Our ensem-
ble model ArgRankervote, which aggregates the pre-
dictions of the individual ArgRankers in a simple
vote, achieves an improvement of +3.4 pp. macro
F1 (relative improvement: 6%).

More detailed results Table 3 indicates that our
method offers other advantages besides raw macro
F1 gains. The very rare attack-class is detected
with a much greater precision compared with the
SVM. The difference can range from an improve-
ment of 5.6 pp. (ArgRankerY/N , relative improve-
ment: 28%) up to a maximum improvement of
31.4 pp. (ArgRankervote, relative improvement:
157%). With such a large increase in precision,
one might expect a drop in recall – however, this is
only the case to a very small extent. The greatest
drop in recall is incurred by ArgRankervote (-5.2
pp.) and thus can be said to lie in the shadow of
its precision gains (+31.4 pp.). Moreover, when

8Macro F1 in our case is defined as the unweighted mean
over the F1 scores for our two classes.

Attack Support
System Precision Recall Precision Recall

majority 0.00 0.00 8.0 100.0
SVM with features 20.0 22.9 93.0 91.8

ArgRankerA/A 31.0±5.9 18.2±2.1 92.9±0.1 96.2±1.1

ArgRankerA/D 28.0±4.4 22.8±3.2 93.1±0.2 94.5±1.6

ArgRankerM/H 39.9±9.4 30.0±6.8 93.8±0.6 95.5±2.4

ArgRankerY/N 25.6±5.8 23.7±5.1 93.1±0.3 93.0±3.3

ArgRankervote 51.4±7.3 17.7±3.4 93.0±0.2 98.4±0.7

Table 3: Precision and recall scores for each class
on ESSAY-CONTENT. underlined: best result;
bold: improves against SVM withstanding stan-
dard deviation.

SVM A/A A/D M/H Y/N voter no-disc
model
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Figure 3: Scores for different models using
BERT embeddings and SVM (left column) on
ESSAY-CONTENT. Reconstruction with More-
over/however offers the largest improvement. Non-
linguistically motivated connectors result in re-
duced performance (‘+’/‘-’: no-disc, right column).

we use the discourse connector minimal pairs A/D
and M/H, our model outperforms the SVM in the
attack-class both in precision and recall. Most no-
tably, when we instantiate our reconstructions with
Moreover/However, we see a large gain in preci-
sion (+19.9 pp., relative improvement: 99.5%) but
also an observable gain in recall (+7.1 pp., relative
improvement: 31.0%).

With regard to the majority class (support), we
make two observations: (i) precision-wise, all of
our models outperform or are on par with the SVM;
(ii) recall-wise, all of our models outperform the
SVM. The greatest gain in recall for support is
achieved by ArgRankervote (+6.6 pp.).

4.3 Ablation experiments and analysis

Linguistically motivated discourse reconstruc-
tion What is the outcome of instantiating the dis-
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model configuration

System basic ELMo -coeff. -att.

majority 47.8 - - -
SVM (Stab and Gurevych, 2017; Opitz and Frank, 2019b) 57.3 - - -

ArgRankerA/A 58.6±1.4 55.7±1.6 57.4±2.1 58.3±1.2

ArgRankerA/D 59.2±0.7 60.2±2.2 59.6±2.1 56.2±1.9

ArgRankerM/H 63.8±2.1 59.4±2.5 61.1±1.0 60.7±1.9

ArgRankerY/N 58.3±1.8 57.6±1.7 57.7±1.2 58.2±3.0

ArgRankervote 60.7±1.7 59.5±1.9 60.2±2.2 56.2

ArgRanker−discourse 57.3±0.4 63.6±1.3 57.3±2.8 54.5

Table 4: Ablation experiments: Macro F1 results on ESSAY-CONTENT. ArgRanker−discourse: a system
where we replace the natural discourse connectors with ‘linguistically meaningless’ placeholders (i.e.,
support: ‘+’, attack: ‘-’ instead of, e.g., support: ‘Moreover’, attack: ‘However’). ELMo: we use ELMo
instead of BERT; -coeff.: we abstain from learning source-target specific coefficients; -att.: we ablate the
self-attention and use the last states of the Bi-LSTM (concatenation of each read) for prediction.

course reconstructions with ‘meaningless’ connec-
tors? I.e., instead of instantiating the attack/support
context with linguistically motivated connectors,
such as, e.g., I agree/I disagree, we instantiate the
contexts with the meaningless tokens ‘+’ and ‘-’.
On one hand, this means that the new discourse
configuration is still discriminative (either support-
ing or attacking). On the other hand, however, the
discriminating reconstruction is not any more lin-
guistically motivated. Thus, we hypothesize that
the linguistically motivated reconstructions better
‘trigger’ the contextual BERT model into giving a
useful inductive bias about whether a certain read-
ing is plausible or not.

From Table 4 and Figure 3, we see that, indeed,
our model functions better when provided with lin-
guistically motivated reconstructions instead of the
non-linguistically motivated reconstruction (Figure
3: columns A/A, A/D, M/H, Y/N vs. bottom row
in Table 4 and right column in Figure 3). This
holds true across all model configurations and all
linguistically motivated discourse connector pairs.9

More specifically, we find that the More-
over/However reconstruction appears to offer the
most useful inductive bias (middle column, Fig-
ure 3). Our ArgRanker based on this reconstruction
outperforms all other configurations by more than
4 pp. macro F1 (compared with Agree/Disagree)
and more than 6 pp. macro F1 compared with the

9An exception constitutes the model based on ELMo em-
beddings, which appears to work better when provided with
the non-linguistically motivated connector pair.

non-linguistically motivated reconstruction. One
reason could be located in the fact that BERT was
trained, i.a., on the Wikipedia corpus: we com-
pute a simple word frequency statistic over this
corpus and see that the terms Moreover and How-
ever appear more frequently in this corpus (e.g.,
however: appr. 29,900,000 occurrences) than, e.g.,
Admittedly (appr. 17,000 occurrences). Also, by
manually inspecting a small amount of occurrences
in Wikipedia, we find that moreover and however
tend to occur in more ‘argumentative’ contexts, or,
at least, connect two discourse units in a contrasting
(however) or supporting (moreover) way. On the
other hand, e.g., I agree tends to occur in less argu-
mentative contexts, such as in I agree to the terms
of service. We believe that contextual language
models trained on interactive discourse texts (e.g.,
online discussion platforms) instead of encyclope-
dic texts would greatly help to provide our model
with better embeddings in the situations where we
want to compose plausible and implausible texts by
means of more ‘interactive’ connectors (I agree/I
disagree; Yes/No; etc.).

BERT vs. ELMo In our first experiment, we re-
place the BERT embeddings with ELMo embed-
dings – we want to ‘probe’ which of the two em-
bedding generators is better suited to rank argu-
mentative texts according to their plausibility. First,
we see that ELMo embeddings provide better per-
formance than the feature based baseline, with one
exception: ArgRankerA/A, where we reconstruct
contexts by inserting Additionally and Admittedly
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(c) Connector vs. target coefficients

Figure 4: Investigation of the three contextual coefficient-embeddings which our model has learned. The
coefficients are initialized with ones and assume, during training, a Gaussian-like distribution. By all
appearances, the model uses some coefficients to ‘deflate’ the impact of an embedding dimension in, e.g.,
the text corresponding to the source EAU, while ‘inflating’ the impact of an embedding dimension in, e.g.,
the text corresponding to the target EAU (Figure 4a, regions on the upper left).

(Table 4, ELMo). Second, the ELMo embeddings
in most cases fall short in comparison to BERT
embeddings – again, however, with one exception:
ArgRanker−discourse, which does not use the linguis-
tically motivated reconstruction.

Indicator embedding coefficients Now, we
want to investigate if learning coefficients to better
distinguish between source and target has helped
our model. Recall, that the three coefficient indica-
tor embeddings correspond to source/target EAU
span and the discourse connector span and allow
the model to highlight certain word embedding in-
dices differently with respect to these three spans.
For most connector pairs, learning the coefficients
helps and their ablation leads to a performance
drop (Table 4, -coeff; e.g. ArgRankerM/H : -2.7 pp.
macro F1).

Finally, we plot the learnt coefficients of the
three different indicator embeddings against each
other to analyze their appearance after training. Fig-
ure 4 displays all values from all discourse connec-
tor parameterizations ·/· of ArgRanker·/·. More
specifically, we are interested in the following ques-
tion: Have we learned that certain contextual word
embedding indices are important to inflate (deflate)
with respect to the source or the target? From in-
specting Figure 4, we see that this appears to be
the case. For example, there is a set of embedding
indices where coefficients are used to magnify the
corresponding values in the target EAU and deflate
them in the source EAU (Figure 4a, top left re-
gion) – while for another set of embedding indices

the opposite is true (Figure 4a, bottom right). Fur-
thermore, the learnt coefficients have assumed a
normal-like distribution after training (distribution
plots on the sides of Figures 4a, 4b, 4c).

Self-attention Finally, we want to investigate the
effect of ablating the self-attention mechanisms
from our model. More precisely, we predict the
plausibility scores based on a concatenation of the
last state of forward and backward read of the Bi-
LSTM. Throughout all different discourse recon-
struction strategies, we see drops in performance
(Table 4, -att). However, while we see observ-
able drops in some cases (ArgRankervote: -4.5 pp.
macro F1), they are comparatively small in other
cases (ArgRankerY/N : -0.1 pp.).

5 Conclusion

We have treated argumentative relation classifica-
tion in a new light, as a task where we learn to rank
candidate texts according to their plausibility. To
this aim, we have proposed a simple reconstruction
trick which allows us to embed source and target
argumentative units into plausible and implausible
argumentative discourse contexts. In order to learn
to rank such texts according to their plausibility,
we have adapted a neural Siamese ranking model.
Our experiments on an established data set have
shown that the approach is competitive with previ-
ous work albeit it does not require pre-processing.
In the ‘content-based’ setting – which is more diffi-
cult because models cannot base their decisions on
shallow clues in the discourse context – the method
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outperforms previous work by a considerable mar-
gin. In particular with respect to the scarce class
attack we observed substantial improvements in
precision.
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Abstract

This paper describes the use of sequence
labeling methods in predicting the seman-
tic labels of extracted text regions of het-
erogeneous electronic documents, by uti-
lizing features related to each semantic la-
bel. In this study, we construct a novel
dataset consisting of real world documents
from multiple domains. We test the per-
formance of the methods on the dataset
and offer a novel investigation into the in-
fluence of textual features on performance
across multiple domains. The results of
the experiments show that the neural net-
work method slightly outperforms the Con-
ditional Random Field method with limited
training data available. Regarding general-
izability, our experiments show that the in-
clusion of textual features aids performance
improvements.

1 Introduction

On a daily basis, legal departments of corporations
produce many electronic documents for documenta-
tion of cases, investigative reporting, internal com-
munication etc. Whenever these corporations are
involved in litigation or investigations as part of
regulatory requests, the need arises to collect and
review these documents and share their contents
with third parties. As document data sets increase,
the corporations turn to e-discovery technology to
facilitate the process of collecting, reviewing and
sharing. E-discovery technology helps to automati-
cally analyze the documents by using text mining
and other text-related analytics to discover rele-
vant information. However, these text mining tech-
niques for automatic document analysis only work

Figure 1: Example of a segmented document and
its corresponding labels

optimally when the roles of different text sections
in a document are known. For example, by recog-
nizing tables, headers and footers, we can apply
different extraction and analysis techniques than
on normal paragraphs, and expect better results.

For safety reasons however, electronic docu-
ments in the legal domain are mostly transformed
into images (e.g. jpg, tiff) so the corporation or
firm can have control of what they share with other
parties. Electronic documents usually contain hid-
den information (information that can’t be seen
when the document is viewed) and these pieces of
information could contain hidden details they don’t
want to disclose to the receiving party. On the other
hand, transforming the documents to images cre-
ates another problem as it makes it more difficult
to automatically identify the specific role of the
document areas. Hence, to provide automatic tools
to determine the function of textual regions derived
from document images, we need to do document
image understanding.

The primary goal in document image understand-
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ing is to (1) identify regions of interest in a docu-
ment image (page segmentation) and (2) recognize
the role of each region (semantic structure label-
ing). Many related studies treat these two tasks as
separate sequential tasks. However, they are also
often handled as one unified task. In this work, we
specifically address the second step in the under-
standing of document images: the task of semantic
structure labeling. The goal of this task is to label a
sequence of physically segmented regions in a doc-
ument image with semantic labels such as header,
paragraph, footer, caption, etc. (see Figure 1). We
treat the task as a sequence labeling problem, which
involves assigning a categorical label to each mem-
ber of a sequence of observations i.e. a sequence
of document segments in our scenario. Though the
work of document image understanding covers vari-
ous types of document images, our work focuses on
electronic and digital-born documents composed
primarily of single-column layouts. Typical exam-
ples of such electronic documents which can be
converted to images are PDF, Word, Powerpoint,
E-mails, etc.

Even though extracting the semantic information
from a document is a task that is easily done by a
human, it is still an open and challenging problem
for computers due to the inherent complexity of
documents (Rangoni et al., 2012), especially when
the set of documents in focus are diverse in layout
and format. Similar works on semantic labeling
such as (Tao et al., 2013) and (Shetty et al., 2007)
are usually very specific to a document format or
a set of related document types and problematic
when we try to generalize to other document types.
There is still a need for robust methods, capable of
dealing with a broad spectrum of layouts found in
digital-born documents (Clausner et al., 2011).

Our work addresses this gap in research by com-
paring sequential labeling methods for the seman-
tic labeling task, and considering heterogeneous
document images. Homogenous formats and lack
of fine-grained semantic labels relevant for real
world documents, are some limitations of previ-
ous document image datasets. To address these
issues, we annotated a new dataset containing doc-
uments from an infamous legal case - the Enron
Corporation scandal investigation. We also com-
pare the performance of the following sequence
labeling methods on the annotated dataset: (i) A
feature-based Conditional Random Field (CRF) (ii)
A recurrent neural network with a Bidirectional

Long Short-Term Memory (LSTM) architecture.
Our methods perform fine-grained recognition

on text regions and include identification of tables.
Furthermore, we check the influence of textual re-
lated features on the generalizability of our meth-
ods to a different domain. Luong et al. (2010)
and Yang et al. (2017) prove that the performance
of methods improves when text information in a
region is considered for semantic labeling. We ex-
tend this by checking its influence across a different
document domain.

Our main contributions are summarized as fol-
lows:

• We compare two sequential labeling meth-
ods to address document semantic structure
labeling. Unlike previous works, we consider
heterogeneous document formats and identify
both fine-grained semantic-based classes and
tables.

• We offer a novel investigation into the influ-
ence of text-related features on the perfor-
mance of our methods across a different docu-
ment domain.

• We provide an evaluation dataset for the task
of semantic labeling on digital-born docu-
ments.1

In section 3, we present our evaluation dataset.
We then provide a detailed description of our sys-
tem architecture in section 4. Section 5 is a break-
down of the sequence labeling methods performed
for the task. We show the results of our experi-
ments in section 6 and conclude on our work in
section 7.

2 Related Work

Previous works on document image understanding
(Chen and Blostein, 2007; Marinai, 2008; Kamola
et al., 2015) divide the task into two parts: a phys-
ical decomposition or segmentation of document
images into regions (page segmentation) and a log-
ical/semantic understanding of these regions (se-
mantic structure labeling). Though the focus of
our work is on semantic labeling, we also present
a high-level discussion on existing page segmenta-
tion techniques.

1The dataset will be made available upon request.
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2.1 Page Segmentation

Page segmentation techniques involve identifying
segments enclosing homogeneous content regions,
such as text, table, figure or graphic in a docu-
ment page or image. These techniques fall into
three categories: bottom-up, top-down and hybrid
approaches. Bottom-up approaches (Kise et al.,
1998; Adnan and Ricky, 2011) begin by group-
ing pixels of interest and merging them into larger
blocks or connected components, which are then
clustered into words, lines or blocks of text. How-
ever, such approaches are expensive from a compu-
tational point of view. Top-down approaches (An-
tonacopoulos, 1998; Gatos et al., 1999) recursively
segment large regions in a document into smaller
sub regions. Both approaches however, are lim-
ited by their inability to successfully segment com-
plex and irregular document layouts. Hybrid meth-
ods, such as proposed in Pavlidis and Zhou (1992)
combine both top-down and bottom-up techniques.
With recent advances in deep neural networks, neu-
ral based models have become state-of-the-art for
segmentation. Siegel et al. (2018) utilized a neural
network to extract figures and captions from sci-
entic documents. Yang et al. (2017) proposed a
unified convolutional model to classify pixels in
a document based on their visual appearance and
underlying text content.

2.2 Semantic Structure Labeling

Our work focuses on the second aspect of doc-
ument image understanding. Semantic labeling
couples semantic meaning to a physical region or
zone of a document after it has been segmented.
Two types of approaches have been considered in
the literature to handle this task: the model-driven
approach and the data-driven approach (Mao et al.,
2003). Early work in semantic structure labeling fo-
cused on the model driven approach. Models made
up of rules, or trees, or grammars contained all
the information that was used to transform a physi-
cal structure into a logical or semantic one. Rule
based systems (Kim et al., 2000), though fast and
human-understandable proved to be poorly flexible
and unable to handle irregular cases and varying
layouts.

Recent studies have considered the data-driven
approach using supervised learning methods as an
alternative to avoid the inflexibility and rigidity
of manually built rule systems and mechanisms.
These data-driven approaches make use of raw

physical data to analyze the document and no
knowledge or predefined rules are given. Vari-
ous document image datasets have been created
for this purpose including images in the document
space of electronic documents, scanned documents,
magazines, newspapers etc. (Todoran et al., 2005;
Antonacopoulos et al., 2009) but they are usually
confined to a single domain or class. Chen et al.
(2007) define a document space as the set of doc-
uments that a classifier is expected to handle. The
labeled training and test samples are all drawn from
this document space. Our dataset includes hetero-
geneous formats of electronic documents such as
Microsoft Office files, PDF and email files which
cover multiple domains like business letters, ar-
ticles, memos, forms, reports, invoices etc. that
significantly vary in layout and content.

Most existing supervised learning methods for
semantic labeling use CRF and deep neural net-
work approaches. Tao et al. (2013) built a CRF
model as a graph structure to label fragments in a
document. Shetty et al. (2007) used CRFs utiliz-
ing contextual information to automatically label
extracted segments from a document. Yang et al.
(2017) and Stahl et al. (2018) used visual cues and
deep learning methods to analyze documents. In
this study, we treat the semantic structure label-
ing task as a sequential labeling problem where a
document image is modeled as a sequence of re-
gions. The motivation for this is to model spatial
dependencies and possible transitions between the
different regions. Shetty et al. (2007) model spatial
inter-dependencies between sequential segments
in documents. Luong et al. (2010) also treat their
semantic labeling task as an instance of the sequen-
tial labeling problem. CRFs and recurrent neural
networks are popular sequential learning methods
for this type of modeling. We offer a comparison
of these state-of-the-art methods for semantic la-
beling across heterogeneous document formats in
this study.

Luong et al. (2010) report in their work that
adding textual information to a CRF model for
semantic labeling improves its performance. We
build on this work by also checking the influence
of textual information on the performance of our
methods across different document domains.

3 Datasets

This section describes the construction of our eval-
uation dataset for the task of semantic labeling
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Dataset SemLab PRIMA

Document images 400 478

Document space
Office docs,
PDF & Email

Magazine

Label categories 13 9

Table 1: Overview of the datasets used in this study.

which we call SemLab (SemLab coined from Se-
mantic Labeling). The documents we used were
gathered from the Enron Corpus.This corpus is a
large database of approximately 600,000 emails
generated by 158 employees of the Enron Corpora-
tion and acquired by the Federal Energy Regulatory
Commission, a United States federal agency, dur-
ing its investigation after the company’s collapse.

To compare the performance of the sequence
labeling methods across different domains, we
used the PRIMA dataset of Antonacopoulos et
al. (2009). Table 1 contains an overview of both
datasets.

3.1 Dataset Creation

We select documents for our dataset from the email
folder of the then CEO of Enron corporation. Of
all the employees in the corporation, he received
the most emails. The documents comprise of sent
and received email messages in the folder as well
as document attachments. For attached documents,
we consider four formats of documents: Word,
PDF, Excel and Powerpoint documents, and ig-
nore other file formats in the folder. This selection
of different document formats meets the variety
characteristic of an ideal dataset as described in An-
tonacopoulos et al. (2006) because several classes
of document pages are represented. In total, we se-
lect 100 email messages and 406 unique documents
from the CEO’s email folder. With each document
containing different pages, the full set we collected
from the email folder contained 2,447 document
pages.

After selection of the electronic documents, we
converted them to TIFF images since document
images are the focus of our work. The SemLab
evaluation dataset is a random selection of 400 doc-
uments from the 2,447 document images, contain-
ing a total of 2,869 regions and their ground truth
representation in CSV format (see section 3.3).

3.2 Document Semantic Labels

We attempt to identify 13 labels in a document:
paragraph, page header, caption, section heading,
footer, page number, table, list item, title, email
header, email body text, email signature and email
footer. Our choice of labels is specific to regions
in a document that contain text. Hence we didn’t
consider regions in a document that are devoid of
text e.g. figure, image, graphic etc.

3.3 Annotation Process

Apart from the document images part of our dataset,
we created the geometric hierarchical structure of
each image (in CSV format) as ground truth for
the dataset. We achieved this as follows: For each
region, the corresponding bounding box was given
in terms of its x and y coordinates on the document
image. Each region was also given a label from the
set of 13 labels we defined. The bounding box co-
ordinates were defined by page segmentation using
the Tesseract OCR engine2 while the labeling of
the regions was done manually. Tesseract OCR per-
forms an automatic full page segmentation of the
document image thereby producing the bounded
regions in the document. We allowed for manual
correction of the regions by the annotators in case
of a faulty or overlapping region. In total, 5 non-
domain experts took part in annotating the sample
of 400 document images independently. Each doc-
ument image was annotated by 3 annotators (fixed
number).

To make the manual annotation effort easier for
the annotators, we split the 400 documents into
40 groups i.e. 10 documents per group, so that
they had the liberty to annotate a minimum of
10 documents and a maximum of 400 documents.
We set up the process by providing the annotators
with a simple image editor tool to manually correct
the segmentation (by specifying imprecise region
boundaries using a variety of drawing modes such
as using rectangles or arbitrary polygons) and label
each region in a document image. We pre-loaded
the labels into a drop-down editor to improve anno-
tation efficiency. Hence, the annotator only needed
to select the labels from a drop-down. To ensure
that the annotators understood the annotation task,
we provided a user guide containing complete in-
structions on how to use the image editor tool and
carry out the labeling of the regions.

We measured the Inter-Annotator Reliability

2github.com/tesseract-ocr/tesseract accessed 2019-06-09
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Figure 2: Implementation architecture, showing training and testing phases including the input and output
for the sequence learning models

(IAR) of agreement using the Fleiss’ Kappa mea-
sure (Fleiss, 1971). It has been shown to be more
suitable to measure IAR when more than 2 anno-
tators are involved, compared to other measures
such as Cohen Kappa.3 The Fleiss’ Kappa value
measured for our annotation task was 0.52. This
value indicates moderate agreement between the
annotators, going by the table given in (Landis
and Koch, 1977) for interpreting Fleiss’ Kappa
values. After annotation, the main author of this
paper reviewed the annotations and resolved the dis-
agreements between the three annotators for each
document image. Disagreements were resolved by
majority voting and in instances where each anno-
tator had unique annotations, the author revisited
the annotated samples and made the most logical
choice of label to form the gold-standard set.

4 System Architecture

Figure 2 summarizes the architecture of our seman-
tic labeling system. During the training process, we
run all input document images through the Tesser-
act OCR software to obtain raw text data as well
as geometric layout information. The feature ex-
tractor utilizes both the layout information and raw
text, when available, to produce features which go
through the sequence labeling trainer together with
corresponding manually labeled data, to produce
the learned models. The trainer learns to assign
a semantic label to the segmented regions R of a
document image D. Most of the document images
contain single-column layouts, hence we order the

3Fleiss’ Kappa works for any number of annotators giving
categorical ratings, to a fixed number of items

segmented regions as a sequence, from the top of
the document page to the bottom. Each region Ri

∈ R is bounded by a bounding box Bi ∈ B that
includes coherent text content and each bounding
box is a set of pixels between its top left corner
and bottom right corner coordinates. None of the
bounding boxes overlap the other.

During testing, we want to assign a label Li ∈W
: i = {1,...,n} to each region Ri. Given a sequence
of regions x = (x1, x2,..., xn) in a document image,
the task is to determine a corresponding sequence
of labels y = (y1, y2,..., yn) for x. This can be
seen as an instance of a sequence labeling problem,
which attempts to assign labels to a sequence of
observations. We take into account the contextual
information for each of the regions in the sequence
i.e. the labels of preceding or following regions are
taken into account for label classification.

5 Methods

In this section, we present the sequence labeling
methods for semantic labeling of document images
and the evaluation procedure.

5.1 Linear-Chain CRF (LC-CRF)

CRFs are probabilistic models used to segment and
label sequential data. They are reported to be very
effective for semantic structure detection (Peng and
McCallum, 2004; Luong et al., 2010). An inherent
merit of the CRF model to perform this task is its
ability to combine two classifiers: a local classi-
fier which assigns a label to the region based on
local features and a contextual classifier to model
contextual correlations between adjacent regions.
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Feature set Description

Without OCR

Block coordinates The location of the region bounding box
within the document image (x and y co-
ordinates)

Height Normalized height of block
Width Normalized width of block
Area Normalized area of block
Aspect ratio Width/height of block
Vertical position Vertical position of region in the image

(top, middle, bottom)

With OCR

Digit Binary feature indicating if the text in
the region consists of digits or contains
digits

Capital letters Binary feature indicating if if the text in
the region is all in capital case or contains
capital letters

Nr of tokens The number of tokens in a region block
Nr of lines Binned number of lines in a region block

(small, medium, large bins)
List item pattern Binary feature indicating if text contains

bullet items
Caption pattern contains caption keywords (table, source,

fig., figure)
Email keywords Keywords found in different parts of an

email
Has multi-white
space (table feature)

Binary feature indicating if bounded re-
gion contains multiple white spaces be-
tween tokens.

% of white space (ta-
ble feature)

The sum of white space lengths divided
by the line length

Avg white space
length (table fea-
ture)

The mean length of the white spaces
within a line.

Table 2: Features used by the CRF methods.

Linear-chain CRFs are one well known type of
CRFs which are similar to Hidden Markov Models
but are reported to perform better (Peng and Mc-
Callum, 2004). They have one chain of connected
labels. As CRF is a feature-based method, we im-
plement two models with different feature sets in
our work (see Table 2). We use the scikit-learn
Python package, sklearn-crfsuite for implementa-
tion of our CRF models.

LC-CRF without OCR (LC-CRF1): In this
model, we exclude any features that can be ex-
tracted from the OCR output. That is, we consider
only geometric/physical layout features to predict
the label of a region in a document. The LC-CRF
classifier will learn regions based on their position
and location on the bounding box level of the doc-
ument image. For example, it is common for titles
to appear at the top of documents so the model may
learn this observation from the extracted features.

LC-CRF with OCR (LC-CRF2): By virtue of
the generality and flexibility of CRF model, it is
promising to achieve better performance by extend-
ing feature sets and exploring higher-level depen-
dencies (Shetty et al., 2007). Luon et al. (2010)
and Yang et al. (2017) report that by adding tex-
tual information to their models, there was an im-
provement in performance. We implement another
LC-CRF model extending the feature set by includ-
ing textual features from the OCR output. We also
consider features for detecting tables. We re-use a
subset of features for table detection in (Ghanmi
and Abdel, 2014).

5.2 Recurrent Neural Networks (RNNs)

RNNs are a class of nets that are used for sequence
learning. They can simultaneously take a sequence
of inputs and produce a sequence of outputs. We
transform the extracted feature sets of the CRF
models into a 3D tensor and use this as input to the
network. The shape of the 3D tensor is the number
of input samples, the number of sequence regions
per input sample and the number of features per
sequence region. Therefore a shape of (300, 20,
30) indicates an input tensor of 300 document page
samples, 20 regions per sample and 30 features for
each region.

We use a Bidirectional-LSTM architecture for
our network. Two neural models (RNN1 and
RNN2) are trained and evaluated as such imple-
mented for the CRF models, using feature sets with
and without OCR features. Hyper-parameters are
set in reference to the best performing configura-
tions in Reimers and Gurevych (2017) with minor
deviations. We use the adam algorithm for gradi-
ent descent optimization (Kingma and Ba, 2015).
We don’t include an embedding layer since we
deal with numerical inputs, and set the number
of recurrent units to 100 for all 3 hidden layers.
Kernel and recurrent (l2) regularizers are added to
our input layer. We introduce a batch normaliza-
tion layer before the input layer and before each
hidden layer to normalize the input values for our
network. Normalizing or scaling the input values
to a standard scale helps the network to learn the
optimal parameters for each input node quickly and
therefore, quickly find the minimum loss. Batch
normalization also helps to improve the conver-
gence properties of the network, has the effect of
accelerating the training process of the network,
and in some cases improves the performance of
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LC-CRF1 LC-CRF2 RNN1 RNN2

Overall Micro F1 0.736 0.851 0.775 0.855

table 0.667 0.897 0.708 0.877
paragraph 0.617 0.811 0.622 0.774
page number 0.946 0.966 0.913 0.936
list item 0.336 0.594 0.559 0.697
heading 0.564 0.706 0.584 0.619
page header 0.868 0.914 0.846 0.865
title 0.571 0.703 0.677 0.747
footer 0.781 0.860 0.855 0.868
caption 0.667 0.742 0.742 0.771
email header 0.907 0.972 0.944 0.991
email body text 0.944 0.972 0.962 0.989
email signature 0.935 0.987 0.969 0.982
email footer 0.969 0.974 0.979 1.000

Table 3: Comparative performances among LC-
CRF1, LC-CRF2, RNN1 and RNN2 models for
semantic labeling. Category-specific performance
given in F1. Results in bold mark the best system
for each category.

the model. The inclusion of batch normalization
layers in our network proves to be critical as it sig-
nificantly improves performance. We add dropout
regularization with a value of 0.1 to each hidden
layer and use a batch size of 32 to control how
often the weights of the network are updated. Fur-
thermore, if the training loss does not decrease for
3 epochs, the learning rate is reduced by a 0.8 fac-
tor. Training is stopped if the minimum change
in validation loss is less than 10-5 for 8 epochs or
when 100 epochs are reached. We use the keras
deep learning library running on top of tensorflow,
for implementation of our RNN models.

5.3 Evaluation

The aim of our evaluation is to compare how se-
quence labeling methods perform for the task of se-
mantic labeling of document regions and compare
how their performances change with an extended
feature set. We also evaluate the generalizability of
our methods to a different document domain. Over-
all results are evaluated using the micro-averaged
F1 measure, the average of the results of 3 runs is
reported per experiment. We split our dataset into
train/test sets with a 70/30 ratio. We also perform
3-fold cross validation on the train set to tune the
hyper-parameters of the model.

6 Results

6.1 Semantic Labeling of SemLab Dataset

Table 3 shows an overview of the results of our
models comparison on the training dataset. The LC-

CRF model without OCR output (LC-CRF1) per-
forms fairly well, approaching an F1 score of 0.74.
It is clear however that including features from the
OCR output has a significant impact: the LC-CRF2
model with OCR increases micro-averaged F1 to
0.85. We observe that including features from the
OCR output also improves performance for the
RNN method, with the RNN2 model gaining a 0.8
increase compared to the RNN1 micro-averaged F1
score of 0.78. When contrasting the implemented
methods, we see that the RNN method performs
better than the LC-CRF method on both model
variations. RNN1 shows better F1 scores than the
LC-CRF1 on the majority of the categories and
the overall micro F1. The RNN2 model also out-
performs the LC-CRF2 on most of the categories
including the overall score. In addition, we make
the following observations.

We observe that list items, titles and headings
have the lowest scores for the best performing
model. These categories usually have very similar
features. For example, headings and list items are
often started with numbering. Titles and headings
also usually contain similar features such as having
all capital letters. We also observe that list items
have lower F1 scores without OCR features. The
classifier is able to only learn geometric and po-
sitional features of this category and misclassifies
a lot of its samples as paragraph since both have
similar locations on a document image and more
so, paragraph is the majority category. The email
related categories generally have high F1 scores ir-
respective of the local feature sets included. This is
because of the ability of sequence labeling methods
to take into account the neighborhood of items; for
example, an email body text is very likely to appear
after an email header and thus the classifier learns
this contextual knowledge.

6.2 Comparison across different document
domain

In many real life scenarios, the datasets available
to train models for the semantic labeling task are
mainly homogeneous document images with sim-
ilar or comparable layout and format. This raises
the question about how generalizable a model that
has been trained on a set or related set of document
images is, to different domains. We trained the
sequence labeling methods on our SemLab dataset
which contains documents from multiple domains
and tested each model on the records from the
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Testing Domain

Method SemLab PRIMA

LC-CRF1 0.861 0.696
LC-CRF2 0.923 0.743
RNN1 0.888 0.701
RNN2 0.890 0.747

Table 4: Review of the transfer learning experiment.
Each method is trained on the SemLab dataset and
tested on in-domain and cross-domain documents.
All scores are micro-averaged F1 scores.

PRIMA dataset which contains documents from
the magazine domain, not represented in our own
dataset. For fair comparison, we evaluated only
labels applicable to both datasets i.e. intersecting
labels (header, paragraph, section heading, caption,
page number, footer). For this reason we excluded
some features from the ‘With OCR’ feature set that
are directly related to the excluded labels.

Table 4 provides a summary of the performance
of each method on the different domains. The
results show that the methods have lower perfor-
mances when evaluated on unseen data of a differ-
ent domain than the training data. Both LC-CRF
and RNN methods perform better when OCR infor-
mation is included for the cross domain experiment.
This proves that the inclusion of textual features
also aids generalizability of methods across new
domains for semantic labeling. Furthermore, we
observe that both RNN methods are able to gen-
eralize better than the LC-CRF methods, though
with slight improvements. This could be explained
by the techniques specifically employed to reduce
overfitting and improve generalizability power in
the RNN such as the use of dropout, early stopping,
l2 regularization, among others.

7 Conclusion and Future Work

In this work we have presented a comparison be-
tween state-of-the-art sequential learning models
applied to the task of semantic labeling of doc-
ument regions. We constructed a novel evalu-
ation dataset to benchmark model performance
on. The experimental results reveal that both
methods are able to perform the task well using
only a small amount of training data; with the
RNN method slightly outperforming the LC-CRF
method. Also, including OCR information in the
feature set is promising to achieve better perfor-
mance as it reduces confusion between ambigu-
ous semantic classes. In addition, its inclusion

might positively affect generalization performance,
as shown by our transfer learning experiments on
the PRIMA domain.

Future work includes extending the document
dataset in terms of size and variety to cover more
document spaces, domains and classes. Models can
exploit these characteristics to better generalize to
new domains. By virtue of neural networks’ great
power to learn latent features, we believe more
(varying) data will also contribute to improving
the performance levels of our neural method. An
extension of the feature set used in this work could
also be beneficial in improving performance scores
for the implemented models.
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Abstract

It is not always easy to keep track of what
tools are currently available for a particular
annotation task, nor is it obvious how the
provided models will perform on a given
data set. In this contribution, we provide an
overview of the tools available for the auto-
matic annotation of German-language text.
We evaluate fifteen free and open source
NLP tools for the linguistic annotation of
German, looking at the fundamental NLP
tasks of sentence segmentation, tokeniza-
tion, POS tagging, morphological analy-
sis, lemmatization, and dependency pars-
ing. To get an idea of how the systems’
performance will generalize to various do-
mains, we compiled our test corpus from
various non-standard domains. All of the
systems in our study are evaluated not only
with respect to accuracy, but also the com-
putational resources required.

1 Introduction

An extensive number of NLP tools are available
nowadays for the automatic analysis of natural lan-
guage data. The vast majority of these tools have
been developed for English, though, and often take
advantage of specific properties of the English lan-
guage, such as the fact that English sentences show
a rather fixed word order (so Markov models work
well), or that English does not have a rich inflec-
tional morphology (so lemmatizers are not a major
concern). As a result, it is often not clear to what ex-
tent these tools are applicable to further languages,
and often no pre-trained models are provided for
languages other than English.

Similarly, these tools are mostly evaluated only
on English language data, but the results for En-
glish may not be transferable to other languages.
Depending on the language, different kinds of an-

notations can be necessary, which are not relevant
for English.

Moreover, most tools are trained and tested on
standard (newspaper) language, but different regis-
ters of a language can differ significantly, e.g. with
respect to syntax or lexicon (Biber and Conrad,
2009). Performance of tools trained on standard
language drops considerably when these tools are
applied to data from other registers, such as social
media data.

And finally, the efficiency of many freely avail-
able systems, i.e. the time and computing resources
they require for the annotation task, can become a
problem in the context of practical applications or
if large amounts of text need to be analyzed.

The goals of this work are, first, to determine
what freely-available systems exist for the linguis-
tic analysis of German texts. Second, we want to
assess the accuracy of their output in various non-
standard domains, including formal (Wikipedia),
semi-formal (sermons), and informal (movie sub-
titles) contexts. We will evaluate the systems in
the fundamental NLP tasks of sentence segmenta-
tion, tokenization, part-of-speech (POS) tagging,
morphological analysis, lemmatization, and depen-
dency parsing, and we will provide an overview of
the computational resources each system requires
for these tasks.

The remainder of this paper is structured as fol-
lows: Section 2 gives an overview of related work.
Section 3 introduces the data used in the study
and the gold standard annotation. The NLP tools
tested in this study are introduced in Section 4. In
Section 5, we describe our experimental setup for
the evaluation of the selected systems with respect
to both accuracy and speed. We conclude with a
discussion of the results in Section 6 and 7.

2 Related Work

The Association for Computational Linguistics
(ACL) provides state-of-the-art results for a range
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of NLP tasks, such as POS tagging, named entity
recognition, parsing, paraphrase identification, or
question answering.1 However, the majority of
results reported here are based on English data
only, and even for common tasks like POS tagging,
only results for English and French are available.
This, of course, does not mean that POS tagging
has not been evaluated for other languages as well.
It shows, though, that results for other languages
are scattered across numerous publications and not
readily available. Moreover, even results of the
same target language are not easily comparable to
each other because evaluations often use different
data sets.

While most evaluations are confined to news-
paper texts, there are some exceptions. Gadde et
al. (2011) evaluate and adapt a POS tagger trained
on standard English data (the WSJ corpus) to SMS
data. Gimpel et al. (2011) and Owoputi et al. (2012)
develop POS taggers for Twitter data, with accura-
cies of around 90% (best version: 92.80%). Choi
et al. (2015) evaluate statistical dependency parsers
on the English part of OntoNotes 5, with data from
different genres, which they specify as broadcast-
ing conversation, broadcasting news, news maga-
zine, newswire, pivot text, telephone conversation,
and web text. In their study, the best overall accu-
racies are reached by the ClearNLP and the Mate
parser with about 90%, while they found the spaCy
parser (version 1.x) to be the fastest parser annotat-
ing 755 sentences or 13,963 tokens per second.

For German, Giesbrecht and Evert (2009) evalu-
ate POS taggers on web data and show that accu-
racy values drop significantly for non-standard data,
especially for posts from online forums, which
were tagged with accuracies < 90%. Similarly,
Neunerdt et al. (2013) evaluate and compare tag-
gers trained on standard data with taggers retrained
on comments in German from different online
forums. Standard taggers achieve accuracies of
> 87%, retrained taggers of > 93%. Beißwenger
et al. (2016) show that these results hold true sev-
eral years later, as they find similar results for the
annotation of computer-mediated communication
(CMC) and web data. While the best systems reach
F1-Scores > 99% for tokenization, the best tagger
only achieved a tagging accuracy of 90%.

1https://aclweb.org/aclwiki/State_of_
the_art

3 Data

As already mentioned, language varieties differ
considerably on all linguistic levels, e.g. syntax
or lexicon (Biber and Conrad, 2009), and pose
different challenges to automatic annotation tools.
Since most available models are trained on stan-
dard (newspaper) language, their accuracy might
drop when they are applied to non-standard data
like informal written communication. By using
data from various domains, ranging from formal
to informal contexts, we can evaluate whether the
application of pre-trained models is limited to a
restricted language domain or if they can be used
for other language varieties as well.

For the evaluation, we used data from five dif-
ferent registers representing large resources of raw
texts: encyclopedic text (Wikipedia)2, literary text
(Novelette)3, Christian sermons (Sermon)4, pre-
pared but freely-performed talks (TED)5 and movie
subtitles (Movie)6. Table 1 gives an impression of
the selected text types and their particularities.

For each register, a random sample of approx-
imately 1,500 tokens was selected, resulting in a
total of 559 sentences with 7,642 tokens (2,649
types). Table 2 gives an overview of the data.

Gold Standard For all annotations we manually
created a gold standard. The annotation of sentence
boundaries7 and tokenization was carried out in
text files, and all other annotations were done with
WebAnno (de Castilho et al., 2016)8.

We use the Stuttgart–Tübingen tagset (or STTS,
Schiller et al. (1999))9 for POS tagging, and the

2Sample wpd15_sample.i5.xml from the
Wikipedia subcorpus of DeReKo (http://corpora.
ids-mannheim.de/pub/wikipedia-deutsch/
2015/wpd15_sample.i5.xml.bz2).

3Texts of the genre ‘novelette’ from GutenbergDE cor-
pus, edition 14 (http://gutenberg.spiegel.de/),
which were published after 1900.

4Automatically downloaded from the SermonOnline
database (http://www.sermon-online.de)

5German translations of English talks, automatically down-
loaded from the official website https://www.ted.com/
talks?language=de.

6German subtitles for movies tagged as “Action, Adven-
ture, Drama” or “Comedy, Drama” from the OpenSubtitles
corpus (http://www.opensubtitles.org/), down-
loaded at http://opus.nlpl.eu/download.php?
f=OpenSubtitles/v2018/raw/de.zip

7For Wikipedia and Movie subtitles, sentence boundaries
were already present in the data and only corrected as neces-
sary.

8Version 3.4.6 (https://webanno.github.io/
webanno/

9STTS is the de facto standard POS tagset for German
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Subcorpus Example Sentence

Wikipedia Das 6. Kanadische Kabinett (engl. 6th Canadian Ministry, franz. 6e conseil des
ministres du Canada) regierte Kanada vom 21. Dezember 1894 bis zum 27. April
1896.

Novelette Zwischen dem roten Rausch der Pelargonien und seinem Damaskus lag eine Fülle
engbeschriebener Tagebuchblätter, jedes mit der zierlich-säuberlichen Unterschrift
»Erich Friese, Kandidat« versehen.

Sermon Wenn ihr aber zu Christus gehört, seid ihr auch Abrahams Nachkommen und
bekommt das Erbe, das Gott Abraham versprochen hat. (Gal 3,29)

TED Im Himalaya, der drittgrössten Eismasse, sehen Sie oben neue Seen, die vor ein paar
Jahren Gletscher waren.

Movie - Dad, das reicht!

Table 1: Example sentences from each register.

Subcorpus Register #Tok #Sent #Doc

Wikipedia written, encyclopedic 1,514 96 12
Novelette written, prose 1,588 69 12
Sermon spoken, planned 1,520 90 16
TED spoken, planned 1,506 101 17
Movie spoken 1,514 203 21

Total 7,642 559 78

Table 2: Overview of the data from the five subcor-
pora used in the study.

TIGER annotation scheme (Crysmann et al., 2005)
for morphological annotations, which can be con-
sidered an extension and improvement upon the
original ‘large’ STTS. We also performed lemma-
tization on the texts, also according to the TIGER
annotation scheme, albeit with some modifications:
nominalizations are treated like normal nouns, and
personal and reflexive pronouns are annotated with
their nominative form (e.g. ich, du, etc.) except
where this is not possible, as is the case for sich.
For tokens that are not annotated with a lemma in
the TIGER scheme, such as interjections, foreign
words, punctuation, we use the surface form as its
lemma.

For dependencies, we annotated only arguments,
which should be reliably comparable across annota-
tion schemes, and not modifiers, which are handled
quite differently in different schemes, e.g. with re-
gard to attachment site or label name.10 For this
paper, we consider subjects, direct and indirect ob-

data. Morphological tagsets and lemmatization is less well
standardized for German but most corpora use schemes that
are based on or similar to the TIGER schemes we use.

10In order to be able to compare diverging annotation for-
mats, we also annotated auxiliaries and prepositions within
predicatives (cf. Section 5).

Annotation #Tokens #Types #Ambig

POS 7,642 53 114
Lemma 7,642 2,077 27
Morphology 4,331 233 323

Table 3: Overview of the gold standard dataset.

jects, clausal subjects and objects, predicatives, and
expletives to be arguments. We excluded preposi-
tional objects because it is often difficult to deter-
mine when they are acting as arguments or adjuncts.
All texts were annotated independently by one to
five student annotators and checked manually after-
wards by one of the authors.

Table 3 provides an overview of the gold data.
The table shows the number of tokens with a partic-
ular type of annotation (which varies since words
that cannot be inflected are not annotated for mor-
phology), the number of annotated types, and the
number of ambiguous word forms (e.g. the word
form gehört, could either represent a present tense
form of the lemma gehören ‘belong’ or a participle
form of the lemma hören ‘hear’). Figure 1 shows
the distribution of dependency relations in the gold
data.

4 NLP Tools

For the evaluation in this paper, we selected sys-
tems that are freely available, i.e. open source, and
for which pre-trained models for German are pro-
vided. Of course, the selection of tools we test
here is not comprehensive, but we will make our
data and evaluation scripts publicly available so
further systems can be added and compared with
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Figure 1: Distribution of dependency relations in the gold data. The numbers on top of the columns
indicate the total frequencies of the seven relations considered in the evaluation and, in parentheses, the
corresponding percentage (e.g. in the Wikipedia subcorpus, 163 tokens, which correspond to 10.77% of
all tokens, have been annotated with one of the seven relations).

the systems described here.
Most prominently, there are those systems which

provide a full range of annotations from tokeniza-
tion to dependency parsing: CoreNLP (Manning et
al., 2014), which combines rule-based tokenization
with statistical tagging and dependency parsing,
spaCy v2.1.3 (Honnibal and Montani, 2017),11 and
the Python-based StanfordNLP (Qi et al., 2018).

We also test a few dedicated tokenizers: NLTK
(Bird et al., 2009), comprising a regular expression–
based word tokenizer and the Punkt tokenizer (Kiss
and Strunk, 2006) for sentence segmentation, So-
MaJo (Proisl and Uhrig, 2016), and Syntok (Leit-
ner, 2019). We evaluate both the rule-based sen-
tencizer included in the spaCy pipeline as well
as the sentence boundaries derived from spaCy’s
dependency analysis, which is the usual way of de-
termining sentence boundaries with spaCy. These
results are listed under ‘spaCy parser’ in Table 4.

Some tools only perform lemmatization, such as
IWNLP (Liebeck and Conrad, 2015), which makes
use of a word form to lemma mapping extracted
from the German Wiktionary, and GermaLemma
(Konrad, 2019) (with the Pattern extensions12 en-

11https://github.com/explosion/spaCy/
releases/tag/v2.1.3

12Smedt and Daelemans (2012), https://www.clips.
uantwerpen.be/pages/pattern.

abled), based on the TIGER corpus.
Since GermaLemma only lemmatizes words

from a restricted set of POS (N*, V*, ADJ* and
ADV*), i.e. content words, we combined this sys-
tem with another tool that also lemmatizes function
words (spaCy) and added a few special rules for
pronouns. This ensemble lemmatizer is included
in the study as GermaLemma++.13

Many of the tools we test provide some combina-
tion of word-level annotations. SoMeWeTa (Proisl,
2018) produces STTS tags (small tagset) only,
whereas RFTagger (Schmid and Laws, 2008)14 and
Clevertagger (Sennrich et al., 2013) use a modified
version of the large STTS that includes morpholog-
ical features. TreeTagger (Schmid, 1994; Schmid,
1995) provides just STTS and lemmas.

We also test ParZu (Sennrich et al., 2009), which
is a parser that combines a hand-written grammar
with statistical approaches.

Of the selected tools, RNNTagger (Schmid,
2019) and StanfordNLP (Qi et al., 2018) are both
neural network–based systems implemented in the
PyTorch framework. SpaCy uses convolutional

13https://github.com/rubcompling/
germalemmaplusplus

14Specifically the Java interface RFTJ (Ziai and Ott, 2014),
which offers easier production of STTS tags, improved lemma-
tization, as well as finer control over model loading.
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neural network models for tagging and parsing, but
does not need a GPU or significant resources for
annotation or training.

5 Evaluation

In this study we evaluate the NLP tools with respect
to both accuracy and speed. Section 5.1 describes
the performance evaluation, i.e. annotation speed
of the selected systems. In Section 5.2, the compar-
ison of the different annotations, as produced by
the systems, with the gold standard annotation is
explained.

5.1 Computational Efficiency

We are interested not only in the annotations that
the systems we test produce, but also in the com-
putational resources they require to produce them.
This is particularly a concern in the context of prac-
tical applications where timely results are critical.

We wanted to measure the resources each sys-
tem requires to produce each level of annotations,
but the production of each type of annotation is
not always separable from the others, e.g. morphol-
ogy and/or lemma annotations are often produced
together with POS tags (and though there are some-
times options regarding whether or not they are out-
put, this doesn’t necessarily mean that they aren’t
computed). Also, sentence segmentation and word
tokenization are sometimes dependent on one an-
other, but in different directions. CoreNLP requires
sentence boundaries before tokenization, and oth-
ers, like Syntok, do this the other way round.

For each annotation step, we separated model
loading from actual annotation time required. We
measure the time the various systems require
to complete three roughly-comparable annotation
steps: (1) tokenization (sentence segmentation,
word tokenization), (2) word-level annotations
(POS, morphology, lemmas), and (3) dependen-
cies. Systems that only perform lemmatization are
run separately, since they also require POS annota-
tions as an input, all other systems produce lemmas
and POS annotation simultaneously.

The annotation time for each step was measured
as CPU time across five trials for each of the subcor-
pora, using a measure of seconds per thousand to-
kens, which represents the computational resources
required by a particular system for a particular task.
All trials were performed on a Linux workstation
equipped with an Intel Core i7-5820K processor,
15 GB of RAM, and an Nvidia GeForce GTX 980

graphics card with 4 GB of memory.

5.2 Accuracy

For the accuracy evaluation, the systems were pro-
vided with gold annotations from the previous an-
notation steps, as detailed here:

Input (Gold) Output
Tokenization Plain text → Sentences,

Tokens
Word-level Sentences,

Tokens
→ POS,

Morph,
Lemmas

Lemmatization POS → Lemmas
Dependencies POS → Dependencies

Of course this approach is not a realistic sce-
nario, as manually created, i.e. completely correct,
annotations are normally not available, so these
results are to be interpreted as an upper bound.

Tokenization In the Universal Dependencies
Treebank for German,15 on which the StanfordNLP
model was trained, multi-word tokens (APPRART
in the STTS) are split into separate words. To en-
able the comparison of the system’s output with the
gold standard, we suppressed these splits during
tokenization.

POS The deviating tokenization of multi-word
tokens also affects the other annotation levels, as
the corresponding models expect the tokens to
be split for them to be annotated correctly. We
therefore accepted split multi-word tokens for the
concerned systems (StanfordNLP) for all word-
level annotations and used rules to check if the
system’s annotation (APPR + ART) matches the
gold-standard annotation (APPRART).

Morphology The morphology annotations of the
systems follow different naming conventions for
the morphological features (e.g. Sg vs. Sing
for ‘singular’), so, in order to compare them, we
mapped all annotations to the TIGER tagset (Crys-
mann et al., 2005). Some systems also annotate
further morphological features, which we ignored
either because they are not present in the TIGER
tagset (features like definiteness) or because they
are already included in the POS tags (e.g. finite-
ness).

15UD German GSD (https://
universaldependencies.org/treebanks/
de_gsd/index.html)
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Morphology tags are composed of multiple fea-
tures, e.g. 3.Pl.Pres.Ind, which we evaluate
individually. Features that are only present in the
system output are ignored. The overall accuracy
is calculated token-wise as the average percentage
of morphological features in the gold standard that
were present and correct in the system output.

Lemmas The NLP tools included in this study
follow different guidelines for the annotation of
lemmas, so we allow for a degree of variation in this
regard, so long as it is clear that the analysis a given
lemma variant suggests is correct. For instance,
most prominently, some use the masculine form
of the definite article as its lemma, dem → der,
whereas others might use the feminine form die.
For words tagged as PPER, the surface form is
accepted as its lemma. Reflexive pronouns may
be lemmatized as sich, and words tagged as ART,
PDS or PRELS may be lemmatized as eine as well
as ein or die as well as der. We also consider <ß>
and <ss> to be equivalent throughout.

Furthermore, we accept some special lemmas
used by certain systems. For example, since RFTag-
ger lemmatizes all numbers to a common symbol,
either <card> or <ord>, we consider these sym-
bols equivalent to the token’s surface form, since
this is how we lemmatized numbers in our gold-
standard dataset. Similarly, TreeTagger lemmatizes
multi-word tokens tagged as APPRART with the
lemmas of the constituent prepositions and articles,
as in zu+die for zur instead of zu, as in our
dataset. We also accept these forms as correct.

In general, all comparisons of lemmas are case-
insensitive and wherever a tool does not produce
a lemma for a given token, we take the surface
form of that token as its lemma. If a tool outputs
more than one alternative lemma for a word, as is
the case for StanfordNLP, IWNLP, RFTagger and
TreeTagger, we evaluate the first one.

Dependencies For the dependency evaluation,
we only consider the relevant argument relations
(subj, obj, iobj, vsubj, vobj, pred, expl). The four
parsers compared in the study follow three different
guidelines for dependency annotation and each of
them uses a different scheme. In order to account
for differing naming conventions, we accept a num-
ber of alternative labels for each relation, which we
consider to be equivalent. To capture the structural
differences between guidelines we use a set of rules
to allow for certain mismatches between the sys-

tem outputs and the gold standard. In particular, the
head of a relation may be the main verb, as in the
gold standard, or an accompanying finite auxiliary
as annotated by the parsers. Similarly, the head of
a predicative phrase may be the noun, as is the case
in the gold standard, or the preposition (for ParZu
and spaCy). We also cover the copula analysis of
CoreNLP and StanfordNLP, which according to
the Universal Dependencies guidelines,16 analyse
the predicative phrase as the head of a copula con-
struction. Finally, there are certain constructions
in German for which the subject is difficult to de-
termine (also theoretically). These constructions
involve certain predicatives and expletives (e.g. as
in Das ist es ‘that’s it’). To address this, we con-
sider it correct if the system switches the subject
and the predicative phrase, and similarly, if the sys-
tem analyses expletives as subjects (or objects, in
rare cases) and vice versa. The StanfordNLP parser
performs much better when Universal POS tags are
present, so we add these to the data provided to this
parser using the mapping provided by the Universal
Dependencies project.17

6 Results and Discussion

In this section, we examine the most impor-
tant results of our experiments. All of the
scripts we used and detailed results (including
per-register results) can be found in this pa-
per’s repository at https://github.com/
rubcompling/konvens2019.

6.1 Computational Efficiency
Figure 2 shows the results of run time evalua-
tion. Overall, the annotation speed of most systems
does not differ substantially. The word-level Stan-
fordNLP component, encompassing POS tagging,
morphological analysis, and lemmatization, is an
outlier, with much longer run times, on average,
than the other systems. The RNNTagger, another
neural network–based system, is also on the upper
end of the scale among the systems we tested. This
is indicative of the large computational resources
such systems require.

Though the CoreNLP dependency parser is the
slowest of those we tested, CoreNLP is the fastest
system for word-level annotations (which is prob-
ably related to the fact that it only produces POS

16https://universaldependencies.org/
guidelines.html

17https://universaldependencies.org/
tagset-conversion/de-stts-uposf.html
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Figure 2: Process time required by the systems according to task, measured in seconds per thousand
tokens.

annotations in this step), though this appears to
come at the cost of accuracy. As was the case in
Choi et al. (2015), spaCy is capable of the fastest
dependency parsing.

The fastest system for tokenization is Syntok (an-
other outlier) requiring only 0.000004 seconds per
1,000 tokens. It doesn’t seem to use any linguistic
models as such – just a few well-selected regex-
based heuristics. Despite the minimal computa-
tional resources required, Syntok is still the second
most accurate sentence segmenter we tested.

6.2 Accuracy

Table 4 shows the results of the accuracy evaluation
for all systems and annotations.18

Tokenization For sentence segmentation and to-
kenization, we calculated F1-scores for all systems.
The results show that sentence segmentation is
more challenging than word tokenization which
can be considered a solved task.

A closer look at the system output shows that
many of the systems have difficulty recognizing ab-
breviations, ordinal numbers (e.g. in dates), ellipsis
dots, and dashes that are used to indicate speaker
changes in movie dialogues. Further problems are
caused by direct speech, especially as regards the

18As the formulation of sensible baselines for several of the
annotation steps, e.g. morphology and dependencies, can be
quite complex, we don’t include them in our analysis here.

use of inward-pointing angle quotes (as in »exam-
ple text«) which are typical for German literary
texts but appear to be unexpected for some of the
systems. Also the data contains some sentences
which are not marked with punctuation marks and
can only be recognized as sentences based on the
content.

POS The results for POS tagging are similar to
the findings of Giesbrecht and Evert (2009) and
Beißwenger et al. (2016) with tagging accuracies
ranging from 88.2% to 94.3%. However, there
are only slight differences between the selected
registers. Most taggers perform best on the TED
talk transcripts while the lowest accuracy values
can be observed for movie subtitles.

The most frequent errors for all taggers include
the common confusions of nouns and proper names,
adverbs and adverbial adjectives, and of different
verb forms. It is striking that all of the tools also
tag sentence internal punctuation incorrectly, e.g.
as numbers, names, adjectives, etc., which is the
most frequent error for half of the taggers reducing
their accuracy by up to 1.6 percentage points.

Morphology The accuracy values for morphol-
ogy annotation differ substantially between sys-
tems with results varying by 10 percentage points.

Depending on their POS, words have different
morphological features. Following the TIGER
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Tokens Sents POS Morph Lemmas Deps

Clevertagger – – 0.8818 0.8338 – –
CoreNLP 0.9965 0.8909 0.9074 – – 0.5316
GermaLemma++ – – – – 0.9541 –
GermaLemma – – – – 0.8786 –
IWNLP – – – – 0.8650 –
NLTK 0.9961 0.9177 – – – –
ParZu – – – 0.8359 0.9431 0.7744
RFTagger – – 0.9310 0.8903 0.9377 –
RNNTagger – – 0.9346 0.9248 0.9751 –
SoMaJo 0.9964 0.8480 – – – –
SoMeWeTa – – 0.9403 – – –
spaCy 0.9955 0.8410 0.9250 – 0.8913 0.6687
spaCy parser – 0.8940 – – – –
StanfordNLP 0.9920 0.8989 0.9427 0.8235 0.9415 0.7217
Syntok 0.9912 0.9125 – – – –
TreeTagger – – 0.9210 – 0.9605 –

Table 4: Overall F1-scores (for tokens and sentences) or accuracy (for POS, morphology, lemmas and
dependencies) for all systems at all annotation levels.

scheme (Crysmann et al., 2005), we evaluate seven
features: gender, case, person, number, tense,
mood, and degree. Table 5 provides detailed re-
sults for all features.

As morphology annotation depends on correct
POS tags, it is possible that errors on this annota-
tion level are the result of error propagation from
the POS level, e.g. adjectives that are tagged as
adverbs do not receive a degree annotation, finite
verbs that are recognized as infinitives are not an-
notated at all. Sometimes the systems also indi-
cate that they cannot assign a unique value to an
attribute although this is possible for human anno-
tators based on the given context.

While no clear differences between registers can
be observed, there are some morphological fea-
tures that generally seem to be harder than others.
Overall, the most difficult features are gender and
case with error rates of 10% or more for all sys-
tems. The annotation of gender is most difficult for
proper names and pronouns, while error rates are
low for nouns and articles.

It should also be noted that StanfordNLP does
not annotate the degree feature for adjectives,
which occurs with 10% of the annotated tokens
and makes up 3% of the annotated features overall.
This explains, in part, the system’s poor result in
this annotation task.

Lemmas Most of the lemmatizers achieve accu-
racy values well above 90%. Always choosing a
given word form as its lemma results in an accuracy
of 70.7%. In general, there are no significant dif-
ferences in lemmatization between registers. How-
ever, all of the systems do perform slightly worse
on the Novelette subcorpus than on the other sub-
corpora.

We observe frequent deviations from the gold
standard for demonstrative and indefinite pronouns,
which can likely be attributed to further differences
between lemmatization guidelines. Some systems
also produce stems instead of lemmas for some
words, e.g. StanfordNLP and TreeTagger annotate
the stem jen instead of possible lemmas jener or
jene. Furthermore, some systems do not lemmatize
certain words or word classes at all, for instance
content words in the case of GermaLemma, which
results in a lower accuracy as well.

Dependencies The evaluation shows that depen-
dency annotation is clearly the most difficult of the
six annotation tasks. All four parsers we tested
achieve accuracies for the annotation of arguments
below 78%. A closer look at the results shows
that the most difficult relations seem to be clausal
subjects, clausal objects and expletives.

The spaCy parser produces the largest number of
false positives, i.e. argument relations that are not
present in the gold standard (mostly object clauses).
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Case Degree Gender Mood Number Person Tense

Clevertagger 0.8385 0.9217 0.6537 0.9009 0.9261 0.9108 0.8803
ParZu 0.8104 0.8733 0.7913 0.6744 0.8870 0.9388 0.9743
RFTagger 0.8858 0.9447 0.7734 0.9537 0.9522 0.9492 0.9550
RNNTagger 0.9094 0.9401 0.8770 0.9730 0.9547 0.9713 0.9717
StanfordNLP 0.8563 – 0.7634 0.9189 0.9527 0.8954 0.9408

Table 5: Overall accuracy per morphological feature.

This may in part result from differences in handling
coordination: While spaCy tends to annotate the af-
fected relation once per coordinated element, other
guidelines use a special coordination relation for
this.

CoreNLP has the second highest number of false
positives. It also makes the most mistakes of the
four parsers and has the highest error rates for al-
most all relations, resulting in an accuracy value
only just above 50%.

StanfordNLP and ParZu both reach accuracies
above 70%. ParZu achieves the best result of all
parsers overall and produces much fewer false pos-
itives.

However, it often annotates multiple roots per
sentence and/or annotates subjects, objects or
clausal objects as root of the sentence. It also seems
to have a slightly different definition of predica-
tives and annotates expletives worse than the other
systems (although no system annotates expletives
particularly well).

7 Conclusions and Future Work

Though we would like to directly relate accuracies
to run times and provide some concrete measure
of efficiency, this is difficult in practice, since run
times pertain to multiple accuracy dimensions: the
run time of the POS annotation step sometimes
covers just POS, morphological annotations, and/or
lemmatization, depending on what a given system
provides, which makes it difficult to say what the
relationship is between run time and accuracy ex-
actly. Nevertheless, we will attempt to take the
systems’ run times into account when comparing
the accuracies achieved.

Though the F1-scores above 0.99 for all tested
tokenizers suggest that tokenization can be consid-
ered a solved task, there is some degree of differ-
ence in how the tools handle sentence segmentation.
Overall, NLTK provides some of the best token and
sentence boundaries, while being one of the fastest

systems we tested. Syntok is even faster and only
slightly less accurate.

RNNTagger offers high accuracy across all word-
level annotations and is relatively fast, especially
as compared with taggers offering similar levels of
accuracy. Though the StanfordNLP tagger seems
to be a bit more accurate at POS tagging, it does so
at the cost of requiring much greater computational
resources. If you have POS annotations and just
need lemmas, then GermaLemma++ provides the
best accuracy with only a modest increase in the
computing resources required, in comparison to
standard GermaLemma.

SpaCy offers relatively good performance, but
requires especially little computational resources
and can annotate large volumes of data quickly.
However, where accuracy is most important, ParZu
might provide better results while still being rela-
tively fast.

Future work could include retraining the systems
for each domain and observing the degree to which
these domain-specific models improve the accuracy
of the systems’ output. Furthermore, one could
use these results to construct a pipeline from the
appropriate systems for a particular situation and
have an easy-to-use and effective NLP pipeline for
the standard linguistic annotations. It would also
be interesting to evaluate in future work how well
such a pipeline (in which each stage depends on
system output, as opposed to gold-standard anno-
tations) would compare to the upper bound results
described here.
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Abstract 

We report on a new project building a Nat-

ural Language Processing resource for 

Zulu by making use of resources already 

available. Combining tagging results with 

the results of morphological analysis 

semi-automatically, we expect to reduce 

the amount of manual work when generat-

ing a finely-grained gold standard corpus 

usable for training a tagger. From the 

tagged corpus, we plan to extract verb-ar-

gument pairs with the aim of compiling a 

verb valency lexicon for Zulu. 

1 Introduction 

The observation that all parts of speech in a 

phrase, clause or sentence interact in some way 

with each other is one of the most important basics 

of today’s grammars. With regard to Head-Driven 

Phrase Structure Grammar (HPSG, cf. Pollard and 

Sag, 1994), Sag et al. (2003:536) state that ‘all the 

parts of a phrase depend directly on its head 

word’. Looking at the constraint-based Lexical 

Functional Grammar (LFG, cf. Bresnan, 2001, 

cited by Butt et al., 1999:43), we note that the ‘de-

termination of a verb’s subcategorization frame 

[…] constitutes a central part of any grammar de-

velopment effort’. In accordance with the per-

spective of (lexical) semantics, a verb that for in-

stance denotes a change of state requires one or 

more ‘participants’, the arguments of the verb that 

will represent the actor, and/or the thing or person 

experiencing the change-of-state described by this 

verb.  

As the type and number of arguments of a verb 

depend on its use, the availability of large text col-

lections (i.e. corpora) is essential when attempting 

to generate a lexicon of verb valencies. With re-

gard to an under-resourced language such as Zulu, 

a relatively large corpus has only been made avail-

able recently, hence we can start working towards 

generating a verb valency lexicon for Zulu, com-

bining known methods and available tools with 

the aim of a - at least mostly automated – pro-

cessing chain.  

2 Zulu challenges 

Zulu is a member of the Bantu language family 

and is one of the eleven official languages of 

South Africa. The morphological structure of 

Zulu is depicted by a nominal classification sys-

tem according to which nouns have prefixal mor-

phemes (so-called noun prefixes). For ease of ref-

erence these noun prefixes have been assigned 

numbers by scholars working in the field of Bantu 

linguistics. The various noun prefixes link the 

noun to other words in the sentence, e.g. verbs, 

adjectives, possessives, pronouns, and so forth by 

means of concordial morphemes or concords. 

Zulu is predominantly agglutinating in nature, 

with the majority of words consisting of more than 

one morpheme which is as such, a challenge for 

NLP processing. Like other languages with a 

highly informative morphology, Zulu also allows 

for a relatively free word order (cf. Gowlett, 

2003:636).  

While examining any Zulu grammar book, read-

ers are often surprised by the hundreds of forms a 

verb, for instance, can appear in. Ten different 

tempi can be distinguished. Polarity and modality 

are encoded in the verb, too. Zulu is not content 
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with a first, a second and a third person in singular 

and plural: the third person is split into sixteen 

noun classes (of which two have sub-classes, and 

about half express the singular while the others 

stand for plural and abstract forms). In order to 

express subject-verb congruence a subject con-

cord exists for each noun class, as shown in Table 

1. 

 

word 

form 

analysis Translation 

ngihamba ngi1ps-sg-hamb-a I walk 

uhamba u2ps-sg-hamb-a you walk 

uhamba ucl1-sg-hamb-a he/she/it 

walks 

…   

lihamba licl5-sg-hamb-a he/she/it 

walks 

ahamba acl6-pl-hamb-a they walk 

…   

Table 1. hamba (”walk”): Partial inflection 

paradigm of the present tense indicative 

 

Object concords may also appear as part of the 

orthographic verb and they may either co-occur 

or substitute an overt object in the sentence. As a 

demonstration of the latter phenomenon, the or-

thographic verb bayakupheka (“they are cooking 

it (at the moment)”) that actually expresses an 

entire clause, is explained from a morphological 

perspective in Table 2.  

 

morph ba- -ya- -ku- -phek- -a 

categ. subj. 

con-

cord 

cl. 2 

pres. 

ind. 

long 

form 

obj.  

con-

cord 

cl. 

15 

verb 

root 

verb 

end-

ing 

Engl. they now it  cook  

transl. they are cooking it (at the moment). 

Table 2. Analysis of bayakupheka 
 (“they are cooking it (at the moment)”) 

 

Lastly, one may find suffixes in verbs that 

modify their valency. These suffixes have mean-

ings similar to prepositions in languages like Eng-

lish or German and, just like these, they require 

arguments. Adding the applicative suffix –el for 

example to a verb changes its valency: it now 

needs an additional argument describing a benef-

icent. This issue is demonstrated in Table 3 for the 

                                                 
1 De Pauw’s (2012) tagger can be applied online via 

(https://www.aflat.org/zulutag). 
2 https://www.sadilar.org/ 

verb form ngipheka (“I cook”) becoming ngi-

phekela (“I cook for”). Such a derivation often 

changes the meaning of the verb as well (cf. Bosch 

and Pretorius, 2017). 

 

word form analysis transl. 

ngipheka ngi1ps-sg-phek-a I cook 

ngiphekela ngi1ps-sg-phek-elappl-a I cook 

for 

Table 3. Application of the applicative suffix -el 

3 Aims and Resources 

Our long-term aim is to compile a corpus-based 

machine-readable valency lexicon for Zulu verbs 

which will be freely available for research pur-

poses. By generating this lexicon, we expect to be 

able to explore the syntax of the Zulu language in 

use on a bigger scale than previously possible.  

However, there is still a long way to go: thus 

far, Zulu text taggers (Spiegler et al., 2010; 

Koleva, 2011; De Pauw, 2012; Eiselen and Putt-

kammer, 2014) are all using a rather coarse tagset 

not applicable for our purposes. Second, except 

the tagger by Eiselen and Puttkammer (2014) 

none of these taggers seems to be available for lo-

cal use1.  

In summary, the following list shows our pri-

mary short term aims:  

 

1. developing a more informative tagset, 

2. generating a gold standard corpus fully 

annotated with the tagset, 

3. training and evaluating taggers and 

tagset, and 

4. developing a chunker for extracting verbs 

and their arguments. 

 

This paper is concerned with the first two 

steps, and it is describing the corpus and the tag-

ging processes that have been done so far. 

In the last decade, a number of NLP resources 

for Zulu were compiled. Most of them are availa-

ble at the South African Centre for Digital Lan-

guage Resources (SADiLaR)2, inter alia a Zulu 

Tagger (Eiselen and Puttkammer, 2014). This tag-

ger is listed as the NCHLT Tagger. 

Another important resource for our project is 

the 3-million token Zulu corpus compiled in the 

Wortschatz project in Leipzig3. This corpus has 

been extended recently to 15.4 million tokens 

3 Leipzig Corpora Collection (2016): zul_mixed_2016 

based on texts of the year 2016. Leipzig Corpora Collection. 
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which will also be made available for free down-

load. Lastly, we make use of the ZulMorph mor-

phological analyser available as a Finite state 

morphology demo and reported on in detail in sev-

eral publications, e.g. Bosch and Pretorius (2011). 

An attempt was also made to get the other taggers 

described above (Spiegler et al., 2010; Koleva, 

2011; De Pauw, 2012) for local use, although their 

tagsets are not very useful. However, our requests 

to the authors of the respective papers were not 

successful. 

4 Application of resources 

4.1 Corpus  

The currently available Zulu corpus of the Leipzig 

Wortschatz Collection contains more than 3 mil-

lion tokens with marked sentence borders. We se-

lected 149,196 sentences (2,337,566 tokens) in to-

tal for our local processing after deleting noise. To 

build our gold standard corpus, we randomly se-

lected 1,500 sentences (about 17k tokens) from 

this resource.  

4.2 Tagset and Tagger 

The Zulu tagset used by the NCHLT Tagger 

(Eiselen and Puttkammer, 2014), includes nouns 

(Nn), adjectives (An), and verbs (V) of which the 

former two have noun classes (n) assigned, e.g. 

N01 or A07.  

Because of the agglutinative orthography of 

the Zulu language, a number of syntactic con-

structions like copulatives (COP) and possessives 

(POSn) have their own tags assigned. This issue 

was criticized by e.g. Hendrikse and Mfusi al-

ready in 2008, calling for a tagset that marks such 

constructions as clauses, a suggestion that we will 

implement. 

 As to pronouns, there are tags for personal 

pronouns (PRONn), demonstratives (DEMn), and 

quantitatives (QUANTn). Unfortunately, the tag-

ger also assigns tags like “PRON”, “QUANT” or 

“REL” (“relative”) without naming a noun class 

and we even find an undescribed tag “P” (we as-

sume that this stands for “any kind of pronoun”). 

There are tags labelling ideophones (IDEO), 

though these either function as adverbs or as verbs 

in a sentence. We also find tags for adverbs 

(ADV), numeratives (NUM), conjunctions 

(CONJ), and interjections (INT).  

                                                 
Dataset. https://corpora.uni-leipzig.de/de?cor-

pusId=zul_mixed_2016  

 

The NCHLT Tagger moreover makes use of 

the tag "M" for which we do not find any descrip-

tion in the NCHLT Project4. The tag labels a vari-

ety of items, like (copulative) verbs but also 

proper nouns and abbreviations. 

When developing their tagger, Spiegler et al. 

(2010) collapsed the two noun classes 8 and 10 

into one as their forms are identical. Before tag-

ging, they also deleted punctuation in the text and 

changed all characters to lower case thus their cor-

pus is not in its original form any longer. Other 

developers (Koleva, 2011; De Pauw, 2012) based 

their works on the tagset of Spiegler et al. (2010), 

but they did not differentiate between noun clas-

ses at all (therefore gaining a high precision).  

As described above, the NCHLT Tagger, 

Eiselen and Puttkammer (2014) make use of a 

tagset that distinguishes noun classes, however all 

verbs are labelled with the tag “V”, which means 

that a subject-verb congruence cannot be detected.  

In a first go, we utilize the NCHLT Tagger as 

it is the only tagger than can be applied to our cor-

pus (and that seems to be available), however we 

need to extend the tag “V” with subject and object 

class information whenever this information is 

available and we must train a new tagger, as the 

NCHLT Tagger comes without the possibility to 

adapt it to other tagsets. We must also be aware of 

the fact that this tagger has not been evaluated and 

that it applies tags “P” and “M” which we both 

define as “miscellaneous” categories not usable 

for further processing of tagged text.  

4.3 ZulMorph 

The ZulMorph morphological analyser (Bosch 

and Pretorius, 2006) is unfortunately not available 

for offline use, but the developers process lists of 

words on request. Currently, there are about 

36,000 verb roots described (Pretorius and Bosch, 

2017) in ZulMorph. When applying it to our 8,625 

types (see 5.2), 1,895 types were not analysed. 

4.4 Combining information provided by the 

tools 

The need for a finer-grained tagset and a proce-

dure allowing us to generate a gold standard leads 

us to an idea described in Jung’s dissertation (ne 

Eckart, 2018). Jung suggests the combination of 

information provided by different tools in order to 

achieve a better result. 

4 https://repo.sadilar.org/handle/20.500.12185/351 
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We hence plan to apply a “voting” procedure: 

in case the NCHLT Tagger agrees with the 

ZulMorph analysis for closed class items (like 

CONJ), we will not check the results again, if the 

NCHLT Tagger votes for V while ZulMorph of-

fers V and non-V analyses, we will choose the V-

analyses. If there are several, a semi-automatic se-

lection of the correct analysis will take place. 

5 Intermediate Results 

5.1 Tagset 

Our preliminary tagset is built on four levels, of 

which the first two are shown in Table 4. The first 

level describes the coarse category (to allow for 

future coarse tagging), the second level describes 

the part-of-speech in more detail. For verbs, we 

distinguish regular finite forms and forms with 

suffixes modifying their valency (NEUT(er), 

APPL(icative), RECIP(rocal), CAUS(ative) and 

PASS(ive)).  

For nominal items, a third level specifying the 

noun class will be utilized. For verbs, this third 

level contains the noun class of the subject noun, 

the fourth level then describes (if available), the 

noun class of its object in the cases where an ob-

ject concord appears. This fourth level is filled 

with the letters “RF” in case the verb contains a 

reflexive prefix. The tagset does not distinguish 

positive from negative polarity for this factor does 

not change its valency.  

 

 

1st level 2nd level Description 

V(erb) APPL 

CAUS 

COP 

IMP 

IDEO 

FIN 

NEUT 

RECIP 

PASS 

RELP 

applicative 

causative 

copulative (x is V) 

imperative  

ideophone 

finite (inflected form) 

neuter  

reciprocal 

passive 

verb containing  

a relative clause 

N(oun) COPP 

 

INF  

 

PROP 

POSP 

 

nominal copulative 

clause (N is N) 

infinitive (noun prefix 

and verbal stem) 

proper noun 

noun containing 

a possessive clause 

                                                 
5 The interested reader is referred to https://isizulu.net/ for 

the variety of meanings of the word abazi  

REG 

RELP 

 

regular noun 

noun containing  

a relative clause 

ADJ(ec-

tive) 

COPP 

 

REG 

adjectival copulative 

clause (x is A) 

regular 

ADV(erb) IDEO 

LOC 

REG 

ideophone 

locative 

true adverb 

P(ronoun) DEM 

PER 

QUANT 

demonstrative 

personal 

quantitative 

CONJ  conjunction 

INTJ  interjection 

INTR  interrogative 

PUNCT  punctuation 

CARD  anything containing 

numbers 

FM  foreign language ma-

terial 

Table 4. Preliminary Zulu-tagset 

 

5.2 Tagging 

To gain tags from morphological analyses, we 

first extracted all 8,625 types of our corpus (note 

that in this number, upper- and lower-case forms 

were merged) and ran them through the ZulMorph 

tool. This resulted in 40,458 analyses, as there are 

types resulting in around 100 analyses in total 

(e.g. abazi, a word with several meanings5 that re-

sulted in 105 different analyses). 

The ZulMorph analyses contain a number of 

items not relevant for our purposes, we hence sim-

plify those analyses reducing the amount of infor-

mation provided. To gain a better overview, anal-

yses like (1) of the word omfundisayo (“who 

teaches him/her”) are reduced to the relevant in-

formation, as in (2). 

(1) omfundisayo [RC][1]mu[OC][1] 

fund[VRoot]is[CausExt]a[VT]yo[RelSuf]6 

 

(2) omfundisayo 

o[RC][1][OC][1][CausExt][RelSuf]   

From there, we can identify the verbal relative 

phrase, of which the subject is of noun class 1 and 

the object is of noun class 1 (tag: V-RELP-S01-

O01). Note that for the word omfundisayo, there 

are altogether 6 ZulMorph analyses which our 

6 In this ZulMorph analysis, all processing information (un-

related to morphemes) was deleted. 
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scripts reduce to three: V-RELP-S01-O01 (sub-

ject identified as of noun class 1), V-RELP-

S02ps-O01 (subject identified as 2nd Person Sin-

gular) and V-RELP-S03-O01 (subject identified 

as of noun class 3). For the word ungomunye 

(“you/he/she are/is the other one”), we find 45 

ZulMorph analyses that are collapsed by our tool 

to 6 possible annotations, and for the above men-

tioned abazi, our implementation reduces the 

ZulMorph analyses from 105 to 13 possible tags. 

However, there is still a need for a human ex-

pert to decide upon which of the found analyses is 

correct in the given context. 

The scripts and tools developed so far select 

most of the analyses generated by ZulMorph fully 

automatically. There are currently still 3,297 types 

in our gold standard corpus to be identified. For 

these, we follow the following actions: 

 

1. Collapsing further ZulMorph analyses to tags 

that can be annotated automatically; 

2. identifying the possible tags of the types for 

which no ZulMorph analyses are available. 

 

We currently assist the experts working on 2. with 

an automated detection of possible POS-tags by 

looking at orthography patterns of types. For ex-

ample, names usually begin with a lowercase 

nominal prefix “u” or “i", followed by the name 

beginning with an uppercase letter (e.g. uSiwela). 

We can annotate such types as N-PROP-01a auto-

matically in order to avoid the necessity of  human 

intervention. 

 

6 Conclusion and future work 

In conclusion, this project on the preparation of 

a future gold standard corpus for detecting valen-

cies of Zulu verbs is still in its initial stages. So 

far, we have developed an informative tagset and 

found a methodology that makes use of available 

resources like the NCHLT Tagger  and ZulMorph 

to assist us in assigning  possible tags for each 

word of this corpus. This paper serves to 

describe our path towards achieving our goals and 

to elicit constructive feedback. 

Our next steps entail the selection of the cor-

rect POS-Tag as soon as all possible POS-tags 

have been found for all types occurring in the 

training corpus, i.e. the future gold standard. In 

most cases, this selection must be done manually 

by language experts. As soon as the training cor-

pus is finalized, we will make this corpus and a 

full description of the preliminary tagset available 

via the SADiLaR repository. 

After completing the gold standard corpus, we 

will train statistical taggers, evaluate the tagset 

and find the tagger best suited for the task. With 

this tagger, we will then annotate a new 20-mil-

lion token Zulu corpus which will be provided by 

the University of Leipzig in pursuit of our goal of 

detecting verbs and their arguments on a bigger 

scale. We plan to also annotate only the first level 

of the tags in the course of the validation expect-

ing a higher precision. We will also make the re-

sulting annotated corpus available for other re-

searchers who do not need a finer tagset for their 

purposes. The next goal is the development of a 

chunker for the identification of relevant verbal 

phrases from the corpus. After the phrase annota-

tions have been added to the corpus, we will be 

able to generate the planned lexicon of verb va-

lencies.  
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Abstract 

Der Beitrag beschreibt ein mehrfach anno-

tiertes Korpus deutschsprachiger Song-

texte als Datenbasis für interdisziplinäre 

Untersuchungsszenarien. Die Ressource 

erlaubt empirisch begründete Analysen 

sprachlicher Phänomene, systemisch-

struktureller Wechselbeziehungen und 

Tendenzen in den Texten moderner Pop-

musik. Vorgestellt werden Design und 

Annotationen des in thematische und au-

torenspezifische Archive stratifizierten 

Korpus sowie deskriptive Statistiken am 

Beispiel des Udo-Lindenberg-Archivs.  

1 Einleitung 

Natürlichsprachliche Korpora als systematisch 

zusammengestellte Digitalisate von Kommunika-

tionsakten bilden die wichtigste empirische 

Grundlage linguistisch motivierter Forschung. 

Für die standardnahe deutsche Gegenwartsspra-

che existieren umfangreiche Korpussammlungen 

literarischer, journalistischer, juristischer, wissen-

schaftlicher und anderer weit verbreiteter Texts-

orten, ergänzt durch diverse Spezialkorpora zur 

Abdeckung spezifischer Sprachumstände (vgl. 

Kupietz/Schmidt 2018, Lemnitzer/Zinsmeister 

2015, Lüdeling/Kytö 2008). 

Bemerkenswert erscheint vor diesem Hinter-

grund das Fehlen einer wissenschaftlich validen, 

nachhaltig nutzbaren digitalen Sammlung von 

Popmusiktexten. So wie sich die Popmusik von 

einem ursprünglich jugendkulturellen Phänomen 

in den 1950er-/1960er-Jahren zu einem festen Be-

standteil der Alltagskultur entwickelt hat, sind de-

ren textuellen Inhalte in der Sprachrealität inzwi-

schen allgegenwärtig und zunehmend Gegenstand 

(qualitativer) Forschung (vgl. von Ammon/von 

Petersdorff 2019). Wir sind von ihnen umgeben, 

nicht nur beim Radiohören während des Autofah-

rens, beim Einkaufen im Supermarkt, via Online-

Streamingdienst oder in TV-Shows. Hinzu 

kommt ein durchaus lyrischer Anspruch: Mo-

derne Popsongtexte als „Gebrauchslyrik“ (Blüh-

dorn 2003) sind „latent poetisch, aber selten au-

thentisch poetisch“ (Flender/Rauhe 1989). Sie 

dienen oft nicht allein der simplen Zerstreuung, 

sondern werden genutzt, um Botschaften und Ge-

fühle zu vermitteln oder – auf Rezipientenseite – 

Inspiration und Erklärungen zu finden. 

Angesichts dieses beachtlichen „kommunika-

tiven Impact Factors“ (Kreyer/Mukherjee 2007) 

besteht ein substanzielles Desiderat hinsichtlich 

der Berücksichtigung des Popmusik-Genres in der 

Korpuslinguistik. Keine der etablierten Sammlun-

gen enthält Songtexte, entsprechend wenig er-

forscht sind spezifische Aspekte wie Ästhetik und 

Stil (Vokabular, Syntax, Register etc.), Inhalt 

(Thematiken, z. B. im historischen/politischen 

Kontext), Emotionalität (Kategorisierung, Inten-

sität und Verteilung) oder Beziehungen zwischen 

Form und Inhalt. Wie für wenig erforschte 

Sprachgenres üblich, erscheinen initiale Erpro-

bung und Validierung statistischer Maße und Ver-

fahren aufschlussreich, auch hier stößt das Song-

korpus in eine bestehende Lücke. 

2 Stand der Kunst 

Nachhaltige, empirisch begründete Forschung zu 

Texten deutschsprachiger Popmusik bleibt bis-

lang aufgrund der Nichtexistenz ausreichend 

stratifizierter und aufbereiteter Daten ein unerfüll-

tes interdisziplinäres Desiderat. Für das Englische 

hingegen lassen sich inspirierende Beispiele kor-

puslinguistischer Forschung zu Diskurs und Spra-

che in Songtexten finden. So enthält das BLUR-

Korpus (Blues Lyrics Collected at the University 

of Regensburg; Miethaner 2005) mehr als 8.000 

digitalisierte Texte und bildet damit eine wert-
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volle Ressource für die Erforschung amerikani-

scher Bluessongs. Einen weiteren Meilenstein der 

Songtextforschung liefern Kreyer/Mukherjee 

(2007) mit dem von ihnen kompilierten Gießen-

Bonn Corpus of Popular Music (GBoP), das eng-

lischsprachige Texte von Top-30-Alben empi-

risch auswertbar macht. Katznelson et al. (2010) 

und Cullem (2009) beschreiben Korpusanalysen 

zu amerikanischen Songtexten; Watanabe (2018) 

begründet das American Popular Music Corpus of 

English (PMCE-US). Bertin-Mahieux et al. 

(2011) haben ein „Million-Song-Dataset“ aufge-

baut, während Murphey (1992) eine frühe Samm-

lung aus Top-50-Chartsongs kompiliert, quantita-

tiv analysiert (z. B. hinsichtlich des Type-Token-

Verhältnisses) und qualitativ auswertet (z. B. hin-

sichtlich der Verwendung von Pronomina). Wei-

tere englischsprachliche Korpora existieren zu 

spezifischen Subdomänen, beispielsweise das 

Rock Lyrics Corpus (ROLC; Falk 2013).  

 Werner (2012) vergleicht amerikanisches und 

britisches Englisch in Popsongs und beschreibt 

Nutzungsaspekte für das Zweitsprachenlernen 

(Werner/Lehl 2015). Bereits Plitsch (1997) the-

matisiert den motivierenden Einsatz von Popmu-

siktexten für den Sprachunterricht, während Ter-

hune (1997) hier insbesondere den syntaktisch oft 

nicht standardkonformen Aufbau von Songtexten 

kritisch sieht. Viol (2000) diskutiert identitätsstif-

tende Phänomene in britischen Popmusiktexten, 

Motschenbacher (2016) und Van Hoey (2016) 

vergleichen Eurovision-Song-Contest-Texte mit 

breiter stratifizierten Korpora. Diskurse von 

Weiblichkeit und Männlichkeit in Popsongs un-

tersucht Kreyer (2015); Nishina (2017) setzt 

sprachexterne Faktoren wie Musikgenre und Ge-

schlecht der Interpreten in Bezug zu linguistisch 

motivierten Analysen (Type Token Ratio, n-

Gramme usw.) und kompiliert ein privates Unter-

suchungskorpus aus Billboard-Songs einer De-

kade. Eiter (2017) untersucht Songtexte als Phä-

nomen zwischen gesprochener und geschriebener 

Sprache. Ergänzend zu solchen übergreifenden 

Beiträgen finden sich stilistische Analysen einzel-

ner Autoren, etwa von Johnson und Larson (2003) 

zur Verwendung von Metaphern in Beatles-Tex-

ten oder von Morini (2013) zu sprachlichen Ei-

genheiten in den Songtexten von Kate Bush. 

Nicht selten werden Popsongs und ihre Texte 

als Spiegel gesellschaftlicher Entwicklungen be-

trachtet (Shukers 1998). Anderson et al. (2003) 

beschäftigen sich mit Korrelationen aggressiver 

Handlungen und der Konsumation von als aggres-

siv klassifizierten Texten. Machin (2010) analy-

siert Songtexte vor dem Hintergrund aktueller 

Diskussionen um Sexualität und geschlechterge-

rechte Sprache. Eine diachrone Perspektive neh-

men Napier/Shamir (2018) ein und beziffern mit-

hilfe quantitativer Maße emotionale Veränderun-

gen in Songtexten der zurückliegenden Dekaden 

seit 1950. Ihre Ergebnisse weisen einen langfristig 

signifikanten Anstieg der Kategorien Ärger, Wut 

und Trauer (mit einem kurzzeitigen Rückgang 

Mitte der 1980er-Jahre) nach. Der Ausdruck von 

Angst nimmt bis in die 1980er-Jahre hinein eben-

falls kontinuierlich zu, allerdings mit geringerer 

Steigerungsrate. Deutlich zurückgegangen über 

den Gesamtzeitraum ist der Ausdruck von Freude. 

In jüngerer Zeit kommen verstärkt computer-

linguistische Methoden und Werkzeuge für Text 

Mining, Sentiment Analysis oder Topic Modeling 

zum Einsatz. Mahedero et al. (2005) evaluieren 

die Eignung von Natural Language Processing-

Tools für die Auswertung von Popmusiktexten; 

Liske (2018) beschreibt den Einsatz der Statisti-

kumgebung R für die Analyse von Songtexten des 

Künstlers Prince. Penaranda (2006) verwendet 

Text Mining für empirisch begründete Genre-Zu-

ordnungen auf Basis sprachlicher Auffälligkeiten. 

3 Korpusdesign und -aufbereitung 

Eine Grundvoraussetzung solider empirischer Er-

forschung sprachimmanenter Phänomenbereiche 

ist die technisch-physische Integrität der Primär-

daten. Insbesondere der Nachweis statistischer 

Regularitäten hat unter Beachtung strikter Gültig-

keitsbedingungen zu erfolgen, zu denen die Ge-

währleistung intakter Forschungsobjekte zählt 

(Schneider 2019, 32f.). So lassen sich auf Häufig-

keitsverteilungen, Längenmessungen etc. basie-

rende Gesetzmäßigkeiten der Textebene nach-

weislich nicht unter Zuhilfenahme von willkürlich 

kompilierten Fragmentsammlungen aus Verszei-

len oder Sätzen nachweisen. Zu diesen quantitati-

ven Korrelationen zählen Verteilungsgesetze wie 

das Zipf-Mandelbrot-Gesetz über den Zusam-

menhang zwischen Häufigkeitsrang und Frequenz 

lexikalischer Einheiten, funktionale Gesetze wie 

das Menzerathsche Gesetz über den Zusammen-

hang zwischen der Länge eines sprachlichen Kon-

strukts und der Länge seiner unmittelbaren Kom-

ponenten, oder Entwicklungsgesetze wie das Pi-

otrovskiy-Altmann-Gesetz zur Bestimmung der 

Verwendungshäufigkeiten sprachlicher Einheiten 

aus diachroner Perspektive (vgl. Köhler 2005, Bi-

emann 2007). Die Erklärungskraft all dieser Kor-

relationen entfaltet sich erst bei der Analyse zu-

sammenhängender und ungekürzter Texte, da die 
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Messgrößen (Wort-, Morphem- oder Phonemin-

ventar, Strophen- und Verszeilenlängen usw.) 

stets das Resultat individueller Textgenerierungs-

prozesse sind (Sinclair 2005).  

Ziel des Korpusaufbaus ist deshalb die mög-

lichst umfassende Abdeckung kompletter Werke. 

Intern fächert sich das Songkorpus auf in autoren-

spezifische Archive wie das initiale Udo-Linden-

berg-Archiv und themenspezifische Archive, bei-

spielsweise eine als Chart-Song-Archiv firmie-

rende Sammlung sämtlicher deutschsprachigen 

Top-100-Songtexte der zurückliegenden 20 Jahre. 

Besondere Aufmerksamkeit verdient die Nut-

zungs- und Urheberrechtsproblematik: Grundlage 

des Schutzes schöpferischer Leistungen in Form 

von Songtexten ist das Urheberrechtsgesetz 

(UrhG); nach § 1 UrhG erstreckt sich der Schutz 

auf Werke der Literatur, Wissenschaft und Kunst. 

Zwar bestehen seit 2018 durch das Urheberrechts-

Wissensgesellschafts-Gesetz großzügigere Rege-

lungen für Forschungs- und Bildungseinrichtun-

gen, trotzdem bleibt für die öffentliche Bereitstel-

lung geschützter Inhalte über Recherche-Schnitt-

stellen eine explizite Autorisierung der Nutzungs-

rechte erforderlich. Im Rahmen des Songkorpus-

Aufbaus werden deshalb für öffentlich zugängli-

che Archive entsprechende Übertragungsverein-

barungen mit den Rechteinhabern getroffenen. 

Zur Gewährleistung der Interoperabilität er-

folgt die Kodierung der Songtexte vermittels stan-

dardisierter Strukturbeschreibungen gemäß TEI 

P5 (TEI Consortium 2019), die spezielle Element-

typen für Strophen und Verszeilen bereitstellen. 

Nach der aufwändigen Segmentierung in Token, 

Verszeilen, Strophen und Sätze – Songtexte müs-

sen primär akustisch funktionieren und enthalten 

deshalb selten Interpunktionszeichen zur Identifi-

zierung von Sinneinheiten wie Phrasen und Sät-

zen – schließt sich eine Anreicherung um Annota-

tionen für interdisziplinäre Fragestellungen an: 

 Lemmata 

 Wortklassen, Morphologie, Syntax 

 Neologismen bzw. originelle Produkte 

von Wortbildungsprozessen 

 Named Entities als Identifizierung von re-

alen und fiktiven Personen, Figuren, In-

stitutionen, Ortsnamen etc. 

 Reimformen und Reimschemata 

Die Adaption von an standardnaher Sprache 

orientierten Kategorien und Verfahren an weniger 

homogene Sprachvarietäten erfordert spezifische 

Anpassungen (Horbach et al. 2014, Karlova-

Bourbonus et al. 2016, Zinsmeister et al. 2014); 

Songtexte machen hier keine Ausnahme. Exemp-

larisch seien Konstruktionen ohne Subjekt (hab 

noch Sehnsucht) sowie kontraktierte Formen von 

Verb und Personalpronomen (machste) oder Ver-

gleichskonjunktion und Artikel (wie’n) genannt; 

die im Songkorpus angetroffene Vielfalt über-

steigt diesbezüglich noch die in Westpfahl (2014) 

für den Bereich der Computer Mediated Commu-

nication (CMC) diskutierte Liste.  

Insgesamt findet sich in den Texten häufig ein 

bewusstes Spiel mit Normen auf vielfältigen lin-

guistischen Ebenen (Satzstrukturen, Schreibung, 

Semantik, Wortarten, Wortbildung etc.). Aus die-

sem Grund erfolgt die Korpusaufbereitung als 

Wechselspiel zwischen automatisierten Annotati-

onsläufen und manueller Nachbearbeitung. Zu-

nächst wird auf eine für das Songkorpus maßge-

schneiderte Toolchain der CLARIN-Infrastruk-

turkomponente WebLicht (Hinrichs et al. 2010) 

zurückgegriffen, bestehend aus IMS-Tokenizer, 

TreeTagger mit STTS-Tagset (Schiller 1999), ei-

nem auf TuebaDZ trainierten Named Entity 

Recognizer sowie dem Berkeley Constituent Par-

ser. Für die Kontrolle und ggf. Korrektur der Re-

sultate erfolgt deren Import in die kollaborative 

Korpusplattform WebAnno (Eckart de Castilho et 

al. 2016). Dort kommen dann, neben einem um 

Phänomene der konzeptionellen Mündlichkeit er-

weiterten Wortklassen-Tagset (basierend auf 

Bartz et al. 2014, Beißwenger et al. 2015, Rehbein 

et al. 2012, Westpfahl et al. 2017) auch Layer und 

Tagsets für die Auszeichnung von Named Entiti-

tes (basierend auf Benikova et al. 2014), Neolo-

gismen (z. B. Neuwort, Neubedeutung, Wortkom-

bination) und Reimformen (z. B. Anfangsreim, 

Binnenreim, Endreim) zum Einsatz. Sämtliche 

manuellen Bearbeitungsschritte unterliegen wäh-

rend des Kurationsprozesses einer finalen Bewer-

tung unter Zuhilfenahme von Verfahren für die 

Inter-Annotator-Reliabilität (Kappa-Statistiken). 

4 Deskriptive Statistiken und Analysen 

Das Udo-Lindenberg-Archiv versammelt mehr 

als 300 Texte des Pioniers der deutschsprachigen 

Rock- und Popsongs – und damit sämtliche nicht-

fremdsprachigen Texte des Autors aus fünf Jahr-

zehnten sowie einzelne unveröffentlichte Songs.  

 Lindenberg-

Archiv 

Chart-Song-

Archiv 

Songtexte 301 684 

Wortformen 62.807 244.276 

Verszeilen 10.688 37.734 

Strophen 1.769 5.803 

Tabelle 1. Archive im Songkorpus (Stand 10/2019). 
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In den zurückliegenden Jahren wurden für die 

Komplexität literarischer Texte verschiedene 

Maße und Methoden vorgestellt; vgl. z. B. Gries 

(2016), Perkuhn et al. (2012). Ein besonders für 

angewandte Disziplinen wie die Stilometrie inte-

ressanter Untersuchungsbereich betrifft Messun-

gen zum Reichtum des Vokabulars (Yule 1944) 

bzw. der lexikalischen Vielfalt (Carroll 1938). Die 

Idee der Wortschatzvarianz geht dabei von der 

Annahme aus, dass gemessene Werte (Type-To-

ken-Verhältnis als Quotient aus Type-Anzahl und 

Token-Anzahl) Indikatoren für den Wortschatz-

umfang eines Autors und mithin charakteristische 

Eigenschaften sind (Tanaka-Ishii/Aihara 2015). 

Ein methodisches Problem bleibt der Umstand, 

dass beinahe alle Ansätze (wie z. B. TTR, STTR) 

als Konsequenz des Zipf-Mandelbrot-Gesetzes 

(Mandelbrot 1953) abhängig von der Korpus-

größe variieren (Tweedie/Baayen 1998, Evert et 

al. 2017). Die Online-Plattform des Songkorpus1 

bietet hierzu neben den Primärdaten verschiedene 

Maße und visualisierte Statistiken an. 

      

Bild 1. Neologismen im Udo-Lindenberg-Archiv. 

Zu den weiteren unmittelbar abfragbaren Daten 

zählen Frequenzlisten (interessanterweise finden 

sich hier die Wörter „und“ und „ich“ auf den vor-

dersten Rängen, dann erst gefolgt von Artikeln), 

Neologismen (vgl. Bild 1), die Überprüfung quan-

titativer Regularitäten wie dem Zipf’schen Gesetz 

oder der Korrelation zwischen Strophen- und 

Verszeilenzahl (vgl. Bild 2) sowie Kollokations-

analysen und n-Gramme (vgl. Bild 3). Außerdem 

werden Ortsbezeichnungen (Named Entitites) aus 

den Texten auf einer geografischen Karte verortet. 

Bild 4 kontrastiert Worthäufigkeiten im Lin-

denberg-Archiv und in einem regional und zeit-

lich ausgewogenen allgemeinsprachlichen Kor-

pus (zu dessen Stratifizierung vgl. Bubenhofer et 

al. 2013). Dabei gruppieren sich Wörter mit ähn-

lichen Frequenzen in beiden Sammlungen („ak-

zeptieren“, „besonders“, „in“) nahe der zentralen 

                                                 
1 http://songkorpus.de unter dem Menüpunkt „Explorer“ 

Trennlinie, während spezifische Wörter (im Lin-

denberg-Archiv etwa „abgefuckt“, „Freund“, 

„Welt“) einen größeren Abstand aufweisen. 

 

 
Bild 2. Strophen und Verszeilen ausgewählter Alben. 

5 Fazit und Ausblick 

Songtexte können als Textgattung betrachtet wer-

den, die als eine Art "Vermündlichung des Lyri-

schen" Merkmale sowohl des geschriebenen als 

auch des gesprochenen Diskurses aufweist, sowie 

als Datenquelle im Kontinuum zwischen Standard 

und Nonstandard. Vielversprechend erscheinen 

gezielte Analysen sprachlicher Phänomene, die 

sich von Entsprechungen in anderen literarischen 

Schriften, Sach- und Gebrauchstexten oder spon-

tan gesprochener Alltagssprache unterscheiden.  

Das Songkorpus komplementiert den Kanon 

korpuslinguistischer Sammlungen um mehrfach 

annotierte deutschsprachige Songtexte, mit dem 

vorgestellten Udo-Lindenberg-Archiv sowie ei-

nem Chart-Song-Archiv als initialen Inhalten. 

Beide werden kontinuierlich aktualisiert und um 

weitere Archive ergänzt. Die TEI-annotierten In-

halte des Lindenberg-Archivs sind über das On-

line-Frontend recherchier- und einsehbar und las-

sen sich für die weiterführende wissenschaftliche 

Forschung gesammelt herunterladen. Ausge-

wählte korpuslinguistisch motivierte Auswertun-

gen und Visualisierungen beider Archive können 

auf Zeichen-, Wort- und Versebene unmittelbar 

unter http://songkorpus.de berechnet werden. 

Forschungsthemen, die durch die neue Res-

source befördert werden, umfassen z.B.: (a) Topic 

Modeling, Identifizierung prominenter Themen 

für ausgewählte Zeiträume und Autoren (b) Paral-

lelitäten zwischen Personen-, Orts- oder Instituti-

onsbezeichnern und prominenten Themen im öf-

fentlichen Diskurs (c) Sentiment Analysis zur Be-

schreibung von Emotionalität in Songtexten oder 
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Musikgenres (d) Einfluss sprachexterner Faktoren 

(z. B. individuelle Veröffentlichungsproduktivi-

tät) auf die lexikalische Vielfalt (e) Stilistische 

Analysen, Identifizierung von „style markers“ 

wie Verwendungshäufigkeit bestimmter Perso-

nalpronomen (f) Textähnlichkeitsmessungen (g) 

Reimformen und Reimschemata (h) Identifizie-

rung autoren-/zeitspezifischer Formulierungs-

muster und symbolischer Elemente/Metaphern (i) 

empirische Annäherungen an Phänomene wie Iro-

nie und Wortwitz (j) Variationsstudien zu dialek-

talen Songtexten (k) Empirische Aussagen zur 

Standardkonformität und Verortung im Konti-

nuum zwischen Schrift- und Umgangssprache. 

  
Bild 3. Prominente Bigramme ausgewählter Alben. 

  

  
Bild 4. Wortfrequenzvergleich. 

Das Songtextkorpus schließt damit eine Daten-

lücke, die bislang die empirisch fundierte Beant-

wortung syntaktischer, semantischer oder prag-

matischer Fragestellungen für diese Textsorte er-

schwert. Die interdisziplinären Anknüpfungs-

punkte erscheinen vielfältig und vielverspre-

chend: Neben Linguistik und Literaturwissen-

schaft lassen sich profitierende Forschungsberei-

che im breiten Spektrum der Kulturwissenschaf-

ten sowie der Musik-, Medien- oder Geschichts-

wissenschaft verorten.   
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Finn Årup Nielsen
Cognitive Systems, DTU Compute
Technical University of Denmark

Kongens Lyngby, Denmark

Lars Kai Hansen
Cognitive Systems, DTU Compute
Technical University of Denmark

Kongens Lyngby, Denmark

Abstract

We report a new baseline for a Danish word
intrusion task by combining pre-trained off-
the-shelf word, subword and knowledge
graph embedding models. We test fastText,
Byte-Pair Encoding, BERT and the knowl-
edge graph embedding in Wembedder, find-
ing fastText as the individual model with
the superior performance, while a simple
combination of the fastText with other mod-
els can slightly improve the accuracy of
finding the odd-one-out words in the word
intrusion task.

In the word intrusion task, see, e.g., (Chang et
al., 2009), a cognitive agent is presented with a set
of words and is to determine the odd-one-out. Such
a test has been used to evaluate unsupervised topic
models (Chang et al., 2009) and human subjects
in experimental psychology, see, e.g., (Crutch et
al., 2008). The test somewhat resembles Test of
English as a Foreign Language (TOELF), where
the task is to select the semantically most similar
one among four words given a query word (Turney,
2006). A convenient method (doesnt_match) is
implemented in the distributed semantics models of
Gensim (Řehůřek and Sojka, 2010; Wohlgenannt
et al., 2019), giving users of this Python package a
straightforward way to test trained machine learn-
ing models in odd-one-out tasks.

(Nielsen and Hansen, 2017) constructed a word
intrusion dataset with Danish words and evalu-
ated how well different machine-based methods
could identify the intruded word. Explicit semantic
analysis and a Word2vec-based word embedding
with large corpora performed the best with perfor-
mances of 73% and 71%, respectively, against a
random choice baseline of 25%. Since (Nielsen
and Hansen, 2017), new embedding methods have
appeared with pre-trained models for non-English
languages, e.g., fastText (FT) (Bojanowski et al.,

2016; Grave et al., 2018), Byte-Pair Encoding
(BPE) (Heinzerling and Strube, 2018), BERT (Bidi-
rectional Encoder Representations from Transform-
ers) (Devlin et al., 2018), and Wembedder (W), a
knowledge graph embedding based on the multi-
lingual Wikidata knowledge base (Nielsen, 2017).
We note that some of the best performing semantic
models have combined corpus-based and explicit
lexicon-/knowledge graph-based methods (Turney,
2006; Speer and Lowry-Duda, 2017), and we will
also pursue such a combination here.

Below we will describe the Danish word intru-
sion task dataset used for evaluation, the applied
new off-the-shelf methods, their results in terms of
accuracy of detecting the odd-one-out and finally
we discuss what further approaches are needed to
handle the remaining misclassified cases.

1 Evaluation dataset

The word intrusion dataset comprises 100 sets of
4 words each where one of 4 is the outlier to be
detected (Nielsen and Hansen, 2017),1 see the left
part of Figure 1 for a small excerpt of the dataset.
The dataset contains common and proper nouns
(named entities) and other word classes as well as
a few numbers, years and phrases. Some sets of
“words” require detailed Danish world knowledge,
e.g., 1807, 1864, 1940, 1909, — the last being
the outlier as the three first years relates to Danish
military defeats. The dataset contains also several
homographs/polysemous words. Most of the words
are common nouns. There are 11 word sets with
proper nouns and 11 with verbs. Further sets in-
cludes sets of adjective and other word classes. A
few of the word sets mix lexical categories, e.g., the
set (halvsyg, forkølelse, hoster, vej) corresponding
to the English (“half-sick”, flu, the verb “coughs”,
road).

1https://github.com/fnielsen/dasem/
blob/master/dasem/data/four_words_2.csv.
We use the second version correcting two spelling errors.
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word 1 Word 2 word 3 word 4 FT BERT W FT+W+BERT

æble pære kirsebær stol stol kirsebær kirsebær stol
(apple) (pear) (cherry) (chair)

bil cykel tog vind tog bil bil tog
(car) (bike) (train) (wind)

Finland Sverige Norge Kina Kina Norge Kina Kina
(Finland) (Sweden) (Norway) (China)

tres 60 LX 3 tres LX LX LX
(sixty) (60) (LX) (3)

Table 1: Excerpt of the evaluation dataset and individual results from fastText (FT), BERT, Wembedder
(W) and the combined system of fastText, BERT and Wembedder (FT+W+BERT). The ground truth
outlier is in the word 4 column.

While word intrusion tasks may be based on the
sound of words, see, e.g., (Oakhill et al., 2003), the
Danish dataset contains none of this kind, so the
methods we employ need no phonological informa-
tion.

2 Methods

We use fastText (Bojanowski et al., 2016; Grave
et al., 2018) through the Gensim 3.6.0 implemen-
tation (Řehůřek and Sojka, 2010) with the fast-
Text cc.da.300.bin pre-trained model.2 This
model has been trained on the Common Crawl and
the Danish Wikipedia with the continuous bag-of-
words setup. In terms of training corpus size, it
may be the largest publicly available linear word
embedding model and as such should be regarded
as a baseline model. We downloaded it from its
homepage.3

For BERT, we use the currently recommended
cased multilingual model4 through the package
bert-as-service.5

The BPE model comes in various sizes of vocab-
ulary and embedding dimensions and we test them
all.6 The size of the vocabulary of the pre-trained
distributed models ranges from 1,000 to 200,000
while the embedding dimension ranges from 25 to
300.

2https://fasttext.cc/docs/en/
crawl-vectors.html.

3https://fasttext.cc/docs/en/
crawl-vectors.html

4 multi cased L-12 H-768 A-12 from
https://github.com/google-research/bert/
blob/master/multilingual.md

5https://github.com/hanxiao/
bert-as-service

6https://nlp.h-its.org/bpemb/da/.

Wembedder is an embedding of Wikidata
items rather than words, and the use of Wem-
bedder for natural language requires a transla-
tion from the word to the Wikidata item identi-
fier. We use the Wikidata search API7 and its
wbsearchentities action to search for Wiki-
data items based on the queried word or phrase.
Not all words can be found in Wikidata, e.g., adjec-
tives and verbs are rarely present as Wikidata items,
meaning words from such word classes are usually
out-of-vocabulary. The Wembedder model we use
is the one trained on the 2017-06-13 truthy dump
of Wikidata with an embedding dimension of 100
and using the continuous bag-of-word Word2vec
approach implemented in Gensim.8 The use of the
Wikidata API means that results may not neces-
sarily reproduce between runs of our evaluation,
because Wikidata is continuously expanded and
modified.

There are multiple ways of getting from a
vectorial representation to a measure of outlier-
ness. For Gensim-based models, we use Gensim’s
doesnt_match method. For the other embed-
dings, we sort the row sum of the correlation matrix
of the concatenated embedding vectors of the four
words and select the word associated with the low-
est sum. The performance of a model is measured
as the percentage of correctly detected outliers.

Our computations are available in a public
Jupyter Notebook.9

7https://www.wikidata.org/w/api.php
8The Wembedder Gensim model was downloaded from

https://zenodo.org/record/827339.
9 https://gist.github.com/fnielsen/

93f3b68941e74c468522f187e2dbe9a7.
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Model FT BPE BERT W FT+W FT+W+BERT Random

Accuracy 78 64 32 47 82 83 25

Table 2: Odd-one-out detection percentage for fastText (FT), BPE, BERT, Wembedder (W), fastText and
Wembedder (FT+W) and the combined model of fastText, Wembedder and BERT (FT+W+BERT) against
the random choice.

3 Results

The results are displayed in Table 2. FastText alone
can improve the benchmark to 78%, while the BPE
embeddings cannot reach a better performance than
our previous results. Its accuracies range from 33%
to 69%, depending on dimension and vocabulary.
Generally, the performance increases considerably
as the vocabulary increases, see Table 3. However,
for the largest vocabulary (200,000) the accuracy
decreases for the models with the largest embed-
ding dimension. With respect to the dimension, the
largest embeddings with sizes 200 and 300 yield
the best performance. The increase in performance
from low to high dimensional models is smaller
than when the vocabulary size is changed. This dif-
ference could be explained by the different range:
The vocabulary sizes differs by 200 times, while
the embedding dimension only differ by 12 times.

Our current simple application of BERT does
not yield good performance with only an accuracy
of 32%.

Wembedder neither performs well with just 47%
accuracy. However, it tends to perform well on
proper nouns, better than (sub-)word embedding
models: We can attain an accuracy of 82% by com-
bining fastText and Wembedder using Wembedder
for entries with non-lower first letters (named en-
tities). We can improve that performance slightly
to 83% by using BERT for phrases which are not
named entities (as we only have 100 tests these
improvements are not statistically strong).

4 Discussion

Our best model detects 83 outliers out of 100. What
is needed to improve the performance, handling the
misclassified cases?

The 17 errors made form a heterogeneous set. A
handful of them may well be due to homographs,
e.g., ‘tog’ (either ‘train’ or ‘took’) and ‘kassen’
(‘the box’), where the Wembedder search identifies
the latter as the surname ‘Kassen’ (Q37436530)
for the set (Nielsen, Jensen, Olsen, kassen). If we
are to improve the model, it may be necessary to

Voc. \ Dim. 25 50 100 200 300

1,000 36 34 34 36 33
3,000 45 42 48 47 47
5,000 52 50 51 54 55

10,000 56 59 59 63 59
25,000 58 58 62 63 67
50,000 58 63 65 69 69

100,000 58 63 63 69 69
200,000 60 64 67 67 64

Table 3: BPE results. Percentage of correctly spot-
ted outliers among four words for BPE models of
varying sizes: vocabulary from 1,000 to 200,000
words and dimensions from 25 to 300.

handle the homography/polysemy of words. It is
likely that even larger corpora with the non-context
embedding models such as the ordinary application
of fastText may not be able to handle the cases with
homographs.

Numbers pose a common problem for all the
models. One of the tests is (tres, 60, LX, 3), where
tres is the Danish word for sixty, LX is the Latin
number 60 and 3 is the outlier. FastText chooses
tres, while BERT, the largest BPE model and Wem-
bedder report LX as the outlier, so modifying any
ensemble weighting will not help. It is possible that
a larger corpora could learn the relations, or that
explicit entry of such information in the Wikidata
knowledge graph could help.

The low performance of BERT may come as a
surprise given that BERT has been reported with
a string of state-of-the-art results (Devlin et al.,
2018). We note that the benchmarks used in the
original BERT report had input that was longer than
a word (e.g., sentences), while our current applica-
tion of BERT only submits one word at a time to
the model. It is tempting to think that some form of
multiple word input to BERT may perform better,
e.g., where two or three of the four words in a word
set are submitted at a time. Such an approach could
also handle the homography/polysemy problem.

The measure of outlierness is based on
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the cosine similarity implemented in Gensim’s
doesnt match function and the correlation ma-
trix. We note that an exploration and a more careful
selection of the metric for comparison may yield
different results.

Over 1,800 entities for Danish words, affixes
and phrases exist as lexemes on Wikidata (Nielsen,
2019), but the current Wembedder models have no
Wikidata lexemes. Knowledge graph embedding
that includes the relatively new Wikidata lexemes
and its connection to the Danish wordnet DanNet
(Pedersen et al., 2009) may be a fruitful avenue for
further study.
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Abstract

In this paper, we present our work-in-
progress to automatically identify free indi-
rect representation (FI), a type of thought
representation used in literary texts. With
a deep learning approach using contextual
string embeddings, we achieve f1 scores be-
tween 0.45 and 0.5 (sentence-based evalua-
tion for the FI category) on two very differ-
ent German corpora, a clear improvement
on earlier attempts for this task. We show
how consistently marked direct speech can
help in this task. In our evaluation, we also
consider human inter-annotator scores and
thus address measures of certainty for this
difficult phenomenon.

1 Introduction

In contrast to the well-known direct or indirect re-
presentation of speech, thought and writing, there
have been hardly any attempts to tackle the auto-
matic recognition of free indirect representation
(FI) up until now. FI – in German also known as
“Erlebte Rede” – is mainly used in literary texts to
represent a character’s thoughts while still main-
taining characteristics of the narrator’s voice. In
the following example, the part in italics is FI:

Er glaubte, sie zu kennen. War das nicht
die Grünkramfritzen von der Ecke? [He
thought he knew her. Wasn’t that the
greengrocer gal from the corner?]

While the third person pronouns and the past
tense indicate the narrator’s voice, the use of a
question and the informal language makes the pre-
sentation similar to a direct quotation of the cha-
racter’s thoughts. FI has been a much discussed
topic in literary theory since the early 20th century
(overview in McHale (2014)). In our approach we
follow the ‘classical’ definition of FI (e.g. Genette

(2010), Leech and Short (2013)) that focusses on
the representation of characters’ thought processes.
When a personal, character-focussed style gradu-
ally became mainstream over the last century, FI
became a common narrative tool which today ap-
pears even in popular and children’s literature. For
quantitative studies of literary style, it would be
highly useful to be able to detect the usage of FI au-
tomatically. However, FI is very context dependent,
essentially a shift in perspective to the character,
which can be hard to detect even for humans. In
this brief presentation of our work-in-progress in
this area, we will show preliminary results with
a deep learning approach which we will contrast
with a simple rule-based approach as well as a Ran-
domForest approach from earlier research. We will
also consider human inter-annotator agreement in
our evaluation.

2 Related Work

The only attempt of automatic detection of FI in
German texts known to us is the work by Brunner
(2015). She implemented a simple rule-based al-
gorithm and also trained a RandomForest model.
On a corpus of 13 short German narratives (57,000
tokens) from the late 18th to early 20th century, she
reports a sentence-based f1 score for the category
FI (as opposed to non-FI) of 0.31 (rule-based) and
0.4 (RandomForest, 10-fold cross validation). We
will compare our results to Brunner’s in section
5.2.

With respect to automatization, we consider the
detection of FI a sequence labelling task. In this
area, much progress has been made recently em-
ploying deep learning and language embeddings.
We use FLAIR (Akbik et al., 2019), a PYTORCH-
based framework that facilitates the use of language
embeddings and model training for NLP tasks. The
architecture of our deep learning model is adapted
from Akbik et al. (2018). They propose ‘contextual
string embeddings’, an approach which passes sen-
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tences as sequences of characters into a character-
level language model to form word-level embed-
dings. This approach achieves significant improve-
ments for NER, especially for German, and state-
of-the-art results for chunking and POS tagging and
can be considered one of the leading architectures
for sequence labelling tasks to date. We will detail
the exact configuration of our model in section 4.2.

3 Training data

As mentioned above, FI became much more com-
mon in modern times. For this reason we decided
to use mainly modern popular literature for our test
and training data.

The bulk of our training data comprises dime
novels as well as popular crime novels (full texts or
excerpts). This data was preprocessed with a basic
rule-based FI recognizer (description see section
4.1). The automatically detected instances were
then presented to human annotators who could ei-
ther dismiss or accept them. The annotators were
also instructed to annotate any additional cases of
FI in the direct vicinity of the automatically de-
tected instances. This sped up the annotation pro-
cess considerably, but of course also created a bias,
as it is quite possible that valid instances of FI that
were never detected by the rule-based recognizer
have been missed. This material was supplemented
by 150 instances1 of FI with little to no context,
manually extracted from 20th century novels. For
model training, it was split into a training corpus
(1,443,811 tokens with 5.46% FI, 2551 instances)
and a validation corpus (181,916 tokens with 3.85%
FI, 205 instances).

4 Automatic approaches

4.1 Rule-based recognizer

For the rule-based FI annotation, the text is
preprocessed using OpenNLPSentenceDetector,
OpenNLPTokenizer (https://opennlp.apache.org),
MateLemmatize (Björkelund et al., 2010) and
TreeTagger (Schmid, 1995) with the STTS tagset
(Schiller et al., 1999). Sentences that contain di-
rect speech (as identified by a simple approach
matching quotation marks) are skipped, as it is rel-
atively unlikely for them to contain FI and they
exhibit many similarities to FI at the same time.
The remaining sentences are categorized as FI if

1An instance is defined as a continuous passage of FI
tokens and may span several sentences.

they contain any typical FI indicators, e.g. typo-
graphical markers like ! ... ? –, temporal markers
indicating the present as a reference point (gestern
[yesterday], heute [today], morgen [tomorrow],
jetzt [now]), forms of würde [would]) which are
commonly used to refer to the future in FI, or the
STTS tags ITJ (interjection) or PTKANT (modal
particles). This basic recognizer was mainly used
to aid in the generation of training material, but its
results will serve as a baseline for our evaluation.

4.2 Deep learning model

For language embedding, we used pre-trained mo-
dels provided by the FLAIR framework, combining
word embeddings with contextual string embed-
dings as recommended in Akbik et al. (2018) in
the following combination: ‘de’ (fastText word em-
bedding (Bojanowski et al., 2016) with 300 dimen-
sions, trained over Wikipedia), ‘german forward’,
‘german backward’ (two contextual string embed-
dings trained with a mixed corpus of web texts,
Wikipedia and subtitles).

To train our tagging model, we used FLAIR’s Se-
quenceTagger class which implements a BiLSTM-
CRF architecture on top of the language embedding
(as proposed by Huang et al. (2015)). After initial
tests with one bidirectional LSTM layer with hid-
den size 256 and one CRF layer, we decided to
add a second BiLSTM layer (hidden size also 256)
on top of the first to account for the complexity of
our task. This led to visible improvements in both
precision and recall. The latter model was used to
create the results presented below.

Some consideration was given to the format in
which we present the data to our model. FI has a
tendency to appear in blocks of several consecutive
sentences and, as explained above, constitutes a
shift in narrative perspective. Because of this, it
is extremely difficult to identify a single sentence
as FI without its context, even for humans. On the
other hand, though FI most often comprises at least
one sentence, it can also be shorter, if the perspec-
tive shift occurs within a sentence. We therefore
opted to model the sequence labelling task on to-
ken level, but input the data as rather large chunks
of up to 100 tokens, which may span several sen-
tences. Note that the chunks can be shorter than
this maximum, as they may never cross borders
between different texts or cut sentences (unless a
sentence is longer than 100 tokens).
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5 Results and discussion

5.1 Evaluation on the dime novel corpus

The test data comprises 22 excerpts from dime no-
vels (romance and horror), each about 1,000 tokens
long. These were manually annotated in full by
humans. To give justice to the difficult nature of FI,
we present two competing annotations: anno1 was
done by a single person who annotated all excerpts;
anno2 was done by two different people, each an-
notating half of the excerpts.2 All annotators were
trained to recognize FI according to the definition
used in our project, but worked independently and
did not discuss this annotation. The differences
between their results are mostly due to true bor-
derline cases rather than clear mistakes. In table 1
we present the agreement scores between the two
human-made annotations followed by an evalua-
tion of our deep learning recognizer. Note that the
recognizer scores are the results of one model (as
described in section 4.2), compared to four differ-
ent gold standards: the two different human anno-
tations (anno1 and anno2), the set of cases agreed
upon by both anno1 and anno2 (anno all; i.e. cases
which can be considered fairly obvious for humans)
as well as the set of cases marked by either anno1
or anno2 (anno any; i.e. cases that at least some
humans would see as FI). This gives us a better
understanding of the performance in relation to
human certainty. According to anno all, the test
corpus contains 163 (9%) FI sentences, according
to anno any there are 304 (16%) FI sentences.

In addition to that, we tested for the influence
of quotation marks on the results. This is relevant,
because by definition, FI has many similarities to
direct representation (character specific speech pat-
terns, questions, exclamations etc.). The presence
of quotation marks makes it much easier to dis-
tinguish between the two forms. We tested our
recognizer on one version of our test corpus that
lacked any quotation marks and one that used a
consistent pattern of quotation marks. The training
data marked direct speech in most but not all cases,
using a varity of patterns.

Table 1 shows the agreement scores between hu-
mans, our rule-based baseline as well as the results
of our deep learning model on texts with and with-
out quotation marks. As FI is a mostly sentence-

2As the skill levels of all annotators were similar and we
are not interested in the performance of any one annotator, we
believe it is valid to treat this annotation as though it was done
by one person as well.

f1 prec rec acc
human agreement

anno1 vs. 2 0.7 0.73 0.67 0.93
rule-based (baseline)

anno1 0.37 0.57 0.27 0.88
anno2 0.31 0.45 0.24 0.88
anno all 0.35 0.42 0.3 0.9
anno any 0.34 0.61 0.23 0.85

deep learning
(data without quotation marks)

anno1 0.46 0.61 0.37 0.89
anno2 0.46 0.58 0.38 0.89
anno all 0.46 0.48 0.44 0.91
anno any 0.46 0.71 0.34 0.87

deep learning
(data with consistent quotation marks)

anno1 0.45 0.78 0.32 0.9
anno2 0.48 0.79 0.35 0.91
anno all 0.49 0.65 0.39 0.93
anno any 0.45 0.92 0.3 0.88

Table 1: F1 score, precision, recall (for category FI)
and overall accuracy on the dime novel test corpus,
calculated over sentences. Results reported with
varying gold standards.

based phenomenon, we calculate the scores on sen-
tences, though the recognition happened on tokens.
The (very rare) cases when FI was partially recog-
nized were counted as correct. F1, precision and
recall scores are provided for the category FI.

The agreement score beween human annotators,
f1=0.7 (fleiss kappa=0.66), can serve as an indica-
tor on how much certainty can be expected when
identifying FI in general. We can see that our deep
learning model clearly outperforms the rule-based
baseline, regardless of quotation marks. When quo-
tation marks are added, you can observe a strong
increase in precision and some decrease in recall.

In our error analysis we focussed on cases which
have not been identified as FI by the model even
though both annotations agreed on them (‘clear
cases’) and, in contrast, cases that were identified
by the model even though none of the humans con-
sidered them FI (‘unlikely cases’).

Table 2 lists those cases and sorts them into
rough categories. In general we see that the re-
cognizer has its weakness in recall much more than
in precision. This is especially true if quotation
marks are present: Their absence causes the anno-
tator to categorize direct representation as FI. The
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missing clear cases
(false negatives for anno all)

no quotes quotes
no indicators 57 50
known indicators 17 10
partial passage 18 39
total 92 99

finding unlikely cases
(false positives for anno any)

no quotes quotes
direct speech 38 0
known indicators 2 6
overlong passage 3 2
total 43 8

Table 2: Error analysis for the two versions of the
test data: ’no quotes’ = without quotation marks;
’quotes’ = with consistently used quotation marks

addition of quotation marks eliminates this prob-
lem completely and hardly any ‘unlikely’ cases
remain.

We sorted the error cases into the following ca-
tegories:

• no indicators: isolated sentence with no ob-
vious FI indicators (recognizable only by con-
text); example:3

Sie war glücklich mit dem Resultat, so viel
war deutlich. Aber bestimmt nicht halb so
glücklich wie er. Sein Instinkt hatte ihn also
nicht getäuscht, sie war perfekt. [She was
happy with the result. But certainly not half as
happy as he was. His instinct had not deceived
him, she was perfect.] (Perspective shift into
the head of the man in the last sentence.)

• known indicators: isolated sentence which
contains known FI indicators; these can be
specific surface markers like the ones used by
the rule-based recognizer, but also softer indi-
cators like informal speech patterns; example:

�Auch das noch!� Nicht, dass es ihn
überraschte – er hatte sie von Anfang an
gewarnt. [�Oh no, not that!� Not that it sur-
prised him – he had warned her from the be-
ginning.] (Ellipsis in the first sentence part
and dash, which is a known surface indicator
of FI.)

3The italicized parts of the examples are FI, according to
anno all.

• partial passage / overlong passage: sen-
tence adjacent to a longer passage of FI that
is either not annotated or added incorrectly;
example:

Er hatte sie geküsst! Und es war noch herr-
licher gewesen, als sie sich erträumt hatte.
[He had kissed her! And it had been even
more glorious than she had dreamed.] (Both
sentences are FI. The recognizer detected the
first but not the second.)

The cases adjecent to an FI passage were catego-
rized separately, as one can argue that these errors
are less grave: The recognizer at least identified
that FI is present in this part of the text, but detected
the wrong borders for the passage.

It is also heartening that the recognizer only in-
correctly labeled sentences as FI that had at least
some known FI indicators; example:

Der Wagen auf der Achterbahn fuhr
weiter. Jetzt hatte er den höchsten Punkt
der Steigung erreicht. [The car on the
roller coaster went on. Now it had
reached the highest point of the ascent.]
(The second sentence was incorrectly la-
beled as FI. It contains the surface indi-
cator jetzt [now].)

The biggest issue, both in numbers as well as in
gravity, are the missing isolated sentences, espe-
cially the cases of context-based FI without clear
indicators within the sentence itself.

5.2 Evaluation on the Brunner corpus
We also tested our deep learning model on the cor-
pus used by Brunner (2015).4 Table 3 shows the
evaluation and contrasts them with the results of
Brunner’s RandomForest model.5 We also pro-
vide the scores of the rule-based recognizer which
were extremely poor for this corpus due to a large
number of false positives in a text with unmarked
dialogue and many false negatives for FI sentences
without explicit indicators.

We are happy to see that our model gives com-
parable scores to the ones for the dime novel cor-
pus even though Brunner’s corpus is very different:

4Brunner’s corpus and all her annotations are available
for download at http://hdl.handle.net/10932/00-027B-9E8A-
9300-0B01-E

5The scores reported for Brunner’s RandomForest model
differ slightly from the ones reported in Brunner (2015), as
we used a different sentence splitting tool on her corpus for
easier comparison.
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f1 prec rec acc
rule-based 0.04 0.06 0.03 0.94
Brunner’s RF model 0.41 0.61 0.31 0.96
our model 0.52 0.65 0.43 0.96

Table 3: Scores on Brunner’s corpus, in comparison
to the scores of the rule-based recognizer and of
Brunner’s RandomForest model; gold standard is
Brunner’s manual annotation.

It contains historical texts (1787-1913) with only
partly modernized spelling and a lot of stylistic
variation, while the model was trained almost ex-
clusively on modern popular literature and uses
language embeddings generated from modern Ger-
man. The percentage of FI is also much lower than
in the dime novel corpus, only 4.5% (99 FI sen-
tences), and highly skewed towards one text. Still,
our model clearly outperforms Brunner’s Random-
Forest model, which was trained on her own corpus
(in 10-fold cross-validation). It looks as though the
FI characteristics learned by our model are valid
for more than one genre and time period. The error
analysis for the Brunner corpus showed the same
tendencies as for the dime novel corpus.

6 Conclusion and outlook

We presented our deep learning model for FI and
evaluated it on two very different corpora with si-
milar results. Though the f1 scores are only in
the 0.45 to 0.5 range and there are problems, espe-
cially with respect to recall, they clearly outperform
a rule-base detection of FI as well as a Random-
Forest approach. Considering that trained human
annotators only achieved an f1 score of 0.7 (fleiss’
kappa 0.66), the results are promising. We also
showed that the presence of quotation marks for di-
rect representation has a strong effect on precision.

We will continue trying to improve our model.
One focus is on training data: Apart from simply
adding more data, we plan to add specifically more
FI cases without clear surface markers in order to
fix our recall problem. We also consider removing
long passages without detected FI from our cur-
rent training data, as due to the semi-automated
annotation process those could easily contain valid
FI. The second focus is on testing other leading
language embeddings for this task, such as BERT
(Devlin et al., 2018).
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Representing document-level semantics of biomedical literature using 
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Abstract 
We present two novel tasks aimed at captur-

ing document-level semantics, i.e., high-

level topical or thematic content, of bio-

medical scientific publications.  We use 

these tasks to evaluate whether word and 

sequence embedding models pre-trained on 

biomedical literature can be used to derive 

meaningful document-level semantic rep-

resentations for these publications.  We 

evaluate approaches from two broad cate-

gories:  (1) lexical pooling, or vectorizing 

documents purely based on aggregation of 

lexical items, which includes the NCBI’s 

BioWordVec model and Tf-idf-based vec-

torizations, both with and without word 

pre-filtering based on biomedical ontolo-

gies, (2) sequence embedding, which in-

cludes the NCBI’s BioSentVec model and 

BioBERT.  For both of our tasks, lexical 

pooling outperformed sequence embed-

ding, and the best overall method was mean 

pooling of BioWordVec word embeddings.  

We also include baselines trained on non-

biomedical English to show that training on 

biomedical literature is warranted.  The 

methods discussed here have potential ap-

plications for clustering, comparing, ana-

lyzing and recommending scientific litera-

ture in the biomedical domain. 

1 Background 

The last several years of NLP research have seen a 

number of breakthroughs leveraging the concept of 

transfer learning (Pan & Yang 2010), particularly 

in the form of pre-trained embedding models.  Such 

models provide low-dimensional vectorized repre-

sentations of text which are informed by large cor-

pora but can be applied to small-data NLP tasks.  

Example architectures include, for static word em-

beddings, word2vec/skip-grams (Mikolov et al. 

2013), GloVe (Pennington et al. 2014) and fasttext 

(Bojanowski et al. 2017), for sentence and para-

graph embeddings, doc2vec (Le & Mikolov 2014) 

and sent2vec (Pagliardini et al. 2018), and for con-

text-sensitive word and sequence embeddings, 

ULM-Fit (Howard & Ruder 2018) and BERT 

(Devlin et al. 2018), the latter adapting the trans-

former architecture of Vaswani et al. (2017).   

These models have found use within the bio-

medical domain, particularly for processing scien-

tific literature, where the NCBI’s PubMed and 

MedLine databases provide a large, freely availa-

ble data source for model training.  Most recently, 

the NCBI has released two pre-trained embedding 

models, both trained on millions of biomedical ab-

stracts and clinical notes (Chen et al. 2018):  (1) 

BioWordVec, a static word embedding model 

based on fasttext, which uses character-level infor-

mation to enhance word embeddings, particularly 

those of rare words, and (2) BioSentVec, a sentence 
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embedding model based on sent2vec, which learns 

to embed words and n-grams and average them to 

create a single sentence embedding, optimized on 

the task of predicting missing words. 

Lee et al. (2019) have fine-tuned the base BERT 

model on millions of biomedical texts, including 

those from MedLine.  This model, dubbed Bi-

oBERT, can also serve as both a contextual word 

embedding model and a document embedding 

model, if one pools the penultimate layer of trans-

former outputs (Xiao 2018). 

Going beyond end-to-end embedding models, 

we may also incorporate BioNLP’s long tradition 

of utilizing curated biomedical vocabularies and 

ontologies to extract insights from literature via 

text mining (see Fleuren & Alkema 2015 for an 

overview).  In our case, we use ontologies to refine 

some models by giving higher weight to biomedi-

cally relevant terms in the text. 

While great progress has been made in the eval-

uation of biomedical word embeddings (see e.g. 

Chiu et al. 2016; Wang et al. 2018), these evalua-

tions have been aimed, naturally, at word- and 

phrase-level semantics, focusing on either word 

similarity or downstream tasks which do not re-

quire good representations of the overall thematic 

or topical content of each document.  Moreover, in-

trinsic evaluations of embedding quality tend to 

rely on subjective scoring or ranking, where the as-

sumptions about the semantic space into which the 

documents are embedded are unclear. 

2 Overview 

The aim of this paper is to compare different meth-

ods for using pre-trained models to created embed-

ded representations of scientific publications from 

the MedLine database, and to evaluate their ability 

to capture document-level semantics in a useful 

way.  To this end, we introduce two tasks that lev-

erage document-level semantics:  prediction of ac-

ademic departments from MedLine titles/abstracts, 

and pairwise correlation of model-derived docu-

ment similarity (measured as cosine similarity of 

the document embeddings) with document similar-

ity derived from gold-standard Medical Subject 

Headings (so-called MeSH terms).  On these tasks 

we compare methods derived from the Bio-

WordVec, BioSentVec and BioBERT models, as 

 
1 Scibite’s TERMite platform was used to apply the 

ontologies, and the spaCy dependency parser was 

used to extract the noun phrases. 

well as n-gram Tf-idf vectorization and two em-

bedding models pre-trained on general English.  

For the BioWordVec and Tf-idf methods we also 

evaluate the addition of biomedical ontologies to 

pre-select only words with biomedical relevance. 

Having high-quality embedded document rep-

resentations has a host of potential applications, 

both in the biomedical domain and in similar do-

mains, including efficient document clustering, 

similarity scoring and the construction of 

knowledge graphs for easier discovery of scientific 

literature. 

3 Vectorization Methods 

The goal of each method is to produce a single vec-

torized representation of a MedLine document 

(here taken to be title + abstract text) which can be 

used to (a) determine similarity of two documents, 

and (b) serve as a featurization technique for ma-

chine learning models on small-data downstream 

tasks.  To this end, we compare a number of meth-

ods belonging to two broad categories.  The first is 

lexical pooling – documents are vectorized in a 

“bag of words” manner, by pooling vectorized lex-

ical items.  The lexical pooling methods tested are: 

 

• BioWordVec pooling:  for each word in the 

document text, obtain the BioWordVec embed-

ding, then average pool all word embeddings 

to obtain a single document embedding 

• BioWordVec+:  BioWordVec pooling with 

word pre-filtering based on noun phrase de-

pendency parsing and biomedical vocabularies 

(see Fig.1):  pre-process the document text by 

extracting likely entities and biomedically rel-

evant terms, and then pool only these word em-

beddings to create the document embedding.  

The pre-processing steps are as follows:1 

1. Using established biomedical ontologies such 

as MedDRA and ChEMBL, extract all the 

phrases from the document which refer to con-

cepts in these ontologies as well as the pre-

ferred names for any such concepts 

2. Using a pre-trained English dependency par-

ser, identify and extract all of the noun phrases 

in the document 
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3. Concatenate the ontology phrases and concept 

names with the extracted noun phrases to cre-

ate the input for vectorization 

 

 

 

 
Figure 1:  Illustration of BioWordVec pooling with 

entity extraction, one of the document vectoriza-

tion methods we assess. 

 

• High-dimensional Tf-idf vectorization of word 

and bigram tokens2 

• Tf-idf+:  Tf-idf with word pre-filtering based 

on noun phrase dependency parsing and bio-

medical vocabularies 

 

As a non-biomedical comparison we pool fasttext 

embeddings pre-trained on Wikipedia and Com-

mon Crawl. 

The second category is sequence embedding, 

where words and/or sequences or words are em-

bedded in context: 

• BioSentVec sentence pooling:  pass each sen-

tence in the document to BioSentVec, then av-

erage pool the resulting embeddings3 

• BioBERT:  pool transformer outputs from the 

penultimate layer of Lee et al. (2019)’s fine-

tuning of BERT on biomedical literature 

 

As a non-biomedical comparison we pool the pe-

nultimate layer of BERT-base. 

4 Tasks and Data 

For quantifying document semantics, the ideal 

embedding is one where the vector space repre-

sents a conceptual or thematic space that is an-

chored to identifiable concepts and topics in the rel-

evant domains.  That is, we want documents with 

 
2In our initial tests we found that including bigrams 

slightly outperformed unigrams only across the board, 

and thus we only report these numbers. 

similar embeddings to lie at similar points in a real-

world conceptual space.  Here we focus on two ex-

amples of such spaces: (1) MeSH terms (which in-

clude diseases, drugs, chemicals and many general 

topics and themes), and (2) at a coarser level of 

granularity, academic disciplines (e.g. cardiology, 

psychiatry). 

MeSH headings provide a human-curated gold 

standard for medical publication semantics.  Sev-

eral approaches such as DeepMeSH (Peng et al. 

2016) have been employed to try to solve the prob-

lem of automated MeSH indexing – many scien-

tific articles lack MeSH annotations, either because 

they are not available on MedLine, or because they 

are too new to have been annotated.  Rather than 

try to predict MeSH terms individually, we are us-

ing them as a gold-standard evaluation metric for 

our embedding methods, aimed at determining 

how well the vector space maps onto a known con-

ceptual space in this domain. 

To evaluate how well our document representa-

tions map onto the MeSH space, we vectorize the 

MeSH terms associated with a corpus of docu-

ments using inverse document frequency to penal-

ize ubiquitous, less informative terms.  Then, for 

random pairs of documents from that corpus, we 

correlate two metrics: (1) the cosine similarity of 

the MeSH vectors, and (2) the cosine similarity of 

our text-based vectors.  For our corpus we ran-

domly selected 10,000 pairs of documents (title + 

abstract) from MedLine.  The intuition behind this 

intrinsic assessment is that the greater the correla-

tion between the two similarity metrics being com-

pared, the greater the extent to which those vector-

izations encode the same conceptual space. 

For our other task, we evaluate how well the 

methods do as text featurization methods for the 

task of learning to classify academic disciplines 

from document text.  We have constructed a data 

set of over 2,000 recent faculty publications from 

the Zucker School of Medicine at Hofstra Univer-

sity, freely available at http://academicworks.med-

icine.hofstra.edu, along with the label of the depart-

ment from which the publication originated.  The 

department labels (e.g. cardiology, dermatology, 

neurology – 36 in all) serve as a proxy for academic 

3 Being based on sent2vec, BioSentVec is trained to 

embed sentences, and therefore performs slightly bet-

ter when sentences are pooled, compared to when the 

entire title + abstract are embedded directly. 
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discipline, a very coarse-grained measure of what 

the documents are about.  The driving intuition is 

that the document embedding method that suc-

ceeds most in capturing document-level topical in-

formation should be better at separating out these 

classes.  Each vectorization method serves as input 

to a number of classification models optimized on 

this task.  The data set is relatively small, and thus 

the utility of transfer learning comes into play – we 

expect pre-trained models to succeed insofar as 

they add knowledge obtained from a much larger 

corpus.  Moreover, if the densely embedded feature 

vectors succeed, they do so with much greater com-

putational efficiency than Tf-idf, requiring learning 

from only a few hundred features, rather than over 

100,000.4 

 

 
Figure 2:  Example documents (left) and labels 

(right) from the Hofstra dataset. 

5 Results 

For the department prediction task, a number of 

classification layer architectures were tested using 

 
4 We plan to make both of our data sets available to 

the public.  For questions about access, please contact 

jon.stevens@abbvie.com 

each of the five document vectorization techniques 

outlined above, of which the best performing mod-

els – linear support vector classifier (Tang 2013), 

multiclass logistic regression and linear discrimi-

nant analysis – are reported.  Hyperparameters 

were optimized separately for each model and in-

put type using random search. 

The results are shown in Table 1.  We see that the 

lexical pooling methods generally outperform the 

sequence embedding methods, with the best results 

coming from a linear SVC on Tf-idf+ document 

vectors and linear discriminant analysis on Bio-

WordVec+ document vectors.  The non-biomedical 

fasttext model does not perform as well as Bio-

WordVec, but surprisingly, BERT-base does out-

perform BioBERT in two of three cases. 

Results of the MeSH correlation are given in Ta-

ble 2.  Here BioWordVec is the “winner”, i.e., these 

results suggest that these are the embeddings that 

best map onto the semantic space carved out by the 

expert-curated MeSH vocabulary.  In this experi-

ment, the ontology-based pre-filtering only intro-

duced an advantage for the Tf-idf vectorizations.  

All correlations were statistically significant. 

6 Discussion 

Of the methods we compared, average pooling of 

biomedically trained word embeddings seems best 

suited to capture the document-level semantics of 

biomedical documents.  BioWordVec+ performs 

similarly on the department classification task to its 

sparse Tf-idf counterpart, which performs surpris-

ingly well and better than all the others.  At the 

 
Table 1:  Results on department classification task (weighted F1). 

 

 

 
Table 2:  MeSH correlation results (Spearman’s ρ) 

TF-IDF TF-IDF+ BioWordVec BioWordVec+ BioSentVec BioBERT fasttext+ BERT-base

Linear Discriminant 
Analysis 0.26 0.32 0.54 0.56 0.39 0.39 0.47 0.38

Linear SVC 0.55 0.56 0.52 0.54 0.46 0.33 0.41 0.42

Multiclass Logistic 
Regression 0.55 0.55 0.49 0.54 0.49 0.34 0.37 0.42

TF-IDF TF-IDF+ BioWordVec BioWordVec+ BioSentVec BioBERT fasttext+ BERT-base

0.04 0.20 0.34 0.31 0.27 0.07 0.10 0.27
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same time, BioWordVec pooling yields the closest 

approximation to MeSH-based document similar-

ity.  The broader implication of this is that mean-

ingful embedded representations of biomedical ab-

stracts can be obtained by a simple averaging of 

word vectors, and that in some cases, improvement 

can be found by using biomedical ontologies and 

noun phrase parsing filter out irrelevant words.  

Our results also reinforce the notion that domain 

matters – pooling fasttext vectors trained on large 

amounts of non-biomedical English does not pro-

duce as good a result.  Document embeddings for 

scientific literature have numerous practical appli-

cations in the biomedical domain, because they are 

easily obtained, information-dense representations 

that can be stored in a database, quickly retrieved, 

and used in document classification models, search 

and text mining systems, and article recommender 

systems.  Some mysteries remain to be addressed 

by future work, such as the underperformance of 

BioBERT, in particular when compared to the 

BERT-base model. 
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Abstract

In this paper, we present three general-
purpose neural network models for sen-
tence boundary detection. We report on
a series of experiments with long short-
term memory (LSTM), bidirectional long
short-term memory (BiLSTM) and con-
volutional neural network (CNN) for sen-
tence boundary detection. We show that
these neural networks architectures outper-
form the popular framework of OpenNLP,
which is based on a maximum entropy
model. Hereby, we achieve state-of-the-art
results both on multi-lingual benchmarks
for 12 different languages and on a zero-
shot scenario, thus concluding that our
trained models can be used for building
a robust, language-independent sentence
boundary detection system.

1 Introduction

The task of sentence boundary detection is to iden-
tify sentences within a text. Many natural language
processing (NLP) tasks take a sentence as an in-
put unit, such as part-of-speech tagging (Manning,
2011), dependency parsing (Yu and Vu, 2017),
named entity recognition or machine translation.
Thus, this foundational task stands at the begin-
ning of various NLP processes and decisively de-
termines their downstream-performance.

Sentence boundary detection is a nontrivial
task, because of the ambiguity of the period sign
“.”, which has several functions (Grefenstette and
Tapanainen, 1994), e.g.:

• End of sentence
• Abbreviation
• Acronyms and initialism
• Mathematical numbers

A sentence boundary detection system has to re-
solve the use of ambiguous punctuation characters

to determine if the punctuation character is a true
end-of-sentence marker1.

In the present work, we train different deep ar-
chitectures of neural networks, such as long short-
term memory (LSTM), bidirectional long short-
term memory (BiLSTM) and convolutional neu-
ral network (CNN), and compare the results with
OpenNLP2. OpenNLP is a state-of-the-art tool and
uses a maximum entropy model for sentence bound-
ary detection. To test the robustness of our models,
we use the Europarl corpus for German and En-
glish, the SETimes corpus for nine different Balkan
languages, and the Leipzig corpus (Goldhahn et
al., 2012) for one Semitic language, namely Ara-
bic. This makes our model language-independent,
in which further languages can be used, given the
associated training resources are available.

Additionally, we use a zero-shot scenario to test
our model on unseen abbreviations. We show that
our models outperform OpenNLP both for each
language and on the zero-shot learning task. There-
fore, we conclude that our trained models can be
used for building a robust, language-independent
state-of-the-art sentence boundary detection sys-
tem.

The remainder of the paper is organized as fol-
lows: Section 2 reviews related work. Section 3
presents a sketch of the underlying neural models
and the choice of hyperparameters. Section 4 de-
scribes the text data and its preprocessing for our
twofold experimental setup of a) mono-lingual, and
b) zero-shot training. Section 5 reports our results,
and, finally, Section 6 discusses our results and
draws a conclusion.

2 Related Work

Various approaches have been employed to achieve
sentence boundary detection in different languages.

1In this paper, we define “?!:;.” as potential end-of sentence
markers.

2OpenNLP 1.8.4: https://opennlp.apache.org
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Recent research in sentence boundary detection
focus on machine learning techniques, such as hid-
den Markov models (Mikheev, 2002), maximum
entropy (Reynar and Ratnaparkhi, 1997), condi-
tional random fields (Tomanek et al., 2007), de-
cision tree (Wong et al., 2014) and neural net-
works (Palmer and Hearst, 1997). Kiss and Strunk
(2006) use an unsupervised sentence detection sys-
tem called Punkt, which does not depend on any
additional resources. The system use collocation
information as evidence from unannotated corpora
to detect e.g. abbreviations or ordinal numbers.

The sentence boundary detection task can be
treated as a classification problem. Our work is
similar to the SATZ system, proposed by Palmer
and Hearst (1997), which uses a fully-connected
feed-forward neural network. The SATZ system
disambiguates a punctuation mark given a context
of k surrounding words. This is different to our
approach, as we use a char-based context window
instead of a word-based context window.

Further high-performers such as Elephant
(Evang et al., 2013) or Cutter (Graën et al., 2018)
follow a sequence labeling approach. However,
they require a prior language-dependent tokeniza-
tion of the input text. In contrast to these works,
we construct an end-to-end approach which does
not depend on the performance of any tokenization
method, thus making our Deep End-Of-Sentence
detector (Deep-EOS) more robust to multi-lingual
settings.

3 Model

We use three different architectures of neural net-
works: long short-term memory (LSTM), bidirec-
tional long short-term memory (BiLSTM) and con-
volutional neural network (CNN). All three models
capture information at the character level. Our mod-
els disambiguate potential end-of-sentence mark-
ers followed by a whitespace or line break given
a context of k surrounding characters. The poten-
tial end-of-sentence marker is also included in the
context window. Table 1 shows an example of a
sentence and its extracted contexts: left context,
middle context and right context. We also include
the whitespace or line break after a potential end-
of-sentence marker.

LSTM We use a standard LSTM (Hochreiter and
Schmidhuber, 1997; Gers et al., 2000) network
with an embedding size of 128. The number of
hidden states is 256. We apply dropout with proba-

Input sentence Left Middle Right
I go to Mr. Pete Tong to Mr . Pete

Table 1: Example for input sentence and extracted
context of window size 5.

bility of 0.2 after the hidden layer during training.
We apply a sigmoid non-linearity before the predic-
tion layer.

BiLSTM Our bidirectional LSTM network uses
an embedding size of 128 and 256 hidden states.
We apply dropout with a probability of 0.2 after
the hidden layer during training, and we apply a
sigmoid non-linearity before the prediction layer.

CNN For the convolutional neural network we
use a 1D convolution layer with 6 filters and a
stride size of 1 (Waibel et al., 1989). The output of
the convolution filter is fed through a global max
pooling layer and the pooling output is concate-
nated to represent the context. We apply one 250-
dimensional hidden layer with ReLU non-linearity
before the prediction layer. We apply dropout with
a probability of 0.2 during training.

Other Hyperparameters Our proposed
character-based model disambiguates a punc-
tuation mark given a context of k surrounding
characters. In our experiments we found that a
context size of 5 surrounding characters gives the
best results. We found that it is very important
to include the end-of-sentence marker in the
context, as this increases the F1-score of 2%.
All models are trained with averaged stochastic
gradient descent with a learning rate of 0.001 and
mini-batch size of 32. We use Adam for first-order
gradient-based optimization. We use binary
cross-entropy as loss function. We do not tune
hyperparameters for each language. Instead, we
tune hyperparameters for one language (English)
and use them across languages. Table 2 shows the
number of trainable parameters for each model.

Model # Parameters
LSTM 420,097
BiLSTM 814,593
CNN 33,751

Table 2: Number of trainable parameters for LSTM,
bidirectional LSTM and CNN.
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4 Experimental Setup

Data Similar to Wong et al. (2014) we use the Eu-
roparl corpus (Koehn, 2005) for our experiments.
The Europarl parallel corpus is extracted from the
proceedings of the European Parliament and is orig-
inally created for the research of statistical machine
translation systems. We only use German and En-
glish from Europarl. Wong et al. (2014) does
not mention that the Europarl corpus is not fully
sentence-segmented. The Europarl corpus has a
one-sentence per line data format. Unfortunately,
in some cases one or more sentences appear in
a line. Thus, we define the Europarl corpus as
“quasi”-sentence segmented corpus. We use the
SETimes corpus (Tyers and Alperen, 2010) as a
second corpus for our experiments. The SETimes
corpus is based on the content published on the SE-
Times.com news portal and contains parallel texts
in ten languages. Aside from English the languages
contained in the SETimes corpus fall into several
linguistic groups: Turkic (Turkish), Slavic (Bul-
garian, Croatian, Macedonian and Serbian), Hel-
lenic (Greek), Romance (Romanian) and Albanic
(Albanian). The SETimes corpus is also a “quasi”-
sentence segmented corpus. For our experiments
we use all the mentioned languages except English,
as we use an English corpus from Europarl. We
do not use any additional data like abbreviation
lists. We use the Leipzig corpus as the third and
final corpus to include the non-European language
Arabic into the scope of our investigations. For a
zero-shot scenario we extracted 80 German abbre-
viations including their context in a sentence from
Wikipedia. These abbreviations do not exist in the
German Europarl corpus.

Preprocessing All corpora are not tokenized.
Text tokenization (or, equivalently, segmentation)
is highly non-trivial for many languages (Schütze,
2017). It is problematic even for English as word
tokenizers are either manually designed or trained.
For our proposed sentence boundary detection sys-
tem we use a similar idea from Lee et al. (2017).
They use a character-based approach without ex-
plicit segmentation for neural machine translation.
We also use a character-based context window, so
no explicit segmentation of input text is necessary.

For all corpora we use the following preprocess-
ing steps: (a) we remove duplicate sentences, (b)
we extract only sentences with ends with a poten-
tial end-of-sentence marker. Each text collection

Language # Train # Dev # Test
German 1,476,653 184,580 184,580
English 1,474,819 184,352 184,351
Arabic 1,647,906 274,737 276,172
Bulgarian 148,919 18,615 18,614
Bosnian 97,080 12,135 12,134
Greek 159,000 19,875 19,874
Croatian 143,817 17,977 17,976
Macedonian 144,631 18,079 18,078
Romanian 148,924 18,615 18,615
Albanian 159,323 19,915 19,915
Serbian 158,507 19,813 19,812
Turkish 144,585 18,073 18,072

Table 3: Number of sentences in Europarl, SE-
Times and Leipzig corpus for each language for
training, development and test set.

for a language is split into train, dev and test sets.
Table 3 shows a detailed summary of the training,
development and test sets used for each language.

Tasks In the first task we train our different mod-
els on the Europarl, SETimes and Leipzig corpus.
The second task is to perform zero-shot sentence
boundary detection. For the zero-shot scenario the
trained models for the German Europarl corpus are
used.

Setup We evaluate our different models on our
three corpora. We measure F1-score for each
model. As baseline to our models, we use
OpenNLP. OpenNLP uses a maximum entropy
model. OpenNLP comes with pretrained models
for German and English, but to ensure a fair com-
parison between our models and OpenNLP, we
do not use them. Instead, we train a model from
scratch for each language with the recommended
hyperparameters from the documentation. For the
zero-shot scenario we use our trained LSTM, BiL-
STM and CNN models on the German Europarl
corpus and the trained model with OpenNLP to
perform a zero-shot sentence boundary detection
on the crawled abbreviations.

5 Results

We train a maximum of 10 epochs for each model.
For the German and English corpus (Europarl)
the time per epoch is 55 minutes for the BiLSTM
model, 28 minutes for the LSTM model and 5 min-
utes for the CNN model. For each language from
the SETimes corpus the time per epoch is 5 minutes
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Lang. LSTM BiLSTM CNN OP
German 97.59 97.59 97.50 97.38
English 98.61 98.62 98.55 98.40
Arabic 99.86 99.83 81.97 99.76
Bulg. 99.22 99.27 99.22 98.87
Bosn. 99.58 99.52 99.53 99.25
Greek 99.67 99.70 99.66 99.25
Croat. 99.46 99.44 99.44 99.07
Maced. 98.04 98.09 97.94 97.86
Roman. 99.05 99.05 99.06 98.89
Alban. 99.52 99.51 99.47 99.34
Serbian 98.72 98.76 98.73 98.32
Turkish 98.56 98.58 98.54 98.08

Table 4: Results on test set for Europarl, SETimes
and Leipzig corpus against OpenNLP (OP). The
highest F1-score for each task on each language is
marked in bold face.

for the Bi-LSMT model, 3 minutes for the LSTM
model and 20 seconds for the CNN model. Timings
are performed on a server machine with a single
Nvidia Tesla K20Xm and Intel Xeon E5-2630.

The results on test set on the SETimes corpus are
shown in Table 4. For each language the best neural
network model outperforms OpenNLP. On average,
the best neural network model is 0.38% better than
OpenNLP. The worst neural network model also
outperforms OpenNLP for each language. On av-
erage, the worst neural network model is 0.33%
better than OpenNLP. In half of the cases the bi-
directional LSTM model is the best model. In
almost all cases the CNN model performs worse
than the LSTM and bi-directional LSTM model,
but it still achieves better results than the OpenNLP
model. This suggests that the CNN model still
needs more hyperparameter tuning.

The first two rows in Table 4 show the results on
test set on the Europarl corpus. For both German
and English the best neural network model outper-
forms OpenNLP. The CNN model performs worse
than the LSTM and bi-directional LSTM model
but still achieves better results than OpenNLP.
The bi-directional LSTM model is the best model
and achieves the best results for German and En-
glish. On average, the best neural network model
is 0.22% better than OpenNLP, whereas the worst
neural network model is still 0.14% better than
OpenNLP.

Table 5 shows the results for the zero-shot sce-
nario. The CNN model outperforms OpenNLP by

Model Precision Recall F1
LSTM 56.62 96.25 71.29
BiLSTM 60.00 97.50 74.29
CNN 61.90 97.50 75.12
OpenNLP 54.60 96.25 69.68

Table 5: Results on the zero-shot scenario for un-
seen German abbreviations.

a large margin and is 6% better than OpenNLP.
The CNN model also outperforms all other neu-
ral network models. Interestingly, the CNN model
performs better in a zero-shot scenario than in the
previous tasks (Europarl and SETimes). That sug-
gests that the CNN model generalizes better than
LSTM or BiLSTM for unseen abbreviations. The
worst neural network model (LSTM model) still
performs 1,6% better than OpenNLP.

6 Discussion & Conclusion

In this paper, we propose a general-purpose sys-
tem for sentence boundary detection using different
architectures of neural networks. We use the Eu-
roparl, SETimes and Leipzig corpus and compare
our proposed models with OpenNLP. We achieve
state-of-the-art results.

The results on the three corpora show that the
trained neural network models perform well for
all languages. We tune hyperparameters just for
one language (English) and share these hyperpa-
rameter settings across other languages. This sug-
gests that the proposed neural network models can
adopt other languages as well, which makes them
language-independent. Our character-based con-
text approach requires no explicit text segmentation
and is robust against unknown words.

In a zero-shot scenario, in which no manifesta-
tion of the test abbreviations is observed during
training, our system is also robust against unseen
abbreviations. It shows that our proposed neural
network models can detect abbreviations “on the
fly”, after the model has already been trained.

The fact that our proposed neural network mod-
els perform well on different languages and on a
zero-shot scenario leads us to the conclusion that
Deep-EOS is a general-purpose system3. Our sys-
tem can be used for a wide variety of practical use
cases, e.g. in the scope of the BIOfid project where
unstructured OCR text data on biodiversity has to

3https://github.com/stefan-it/deep-eos
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be processed for the task of biological Named Enti-
tiy Recognition (Ahmed and Mehler, 2018; Ahmed
et al., 2019).

Acknowledgments

We would like to thank the Leibniz-Rechenzentrum
der Bayerischen Akademie der Wissenschaften
(LRZ) for giving us access to the NVIDIA DGX-1
supercomputer. Special thanks go to Prof. R. V.
Zicari and Prof. A. Mehler for their constructive
comments on the final manuscript, to Prof. J. Leid-
ner for his remarks on the related work, and last but
not least to Prof. U. Meyer and Goethe Research
Academy for Early Career Researchers (GRADE)
for funding the publication process of this paper.

References
Sajawel Ahmed and Alexander Mehler. 2018.

Resource-Size matters: Improving Neural Named
Entity Recognition with Optimized Large Corpora.
In Proceedings of the 17th IEEE International
Conference on Machine Learning and Applications
(ICMLA).

Sajawel Ahmed, Manuel Stoeckel, Christine Driller,
Adrian Pachzelt, and Alexander Mehler. 2019.
BIOfid Dataset: Publishing a German Gold Standard
for Named Entity Recognition in Historical Biodi-
versity Literature. In Proceedings of the 23rd Con-
ference on Computational Natural Language Learn-
ing (CoNLL). Association for Computational Lin-
guistics. accepted.

Kilian Evang, Valerio Basile, Grzegorz Chrupała, and
Johan Bos. 2013. Elephant: Sequence labeling for
word and sentence segmentation. In EMNLP 2013.

Felix A. Gers, Jürgen A. Schmidhuber, and Fred A.
Cummins. 2000. Learning to Forget: Continual Pre-
diction with LSTM. Neural Comput., 12(10):2451–
2471, October.

Dirk Goldhahn, Thomas Eckart, and Uwe Quasthoff.
2012. Building large monolingual dictionaries at
the leipzig corpora collection: From 100 to 200 lan-
guages. In LREC.
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Abstract

In this study, by using a visual world
paradigm, we investigate to what extent
predictive language processing is affected
by the visual complexity of the scene.
The visual complexity is manipulated by
adding irrelevant background objects or ir-
relevant characters (w.r.t. the spoken ut-
terance) to the scene. The results of the
eye-tracking experiment, that point out sig-
nificant effects of visual complexity on
situated-language processing, provide ba-
sic insights for designing cross-modal lan-
guage understanding systems.

Keywords: incremental / predictive lan-
guage processing; visual complexity

1 Predictive Language Processing

A large body of empirical evidence in psycholin-
guistics indicates that the interaction between lin-
guistic and visual modalities plays a crucial role in
predicting what will be revealed next in the unfold-
ing sentence (Altmann and Kamide, 1999; Knoe-
ferle, 2005; Tanenhaus et al., 1995).

Altmann and Kamide (1999)’s study on struc-
tural prediction has documented that listeners are
able to predict complements of a verb based on its
selectional constraints and immediately begin in-
cremental parsing operations. For example, when
people hear the verb “break”, their attention is di-
rected towards only breakable objects in the scene.

Focusing on prosodic cues and visual saliency,
Coco and Keller’s research (2015) goes deeper into
the understanding of which kinds of information
play role on different comprehension processes re-
garding situated predictive language processing.
This study contains three systematic manipulations;
namely (i) only the visual saliency, (ii) only the lin-
guistic saliency and (iii) both of them together. The
results point out that visual saliency narrows down

the visual search space towards a target, but does
not have a direct role on linguistic ambiguity res-
olution, while different intonational breaks favor
one interpretation over the other. On the other hand
no statistical interaction effect between the two
modalities has been found although they comple-
ment each other and both contribute to the overall
understanding of the sentence by having different
roles.

Numerous studies on structural prediction have
only been carried out on relatively simple visual
and linguistic settings where object-action rela-
tions could be predicted relatively easily, except
several studies (Ferreira et al., 2013; Coco and
Keller, 2015). Therefore, to what extent this multi-
modal interaction occurs still needs extensive sys-
tematic investigation. As reported by Ferreira et
al. (2013), when the visual context is complex,
subjects have difficulties using visual information
to narrow down their hypotheses about possible in-
terpretations. Depending on the complexity of the
visual environment or task, humans might choose
a more passive strategy (such as waiting to have
complete information about the entities referred to
in the utterance) instead of anticipating upcoming
information, and humans have such a preference
for the cases where there is a high risk of faulty
prediction.

Our project focuses on studying underlying
mechanisms of human cross-modal language pro-
cessing of incrementally revealed utterances with
accompanying visual scenes, with the aim of using
the empirically gained insights to develop a fluent
and efficient cross-modal and incremental parsing
solutions. Better understanding of human percep-
tual and comprehension processes is one of the
crucial factors in the realization of dynamic human-
computer interaction. This papers addresses the
empirical aspects of human language processing
particularly focusing on the influence of different
irrelevant visual components on the predictive lan-
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guage processing.

2 Experiment

One of the well-investigated phenomena regard-
ing the interplay between language and vision is
the garden-path effect, which occurs when the
prediction made for the upcoming sentence part
does not match with the real situation, requiring
re-analysis of the interpretation during online lan-
guage comprehension. Subject-object ambigui-
ties in German elicit garden-path effects due to
sometimes ambiguous case marking. This phe-
nomenon has already been observed by Knoeferle
et al. (2005). In their study, two different sen-
tence patterns are compared; unmarked word order
(Subjectambiguous Verb Objectaccusative) and marked
word order (Objectambiguous Verb Subjectnominative).
Each sentence addresses only one action between
two characters and is accompanied by a scene that
depicts two actions and three characters (one am-
biguous AGENT/PATIENT character, one PATIENT,
and one AGENT). If the preference-driven initial
role assignment for the first noun phrase (before the
verb) creates a conflict with the late assignment for
the second one (following the verb), a reanalysis
becomes necessary. Eye-tracking results show that
this happens only in case of the marked word order.
More interestingly, visual attention already starts
to move towards the target character before the as-
sociated post-verbal noun phrase actually becomes
available, i.e. while the verb is still being spoken.
This clearly signals that reference resolution for the
second noun phrase is not based on the observation
of the phrase itself but on its prediction induced by
the verb. To find out whether this effect also occurs
in more complex visual environments, we compiled
a set of four different visual conditions accompa-
nied by two different versions of AGENT/PATIENT

order following the same sentence patterns.

[1] Unmarked word order (SVO):
Die Arbeiterin(f, nom) kostümiert mal eben
den jungen Mann(m, acc).
The worker just dresses up the young man.

[2] Marked word order (OVS):
Die Arbeiterin(f, acc) verköstigt mal eben
der Astronaut(m, nom).
The worker is just fed1 by the astronaut.

1The original German sentence is in active voice in OVS
word order.

The spoken sentences were recorded by a male
native speaker of German at a normal speech rate.
We avoided unequal intonational breaks that may
bias the interpretation.

The visual context differs from those of Knoe-
ferle et al. (2005) by a more realistic and com-
plex background. In particular, the pictures contain
more information than the sentences describe. We
manipulate the visual complexity in four different
conditions, see Figure 1. In the first condition (C1),
the scene contains three characters (one ambiguous
AGENT/PATIENT candidate, one for the PATIENT

role, and one for AGENT) as in the original study.
In the second condition (C2), more background ob-
jects are added, while in the third condition (C3) an
additional character is included. The distractor ob-
jects and the characters have no direct thematic re-
lation regarding the spoken sentence, therefore they
should not affect the fixations on the target object
particularly in the unmarked sentences. However,
the additional character is acting on the ambigu-
ous AGENT/PATIENT character, thus increasing the
complexity of referential selection. Therefore, we
hypothesize that having more background objects
but no additional character (C2) should distract the
subjects from the target not as much as condition
(C3) does. Finally, C4 is a combination of C2 and
C3.

In order to ensure the compatibility of the verbs
and nouns with their depiction in the scenes, the
scenes (with background objects and four charac-
ters) were shown to 15 participants, 4 of 40 stimuli
were excluded from the stimuli set, since at least
one of the actions7nouns was found not easily de-
pictable.

27 university students participated in the experi-
ment. The experiment was conducted in German by
native speakers. Using the visual-world paradigm,
a total of 32 visual displays with accompanying
spoken utterances were utilized. The stimuli were
displayed on an SR Eyelink 1000 Plus eye tracker
with a sampling rate of 1000 Hz. The 2D visual
scenes were created with the SketchUp Make Soft-
ware2 with a resolution of 1250 x 947px.

A visual scene is presented for 10 sec before the
onset of the spoken sentence. The preview gives a
comprehender time to encode the visual informa-
tion so visual attention will be free of recognizing
the objects during language processing. Then, the
spoken sentence is presented accompanying the vi-

2http://www.sketchup.com/ – retrieved on 10.09.2018
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Figure 1: Example stimuli in four different visual complexity conditions

sual stimulus. Participants are asked to examine the
scene carefully and attend the information given in
the audio. The order of stimuli is randomized for
each participant.

In this study, we focus only on the time course of
fixations on the target (either AGENT or PATIENT

depending on the word order) and on the competitor
characters after the onset of the verb until its off-
set. Due to varying word length, the time window
for a verb duration was normalized by stretching
each individual time series to the maximum verb
length observed and then reduced to 31 bins by
aggregating 5 bins to one. The time window is
shifted forward 200 ms in order to account for the
time required to initiate eye movement (Matin et
al., 1993). In total, fixation distributions of 858
trials (27 participant * 32 scenes) per character
were evaluated. The fixations were coded as bino-
mial w.r.t. whether the character is fixated or not.
Fixation parameter was transformed into empirical
logitbased on population-average estimates with
weightsfollowing the reasoning discussed in (Barr,
2008; Jaeger, 2008).

3 Results

All analyses were carried out in R version 3.5.1.
(Team, 2013) by utilizing Lmertest, Lme4 and

multcomp packages. Due to the expected curvi-
linear change over time, a higher-order polynomial
model was chosen (Mirman, 2016; Baayen et al.,
2008) to analyze the effects of word order, and
visual complexities over the course of unfolding
sentence. We start out with a ”base” model of fixa-
tion distribution over time with crossed-random
effects of items and subjects on all orthogonal
polynomial terms. Adding the visual complexity
parameter (Vis) significantly improved model fit
(χ2(3) = 182.75, p < .001), as well as the word
order parameter (Ling), (χ2(1) = 36.26, p < .001).
Finally, the full model with all interaction effects
of the fixed termsprovided the best fit compared to
previous models (χ2(15) = 498.78, p < .001).

As given in Table 1, the main effect of word
order is significant indicating that the fixation dis-
tribution in two word order conditions differs sig-
nificantly. There is also a significant effect of word
order on the linear term for both characters, indi-
cating that the slope of the fixation distribution is
steeper in the OVS compared to that in the SVO
order. Figure 2 shows that – when the sentence in
SVO order unfolds – the look on the target objects
increases, and the look on the competitor decreases
(blue lines). However, in the OVS order, an in-
crease is observed both on the target and competitor
characters (orange lines).
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(a) Target (b) Competitor

Figure 2: Time course of fixations on the target and competitor characters in two word order conditions

Target Competitor
Est. SE p Est. SE p

intercept−.19 .02 < .001* .27 .02 < .001*
linear .99 .08 < .001* .75 .09 < .001*
quadratic .15 .08 .07 −.61 .09 < .001*

Table 1: Estimated parameters for the word order
parameter on the target and competitor characters

Linear Quadratic
Contrasts Est. SE p Est. SE p

1 vs. 2 −.48 .06 < .001* −.51 .06 < 0.001*
1 vs. 3 −.34 .06 < .001* −.19 .06 < 0.001*
1 vs. 4 −.48 .06 < .001* −.25 .06 < 0.001*
2 vs. 3 −.15 .06 < .05* .32 .06 > .05
3 vs. 4 −.14 .06 < .05* −.06 .06 > 0.05

Table 2: Multiple comparisons on the target char-
acter regarding four visual complexity levels

As summarized in Table 2, the first three
contrasts on slope (linear term) and curvature
(quadratic term) of the fixation parameter over time
show that the slope of the C1 is always steeper with
significantly more fixations compared to the other
three complexities. Figure 3 shows that the look
on the target character starts around timestamp 21
(out of 31), directly after half of the verb has been
uttered. On the other hand, this reaction is sig-
nificantly slower for the other conditions. When
background objects are added (C2), less fixation is
observed on the target characters. The inclusion of
the 4th character C3 also causes a decrease of the
look on the target compared to the first condition.
The same pattern is observed between C1 and C4.

The difference between C2 and C3 indicates that
although the curvatures of the fixation distributions
display similar pattern (quadratic term is > 0.05),
the slope terms are significantly different indicating
that adding 4th character results in overall slower
increase on the fixation to the target compared to
adding background objects C2. Finally, 3rd and 4th
condition also show a difference only in the slope

Figure 3: Time course of fixations on the target
character for four visual complexity levels

term but not in the curvature.
Further analysis on the interaction between the

word order and the visual complexity parameters
indicated that while the fixation distributions for
the sentences in different word order conditions
significantly differed within the first (Estimate =
−0.133,SE = 0.013, p < 0.001) and the second
(Estimate =−0.062,SE = 0.012, p < 0.001) com-
plexity levels, , it, however, seems that this differ-
ence between the unmarked and marked sentence
forms starts to fade with the inclusion of additional
character (non-significant differences in SVO and
OVS fixations for the 3rd and 4th visual complexity
levels).

4 Discussion and Conclusion

The results replicate the findings previously re-
ported in the literature that states the participants
are garden-pathed when they hear a sentence in
a OVS order, in which the expected order of the
thematic roles are reversed (Knoeferle, 2005). This
is in line with the NVN strategy, which states there
is a tendency to assume that the first argument of a
sentence is a proto-agent and the second is a proto-
patient (Ferreira, 2003). Moreover, in OVS order
one can see a late increase on the target. This result
is also in line with the surprisal effect theory that
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states that less predictable items are fixated longer
(Levy, 2008; Hale, 2001). However, when we look
at the comparisons in more detail for each visual
complexity level separately, it seems that while
the difference between the unmarked and marked
sentences is preserved for the simple visual com-
plexity conditions, no clear sign of prediction of
the upcoming sentence part is observed when the
complexity is increased. Similar to the findings
by Coco and Keller (2015), this result implies that
visual complexity may not have direct role on the-
matic role assignment, however, it does definitely
have an effect on target identification.

Furthermore, our results also support an inter-
active processing architecture that claims visual
information influences the processing of syntactic
linguistic information (MacDonald and Seidenberg,
2006), in our case even when they are irrelevant
to sentence context. Regarding visual complexity,
although none of the manipulations directly has
an association with the entities mentioned in the
sentence, the results still reveal that the looks on
the target are affected by the complexity of the en-
vironment, probably due to visual search despite
given 10s preview. In the C1 condition, people look
at the target object more compared to other condi-
tions. The overall fixation rate decreases when the
complexity increases (also confirming that having
4th character distracts more compared to having
background objects).

Although our investigations into this area are
still ongoing, the results could be a useful aid for
developing models for cross-modal NLP that aim
to account for visual complexity. The most interest-
ing outcome for NLP implementation is to exhibit
the varying effect of different and irrelevant visual
objects on language processing. This highlights
the fact that while contributing visual information
into language processing, the effect of different vi-
sual components should be treated differently with
respect to not just their direct relevance but also
possible interference even though they do not have
a direct relation to the linguistic input.

In a further study, we aim to address how our
context-integrated parser reacts to those visual ma-
nipulations and whether thematic role assignments
are affected by irrelevant and varying visual com-
ponents.
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Abstract

Given that labeled data is expensive to ob-
tain in real-world scenarios, many semi-
supervised algorithms have explored the
task of exploitation of unlabeled data.
Traditional tri-training algorithm and tri-
training with disagreement have shown
promise in tasks where labeled data is lim-
ited. In this work, we introduce a new
paradigm for tri-training, mimicking the
real world teacher-student learning process.
We show that the adaptive teacher-student
thresholds used in the proposed method
provide more control over the learning pro-
cess with higher label quality. We perform
evaluation on SemEval sentiment analysis
task and provide comprehensive compar-
isons over experimental settings containing
varied labeled versus unlabeled data rates.
Experimental results show that our method
outperforms other strong semi-supervised
baselines, while requiring less number of
labeled training samples.

1 Introduction

Machine learning algorithms often require large
amount of labeled data for training. As collect-
ing labeled examples can be expensive, semi-
supervised learning has been proposed (Zhu, 2006).
Among the existing semi-supervised approaches,
self-training (Triguero et al., 2015), co-training
(Blum and Mitchell, 1998), and tri-training (Zhou
and Li, 2005) are the most notable ones. However,
they suffer from one major issue of the gradually
increased level of noise during the iterative label-
ing process. This problem can be attributed to two
factors: (1) static labeling threshold, and (2) inap-
propriate stopping criteria.

Many self-labeled algorithms iteratively enlarge
labeled training set with unlabeled instances whose

prediction confidence is larger than a static la-
beling threshold. Static labeling threshold pro-
duces a good classification performance only when
the proportion of correctly labeled instances re-
mains above a constant level. However, given the
continuously added noisy labels during the semi-
supervised process (Triguero et al., 2015), it is
unlikely that any fixed assignment of the threshold
will produce optimal classifications.

Besides, deciding when to stop the iterative in-
stance labeling process is also critical for the self-
labeled techniques. Existing stopping criteria in-
clude: setting a threshold on the number of labels
that the algorithm is willing to generate, or stop-
ping the labeling process when little to no accuracy
increase occurs in an iteration. Stopping criteria is
still an open issue, as too conservative or too liberal
stopping criteria may produce many mislabeled ex-
amples to the self-labeled process.

To solve the two challenges, we propose a new
tri-training-based method, called tri-training with
teacher-student paradigm. Specifically, in each iter-
ation, a double-teacher-single-student teaching rela-
tion is established based on predefined teacher and
student thresholds, where teachers teach the student
with generated proxy labels on the unlabelled data.
Along the teaching process, the teacher-student re-
lationship is continuously adjusted with adaptive
teacher and student thresholds. The teacher-student
relationship terminates on either running out of
teachable instances or when reaching a gradua-
tion point, where the student threshold equals the
teacher threshold.

We evaluate the tri-training with teacher-student
paradigm approach on the sentiment analysis task
of SemEval-2016 over various labeled-unlabeled
data ratios. The proposed method outperforms
many strong baselines in terms of gaining bet-
ter prediction performances while consuming less
number of unlabeled examples.
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2 Method

Assume we are given a set of unlabeled samples U
as well as a set of labeled samples L, where L�U .
The proposed method starts by training three inde-
pendent base classifiers mi, m j, mk on bootstrapped
sample subsets Si, S j, Sk respectively taken from
L. The aim of the bootstrap sampling is to increase
the diversity of base classifiers trained through the
labeled set. Next, for every sample x in U , each
of the trained models mi, m j, mk predicts a label
ci, c j, ck with corresponding prediction probability
pi(ci|x), p j(c j|x), pk(ck|x).

2.1 Teacher-Student Assignment

Instead of assigning x a majority voted label, as
implemented in the original tri-training (Zhou and
Li, 2005), here we model the learning task from a
teacher-student perspective. In each iteration of our
proposed approach, two classifiers (m j and mk) are
ascertained to be teachers if their prediction prob-
abilities p j(c j|x) and pk(ck|x) are both larger than
the teacher threshold τt . The other classifier mi is
then treated as student if its prediction probability
is less than the student threshold τs. An unlabeled
sample x in U will only be assigned a label after it
is identified as teachable. Teachable examples are
defined according to the function SelectTeachable-
Samples, as shown in Algorithm 2. The required
criteria are as follows: Firstly, the predicted labels
c j and ck from the two teachers m j and mk must
agree with each other. Second, both teachers’ pre-
diction confidences p j and pk must exceed τt and
at the same time, the student’s confidence pi must
be less than τs. This setting of using two teachers
ensures that bias in any of these models doesn’t
affect the quality of the information taught to the
student. It’s similar to the real-life teacher-student
learning process, where only qualified teachers can
teach students things that they are the most com-
fortable with. Here, it is important to note that the
teacher-student roles are rotated in each iteration,
i ∈ {1,2,3},( j,k 6= i), allowing each classifier to
learn from the other classifiers’ experiences, as mi

is further trained with the original labeled set L
along with the identified teachable samples Li.

2.2 Adaptive Thresholds

Another novel aspect that we adopt from real-world
teaching scenarios to the proposed method is the
continuously adjusted teacher-student relationship.
To be more specific, as a student learns from the

Algorithm 1 Teacher Student Tri-training
Require: L - set of labeled samples, U - set of unlabeled sam-

ples, mi, j,k - teacher-student models, τt - teacher threshold,
τs - student threshold, λt ,λs - teacher-student adaptive
rates

1: for i ∈ {1..3} do
2: Si← bootstrap sample(L)
3: mi← train model(Si)
4: end for
5: while τs ≤ τt do
6: for i ∈ {1..3} do
7: Li← SelectTeachableSamples(U,mi, j,k,τt ,τs)
8: mi← train model(L∪Li)
9: end for

10: τt ← τt −λt
11: τs← τs +λs
12: end while
13: apply majority vote over mi, j,k

Algorithm 2 Select Teachable Samples
Require: U - set of unlabeled samples, τt - teacher threshold,

τs - student threshold, mi - student model, m j,k - teacher
models

1: π ← /0
2: for all x ∈U do
3: if c j = ck then
4: tc f = min(p j(c j|x), pk(ck|x))
5: sc f = pi(c j|x)
6: if tc f > τt & sc f < τs then
7: π ← π ∪{(x,c j(x))}
8: end if
9: end if

10: end for
11: return π

teachers, it would become more confident of its
prior knowledge taught by the teachers. In that
sense, the student threshold τs increases monoton-
ically in every iteration. On the other hand, as
student progresses through the learning process,
the teachers are supposed to teach them more ad-
vanced cases, i.e. cases where the teachers are less
confident about. This is captured in our approach
by monotonically decreasing the teacher threshold
τt . For this work, we chose a linear adaptive rate
for the adaptive process as shown in line 10 and 11
of Algorithm 1.

2.3 Stopping Criteria
Existing self-labeled techniques often stop when no
sample can be labeled, or no performance improve-
ment occurs in an iteration. The original tri-training
paper introduces an error constraint that checks if
a peak performance has been reached. However,
the error measurement is conducted only on the
labeled dataset, hence assuming that the labeled set
distribution is representative of the unlabeled set
distribution. Tri-training may also lead to a limited
number of co-labeling examples for training and
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a premature termination while dealing with large
datasets (Chou et al., 2016).

In this work, we present our stopping criterion
by comparing the student’s confidence threshold
with the teacher’s threshold during each training it-
eration. We assume that when a student reaches the
same confidence level as the teachers in a particular
iteration, then there is nothing to be learned for the
students from the teachers. This happens in our
algorithm 2, when τs ≥ τt . At this point, adding
newer samples to the training set of mi (the stu-
dent) would not contribute to its learning anymore.
In that sense, we called the point when τs ≥ τt as
the graduation point, so as to stop the tri-training
process naturally when the constraint is reached.

3 Evaluation

3.1 Experimental Settings

Datasets. We evaluate our model on the sentiment
classification dataset of SemEval-2016 Task 4 Sub-
task A (Nakov et al., 2016). In total, there are 6000
training sentences, including 3094 positive, 863
neutral, and 2043 negative instances. We use 2000
sentences from the dev set for validation and we
have 20632 for test. To test the model’s generaliz-
ability, we subsequently examine it under different
proportions of labeled data. We select 10%, 20%,
30% and 40% of the training set randomly as la-
beled samples L and treat the rest as unlabeled U
by hiding their labels. Hidden labels are used later
for quality check of the generated proxy labels.
Baselines. Since our method improves upon the
foundations laid by the typical semi-supervised
methods as mentioned in the related work section
(e.g. tri-training and self-training), we compare
with the following baselines:

1. NB STr - Self-training with Naive Bayes as
base classifier.

2. SVM STr - Self-training with SVM as base
classifier.

3. MLP STr - Self-training with neural networks
(multilayer perceptrons) as base classifier.

4. Tri - Tri-training with SVM as base classi-
fiers.

5. Tri-D - Tri-training with disagreement with
SVM as base classifiers (Søgaard, 2010).

Our proposed approach is tri-training with
teacher-student paradigm (Tri-TS). We don’t com-
pare with co-training here because there are no

clear independent views (Zhou and Li, 2005) in the
sentiment analysis task. We do not use any deep
learning model as base learner in this study, as deep
learning models may not perform well in the pres-
ence of limited labeled data. We did try FastText
(Joulin et al., 2017) as a proof case, but even under
the 40% label rate, its performance is unsatisfac-
tory (an initial FPN

1 of 0.346 with an improvement
of +0.034 using the proposed model).

In all the baselines, we experiment with differ-
ent base classifiers and their combinations, namely
Naive Bayes, SVM and Neural Networks. We
use a linear kernel (LinearSVC) for SVM. For
the neural networks (MLP), we use 50 neurons
in the hidden layer with a softmax output. We
use Glove 300-dimensional word embeddings pen-
nington2014glove, . After text-cleaning and tok-
enization, we average the word-embeddings for the
tokens present in the sentence to get the feature
vectors. For both the tri-training baselines, Tri and
Tri-D, we obtain the best results with SVM as base
classifiers. Hence, we report these for comparison
with our approach.

Note that, as mentioned in Section 2.3, for the
baselines Tri and Tri-D, we use their own respective
stopping criteria during evaluation, as a comparison
to our newly proposed stopping criterion.
Parameter Tuning. All parameters required in
both the proposed method and the baselines are
fine-tuned using the validation set. A grid search is
used to determine those parameter values that max-
imize each model’s performance. For the proposed
method τt is tuned ∈ [0.7,1.0], τs ∈ [0.6,0.95]. The
best performed rates of λt and λs are found empir-
ically as 0.001. For the tri-training baselines, we
try to tune the error constraint as suggested in the
original paper, but it generates only small number
of proxy labels during the training process and ter-
minates after very limited number of iterations. In
that sense, we discard the error constraint and try
the threshold based tri-training method as adopted
in (Ruder et al., 2017) and (Søgaard, 2010). Best
performed parameters are obtained again via evalu-
ations on validation set.

3.2 Results

We evaluate our approach and the baselines from
three different aspects: the overall model perfor-
mance, the quality of generated proxy-labels, and
the quantity of unlabeled data consumed. Model
performances are reported using FPN

1 -score as
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10% 20% 30% 40%

NB STr 0.461 0.471 0.484 0.495
SVM STr 0.465 0.469 0.478 0.489
MLP STr 0.471 0.481 0.497 0.499

Tri 0.478 0.489 0.501 0.505
Tri-D 0.485 0.499 0.507 0.511

Tri-TS 0.498 0.507 0.519 0.523

Table 1: FPN
1 comparison averaged over 5 runs for

different proportions of labeled data.

adopted in the SemEval competition.
Overall Performance. The methods Tri and Tri-D
both use majority voting to combine the three clas-
sifiers. For a fair comparison with these methods,
after the training is completed, we perform major-
ity voting on the test set to get the final predictions.
In Table 1, we see that the proposed tri-training
with teacher-student paradigm consistently outper-
forms the other baselines with higher prediction
performance across different labeled versus unla-
beled settings. The proposed method reaches a
FPN

1 of 0.523 using just 40% of the labeled data,
whereas the upper bound FPN

1 is only 0.585, if the
we train the base SVM classifier on the 100% train-
ing dataset.

To better understand the effectiveness of the pro-
posed teacher-student paradigm, we further look
into the performance of each individual base clas-
sifier before the majority voting step, We found
that under the 10% label rate, the maximum FPN

1
achieved between the base classifiers and the final
ensemble model was only 0.011, and such differ-
ence decreased to 0.005, when label rate increased
to 40%, which indicates indicates good quality of
the base classifiers even without the ensemble step.
In addition, same conclusion can also be inferred
as the base classifiers in Tri-TS before ensemble
performed better than the base classifiers in all the
other baselines.
Quality of Proxy-labels. The quality of the as-
signed proxy-labels to the unlabelled data in each
iteration determines how well the model learns. So,
here, we evaluate the quality of all produced proxy-
labels during the self-labeling process against the
hidden ground truth to determine the effectiveness
of the algorithms in terms of teaching the correct
labels. Table 2 shows that teacher models in our
proposed method consistently produce high quality
proxy-labels (88.93% match with the hided ground
truth labels) for the student model to learn. The
other baselines tend to suffer from the problem of

10% 20% 30% 40%

NB STr 65.81 67.14 63.36 70.15
SVM STr 68.15 67.59 71.08 68.13
MLP STr 76.81 77.71 79.07 78.29

Tri 71.78 76.49 75.71 73.35
Tri-D 75.28 70.19 72.37 77.11

Tri-TS 86.18 84.57 88.19 88.93

Table 2: Percentage of matches between the pro-
duced proxy-labels and the ground truth averaged
over 5 runs for different proportions of labeled data.

adding unreliable labels to the labeled dataset. We
view this result as a confirmation of the usefulness
of the adaptive threshold in terms of producing high
quality proxy-labels on the unlabeled data.
Quantity of Unlabeled Data Consumed. To eval-
uate the effectiveness of our stopping criterion, we
calculate the quantity of unlabeled data consumed
during the self-labeling process. Figure 1 shows
a plot of the models’ FPN

1 with regard to the cu-
mulative number of samples added throughout the
iterations (each datapoint in the plot corresponds
to an iteration). We find that the proposed method
consumes only 201 unlabeled instances to reach
the best prediction performance, whereas both the
original tri-training and tri-training with disagree-
ment added around twice or thrice the number of
samples. From Figure 1, we can further see that
many of the baseline algorithms reach the satura-
tion point way before they stop the training process
i.e. the improvement in performance is marginal
or even decays under some circumstances. This
proves the effectiveness of the proposed stopping
criteria.

Figure 1: FPN
1 score with cumulative number of

samples used for all baselines for 40% label rate.

We see that our approach performs worse than
the tri-training baselines in the earlier iterations.
This happens because our algorithm learns easier
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cases in the very beginning and gradually increases
the difficulty along the learning process. On the
contrary, the original tri-training grows very fast
but also plateaus earlier, hence not achieving the
full potential of using the three base classifiers.
This early plateauing is avoided in our case with
the adoption of the adaptive thresholds.
Sensitivity Analysis. We further perform sensitiv-
ity analysis for the assessment of the initial set-
tings of τt and τs with respect to their impact on
the model performance. Specifically, we compare
the experiment results with: (1) the initial teacher
threshold τt set over [0.7,1.0] with initial τs fixed
as 0.85; and (2) the initial student threshold τs set
over [0.6,0.95] with initial τt fixed as 0.94. In both
settings, τt and τs are continuously updated with the
learned adaptive rates λt and λs after their initial as-
signment. We observe only marginal performance
losses with an average difference of −0.015 FPN

1
over all values. This indicates that the initial value
for τt and τs would not affect the performance that
much, as long as they are adaptive.

4 Conclusion

In this paper, we propose a new teacher-student
paradigm for original tri-training with continu-
ously adaptive threshold and a natural stopping
criteria. We show that our model outperforms all
self-training and tri-training baselines in terms of
achieving higher overall performance, higher qual-
ity of generated proxy labels, while consuming
a less quantity of the unlabeled data. Although
we only validate the proposed method against the
benchmark SemEval dataset in this paper, our ul-
timate goal is to utilize it as a solution for the sce-
narios with limited labeled data and to tackle real-
world problems, where labeled data is hard to find
or expensive to attain.
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Abstract

Web corpus construction involves numer-
ous design decisions. The software pack-
ages presented here can help facilitate col-
lection and enhance corpus quality.

1 Problem description

Large “offline” web corpora are now standard
throughout disciplines among the research commu-
nity. Corpus construction notably involves “crawl-
ing, downloading, ‘cleaning’ and de-duplicating
the data, then linguistically annotating it and load-
ing it into a corpus query tool.” (Kilgarriff, 2007)
As such, this process involves a significant number
of design decisions and turning points in data pro-
cessing. Depending on the purpose of data collec-
tion, a substantial filtering and quality assessment
may also be needed. While some large-scale algo-
rithms can be expected to smooth out irregularities,
uses requiring a low margin of error as well as close
reading approaches imply constant refinements and
improvements in the constitution of the dataset and
its processing, for example in the context of an ag-
gregated lexical information platform (Geyken et
al., 2017).

Recently, approaches using the CommonCrawl1

have flourished as they allow for faster download
and processing by skipping (or more precisely out-
sourcing) the crawling phase. Barring the fact that
finding one’s “own” way through the Web can be
preferable, it is clear that such data should not be
used without some filtering. Corresponding to the
potential lack of metadata is a lack of informa-
tion regarding the content, whose adequacy, focus
and quality are the object of a post hoc evaluation
(Baroni et al., 2009). Because of the vastly increas-
ing variety of corpora, text types and use cases,
it becomes more and more difficult to assess the
usefulness and appropriateness of certain web texts

1https://commoncrawl.org

for given research objectives. Most notably, an es-
sential operation in corpus construction consists in
retaining the desired content while discarding the
rest, a polyonymous task referring to peculiar sub-
tasks or to the whole, most notably web scraping,
boilerplate removal, web page cleaning, or web
content extraction (Lejeune and Zhu, 2018).

Consequently, a significant challenge lies in the
ability to extract and pre-process web data to meet
scientific expectations with respect to corpus qual-
ity (Barbaresi, 2019b). In the following, two li-
braries grounding on previous efforts (Barbaresi,
2016) are presented which can help enhancing the
quality of webcorpora. They are both relying on
Python, currently one of the most used program-
ming languages, within and outside of academia.2

2 htmldate: finding the publishing date

The htmldate library (Barbaresi, 2019a) can find
both the original and the updated publication dates
of web pages. It involves a rule-based examination
of the semantic structure of HTML documents, us-
ing a combination of tree traversal, common struc-
tural patterns, text-based heuristics and robust date
extraction. First, it uses the markup in the docu-
ment header, where common patterns are used to
identify relevant elements (e.g. link and meta ele-
ments) including common standards and idiosyn-
cracies of content management systems. Second,
it looks for cues within the HTML code as the
whole document is searched for structural mark-
ers: abbr/time elements and a series of attributes
(e.g. postmetadata). Finally, a series of heuristics
is run on text and markup. The library currently
focuses on texts written in English and German, it
is used in production and is documented online.3

2Python Software Foundation, http://www.python.org
https://spectrum.ieee.org/computing/software/the-top-
programming-languages-2019

3https://github.com/adbar/htmldate
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3 trafilatura: targeting the main content

The second software component focuses on the
main content, which is usually the part displayed
centrally, without the left or right bars, the header
or the footer, but including potential titles and com-
ments. Distinguishing between whole page and
essential parts can help to alleviate many quality
problems related to web texts. While this is partic-
ularly useful for de-duplication, other tasks related
to content extraction also benefit from a cleaner
text base. In the concrete case of linguistic and lex-
icographic research, it allows for content checks on
the only portion of the document that really counts.

Although most corresponding Python modules
are not actively maintained, the following alter-
natives perform similar tasks: dragnet4 features
combined and machine-learning approaches, but
requires many dependencies as well as extensive
tuning; python-readability5 cleans the page and pre-
serves some markup but is mostly geared towards
news texts; html2text6 converts HTML pages to
Markup language and thus keeps the structure, but
it doesn’t focus on main text extraction. Another
issue resides in the lack of output formats corre-
sponding to corpus linguists’ needs for document
storage and processing, e.g. XML formats such as
TEI/XML following the recommendations of the
Text Encoding Initiative.7

The trafilatura library (Barbaresi, 2019c)
scrapes the main text of web pages while preserv-
ing some structure, which is equivalent to boil-
erplate removal, DOM-based content extraction,
main content identification, and HTML text clean-
ing. The extraction focuses on original text and
can help with the noise consisting of recurring el-
ements (headers and footers, ads, links/blogroll,
etc.). It has to be precise enough not to miss texts
or discard valid documents, it also has to be rea-
sonably fast, as it is expected to run in production
on millions of documents. The processing result
can be in plain text or XML format. In the latter
case, basic formatting elements are preserved such
as text formatting (bold, italic, etc.) and page struc-
ture (paragraphs, titles, lists), which can be used
for further processing.

This is work in progress8, currently experimental

4https://github.com/dragnet-org/dragnet
5https://github.com/buriy/python-readability
6https://github.com/Alir3z4/html2text
7https://tei-c.org
8https://github.com/adbar/trafilatura

features include the extraction of comments (sepa-
rated from the rest), duplicate detection at sentence,
paragraph and document level using a least recently
used (LRU) cache, TEI/XML output, and language
detection on the extracted content.

4 Conclusions

This ongoing work constitutes a step towards the
ability to extract and pre-process web texts in or-
der to make them available in clearly definable
and coherent collections. In both software com-
ponents presented here, all the operations needed
from web page download to HTML parsing are
handled, including scraping and textual analysis.
URLs, HTML files or parsed HTML trees are given
as input and the libraries output strings in the de-
sired format. They can be used on common op-
erating systems, by themselves, within Python, or
on the command-line. Their versatility allows for
work on different languages and corpus types as
well as for inclusion in various processing chains.

References
Adrien Barbaresi. 2016. Efficient construction of

metadata-enhanced web corpora. In Proceedings of
the 10th Web as Corpus Workshop, Annual meeting
of the ACL 2016, pages 7–16. Association for Com-
putational Linguistics.

Adrien Barbaresi. 2019a. htmldate.
https://doi.org/10.5281/zenodo.3459599.

Adrien Barbaresi. 2019b. The Vast and the Focused:
On the need for thematic web and blog corpora. In
Proceedings of the CMLC-7 workshop, pages 29–32.

Adrien Barbaresi. 2019c. trafilatura.
https://doi.org/10.5281/zenodo.3460969.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi,
and Eros Zanchetta. 2009. The WaCky Wide
Web: a collection of very large linguistically pro-
cessed web-crawled corpora. Language Resources
and Evaluation, 43(3):209–226.

Alexander Geyken, Adrien Barbaresi, Jörg Di-
dakowski, Bryan Jurish, Frank Wiegand, and Lothar
Lemnitzer. 2017. Die Korpusplattform des ”Digi-
talen Wörterbuchs der deutschen Sprache” (DWDS).
Zeitschrift für germanistische Linguistik, 45(2):327–
344.

Adam Kilgarriff. 2007. Googleology is bad science.
Computational Linguistics, 33(1):147–151.
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Ein Tool zur Visualisierung des Gebrauchs von Schreibvarianten 

 

Abstract 

In unserem Beitrag stellen wir die Ent-

wicklung eines komponentenbasierten 

Tools zur Abfrage, Auswertung und Vi-

sualisierung von Schreibvarianten vor.  

1 Einleitung 

Die diachrone empirische Untersuchung von 

Varianz in der Schreibung von Wörtern anhand 

von Korpusdaten spielt eine zentrale Rolle in der 

Orthografieforschung und wird auch in Untersu-

chungen der AG Korpus des Rats für deutsche 

Rechtschreibung angewendet (vgl. Krome/Roll 

2016: 7). Dazu werden in Einzelrecherchen aus-

sagekräftige Grafiken erstellt, die für gegebene 

Schreibvarianten unter gegebenen Schreibern 

und in einem gegebenen Untersuchungszeitraum 

eine übersichtliche Gegenüberstellung entspre-

chender Schreibgebräuche ermöglichen (vgl. 

Abb.1). 

 
Abb. 1: Erhebung der Vorkommen der Schrei-

bungen „Time-out“, „Timeout“, „Time Out“ und 

„Time out“ (Rat für deutsche Rechtschreibung) 

Der Erstellung solcher Grafiken geht ein 

mehrstufiger Prozess voraus (Auswahl der Kor-

pusgrundlage, Erstellung und Durchführung von 

Korpusabfragen, Zusammentragen der Abfrage-

ergebnisse, Erstellung der Grafiken), der an ver-

schiedenen Stellen nicht oder nur teilweise au-

tomatisiert ist. In Konsequenz wird dieser Pro-

zess daher stark indikations- und bedarfsgeleitet 

angestoßen, was ein flächendeckendes Monito-

ring des allgemeinen Schreibgebrauchs aus-

bremst. Um den Rat für deutsche Rechtschrei-

bung in seiner Arbeit zu unterstützen, wird am 

Leibniz-Institut für Deutsche Sprache (IDS) eine 

Software entwickelt, die diesen Prozess durch 

breitere Automation in den Abläufen fördert. 

2 Ziele und Anforderungen 

Eine Kernfunktionalität des Tools liegt in der 

interaktiven Erstellung von Schaubildern, welche 

die Entwicklung benutzerdefinierbarer Häufig-

keitsmaße von Schreibvarianten entlang einer 

Zeitachse abbilden. Die Benutzeroberfläche be-

gleitet Anwender/-innen dabei im gesamten Er-

stellungsprozess von der Korpusauswahl bis zum 

Grafikexport und bietet einen intuitiven und au-

tonomen Zugang zu Untersuchungsergebnissen. 

Im Hinblick auf die statistischen Auswertun-

gen und Diagrammtypen greift das hier vorge-

stellte Tool die Methodologie der auch am IDS 

entwickelten Programm-Infrastruktur1 zur Gene-

rierung sog. Zeitverlaufsgrafiken (ZVGs) auf, 

knüpft aber an die ebenfalls am IDS entwickelte 

universelle Korpusanalyseplattform KorAP (Ku-

pietz et al. 2019) an. Da KorAP als quelloffenes 

Projekt entwickelt wird, besteht keine Abhängig-

keit zu IDS-Infrastrukturen. Zudem kann KorAP 

auch auf physisch verteilt liegenden Ressourcen 

operieren, sodass auch der Standort der auszu-

wertenden Korpora nicht an das IDS gebunden 

ist, was den Bedürfnissen des Rats für deutsche 

Rechtschreibung insbesondere in Bezug auf Un-

tersuchungen in bzw. aus den Gebieten seiner 

sieben internationalen Mitglieder gerecht wird. 

Die einfach strukturierte und leicht zugängli-

che Benutzeroberfläche befähigt Nutzer/-innen, 

auch ohne größere Kenntnis von Korpusrecher-

che, Datenauswertung und -visualisierung kom-

fortabel vergleichende Grafiken zu erstellen. 

 
1 http://www1.ids-

mannheim.de/kl/projekte/methoden/mdca/zvgs.html 
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Ein- und Ausgabedaten können flexibel fest-

gelegt und an das jeweilige Auswertungsszenario 

angepasst werden. Aufseiten der Eingabe sind 

die Auswahl zur Verfügung stehender Korpora 

und ihre weitere Eingrenzung zu bestimmen 

(siehe virtuelle Korpora, Diewald et al. 2016) 

und eine Liste zu untersuchender Schreibvarian-

ten anzugeben. Aufseiten der Ausgabe können 

die Art der Darstellung in Form unterschiedlicher 

statistischer Maße wie absolute Frequenz, relati-

ve Frequenz, Häufigkeitsklassen (vgl. Perkuhn et 

al. 2012:80), prozentuale Verteilung der Varian-

ten etc. sowie beim Export der erstellten Visuali-

sierung das Dateiformat (u.a. png, jpg, pdf, svg, 

xml oder html) gewählt werden.  

Die Visualisierung wird bei anwenderseitig 

nachträglich eingebrachten Änderungen der Dar-

stellungskriterien dynamisch angepasst. Dies 

erlaubt eine rasche und intuitive Justierung der 

Grafik bis zum gewünschten Bild. 

3 Software-Architektur 

Das Tool sieht sich als stark spezialisierte Ab-

frage-, Auswertungs- und Darbietungsplattform 

und knüpft daher auf der einen Seite an beste-

hende Schnittstellen zur allgemeinen Korpusab-

frage an und bildet auf der anderen Seite selbst 

eine Schnittstelle zur Benutzerinteraktion.  

Zur Erlangung der Datengrundlage bedient 

sich das Tool skriptgesteuert einer Programmier-

schnittstelle (API) der Korpusanalyseplattform 

KorAP (Kupietz et al. 2019), die für die Verar-

beitung sehr großer Korpora mit mehreren Anno-

tationsebenen, mehreren Abfragesprachen und 

komplexen Lizenzmodellen optimiert ist und in 

Modulen als Open Source auf GitHub2 veröffent-

licht wird. Über die am IDS installierte Instanz3 

besteht somit u.a. Zugang zum Deutschen Refe-

renzkorpus DeReKo (Kupietz et al. 2018). 

Die Visualisierung ist als Webapplikation in 

R (R Core Team 2016) mithilfe des R-Paketes 

shiny (Chang et al. 2019) implementiert, das eine 

interaktive Datenpräsentation in einer Webober-

fläche und damit dynamische Anpassungen ge-

mäß Anwendereingaben ermöglicht. 

4 Ausblick 

Perspektivisch ist geplant, das Tool auch als 

Modul von grammis4 , dem grammatischen In-

formationssystem des IDS, der Öffentlichkeit 

 
2 http://github.com/KorAP 
3 https://korap.ids-mannheim.de/ 
4 https://grammis.ids-mannheim.de 

zugänglich zu machen. So soll es die Anwen-

dung KoGra-R (Hansen-Morath et al. 2019) 5 

komplementieren, die ebenfalls am IDS entwi-

ckelt wurde und korpuslinguistische Statistiken 

und Visualisierungen bereithält, allerdings nicht 

für den Variantenvergleich konzipiert wurde.  
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Abstract

We introduce a language processing ap-
proach to detect reading absorption ex-
pressed in book review texts in English
from an online social reading platform.
Such texts are opinionated, subjective, vari-
able length self-narratives. We describe
our corpus annotated with absorption cat-
egories that were defined in empirical aes-
thetics, based on which we performed su-
pervised, sentence level, binary classifica-
tion of the presence or absence of reading
absorption, using text-based, distributional
features.

1 Introduction

Our study aims to contribute to affect recognition
research by introducing the affective state of ab-
sorption during reading fiction. Our goal is to
computationally process user-generated book re-
views from an online social reading community,
to identify passages that textually express reading
absorption. The reviews belong to the genre of
self-narratives that report about individual experi-
ences in a non-elicited way, typically serving mul-
tiple user intents such as providing one or more
of evaluation, recommendation, feedback, as well
as influencing and socializing. The reviews of-
ten do not merely contain mentions of evaluative
sentiment toward (components of) the book, but
rather also express complementary aspects in terms
of engagement of the reader, for example immer-
sive experiences (”I was glued to my kindle.”; ”It
stayed with me, even when I wasn’t reading it”),
transportation to the fictional world (”i felt like
am living inside it”), altered sense of time during
reading (”it is almost 800 pages that just fly by”),
emotional engagement (”I cried reading the last
30 pages”), and others.

Computational analysis of detecting reader ab-
sorption has so far been largely unaddressed, except

for our initial text similarity approach to detect ab-
sorption in the story world (Rebora et al., 2018). In
this study, we are interested in Natural Language
Processing (NLP) based modeling of the specific
affective state of reading absorption. Our corpus
construction is currently ongoing: the experiments
were based on 200 reviews, from which we gen-
erated the first processing resources, i.e., distribu-
tional language models and supervised classifiers,
to benefit researchers in computational linguistics,
literature and social sciences studies.

2 Corpus and Labeling

Our current corpus consists of 200 English review
texts which we collected from a social reading plat-
form. These reviews pertained to books from differ-
ent literary genres (romance, fantasy, thriller) that
we pre-selected based on high star-ratings on the
platform and the presence of trigger words. The
data were balanced for amount of review per book.

We trained five annotators for labeling absorp-
tion in terms of a taxonomy of roughly 40 fine-
grained absorption labels, grouped under broad
concepts such as Attention, Transportation, Emo-
tional Engagement, Mental Imagery, Disconnec-
tion from reality, etc. taken from Kuijpers et al.
(2014) and Bálint et al. (2016). The annotators
could also mark up when users explicitly signaled
the lack of absorption (e.g. ”I struggled to get
through a lot of the pages” or ”None of the charac-
ters really mattered to me”), to make them distinct
from expressions of the presence of absorption.

The annotators worked on the review level using
Brat1 and could assign labels to text segments of ar-
bitrary length. For the current study, we aggregated
all annotators’ labels into a generic absorption cat-
egory: the Abs label was assigned if at least one
of five annotators judged some part of a sentence
as explicitly expressing some type of absorption

1https://brat.nlplab.org/
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Sent Text Fine-grained label (Support) Binary label Justification
1 FUNNY. - nonAbs generic evaluation
2 Funny funny funny and sexy as hell. - nonAbs generic evaluation
3 I don’t only like the Heroine, - nonAbs generic sentiment
4 I LOVE her. - nonAbs generic sentiment
... ... ... ... ...

12 I want to be Molly when I grow up. Wishful identification (4) Abs
Wish of having the same

characteristics as protagonist
13 I loved her backstory and why she is the way she is. - nonAbs generic sentiment/evaluation
14 Her Career Secret frustrated me at times. - nonAbs generic sentiment

15 Most of the time, I was like, ”JUST TELL HIM.” Participatory response (1) Abs
Intention to intervene, at times

by addressing the characters directly

16 But I got why she felt she couldn’t. Emotional understanding (2) Abs
Emotional or cognitive understanding

of the character’s feelings or perspective
17 This is a great book. - nonAbs generic evaluation

Table 1: Corpus excerpt with fine-grained absorption annotations (column 2) and the binarized target
labels to classify (column 3). Abs: reading absorption or its lack is expressed, nonAbs: no absorption or
its lack is expressed.

or the lack of it. Sentence-level segmentation was
obtained using the Spacy package2 that worked
best for our user generated text type. In the pilot
annotation round, the average review length was 25
sentences (stdev ±28), inter-annotator agreement
on the sentence level was 0.59 (Fleiss’ Kappa).

To illustrate our data and classification task, a
review excerpt is presented in Table 1, in which e.g.
sentence ”I want to be Molly when I grow up.” was
judged as Wishful identification by four annotators.

3 Reading Absorption Identification

The current dataset is imbalanced, as only 13%
of the instances have the target class Abs (660 vs
4,327 sentences).We used a random undersampling
method3 during training to account for it. Sen-
tences were stripped of punctuation, tokens were
lowercased and stemmed (mean normalized sen-
tence length: 15±13 tokens), and represented in
terms of a count vector (length: 6,064) as well as a
sentence embedding vector (length: 100). We gen-
erated the sentence embedding representation using
the sent2vec tool4 that we retrained on 2.45 million
unlabeled social reading narratives collected from
the online platform.

Next, we performed classification exper-
iments using two classical machine learn-
ers with no optimization: logistic regression
(class weight=balanced) and random forest, in 5-
fold cross-validation. The feature sets representing
the sentences were tested in isolation and in com-
bination. The results are presented in Table 2 and
show that good precision is difficult to achieve for
the target class in the current setup: the best F-

2https://spacy.io
3https://github.com/scikit-learn-contrib/imbalanced-learn
4https://github.com/epfml/sent2vec

scores are .42 using the large bag of words count
vector or using all features. We are currently grow-
ing the corpus and consolidating the still evolving
labeling scheme, after which we will be able to
test more advanced data representation and learn-
ing approaches, and evaluate classification on the
fine-grained absorption labels.

LR Abs nonAbs RF Abs nonAbs
cv P: 0.30 0.94 cv P: 0.30 0.93

R: 0.70 0.75 R: 0.62 0.78
F: 0.42 0.84 F: 0.40 0.85

s2v P: 0.24 0.94 s2v P: 0.26 0.96
R: 0.73 0.65 R: 0.81 0.64
F: 0.37 0.77 F: 0.39 0.77

all P: 0.29 0.95 all P: 0.25 0.95
R: 0.76 0.72 R: 0.79 0.65
F: 0.42 0.82 F: 0.38 0.78

Table 2: Classification results by Logistic Regres-
sion (LR) and Random Forest (RF) in terms of
Precision, Recall, and F-score per class, averaged
from 5-fold cross-validation. Features: CountVec-
torizer (cv) and sent2vec embeddings (s2v).
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Abstract

We describe ideas for the graphical user
interface of a tool for word alignment anno-
tation. Our prototype interface builds on a
design template from the Jigsaw system for
investigative analysis, and is implemented
as a web application.

1 Introduction

Although many models for machine translation no
longer rely on training data in the form of word-
aligned corpora, the concept of word alignment –
and thereby the need for manually aligned corpora
– still exists. For instance, manually annotated cor-
pora are required for evaluating the alignment qual-
ity of translation systems that use word alignment
as an intermediate step (Alkhouli et al., 2016) or
systems that use automatically aligned corpora for
dictionary construction (Bourgonje et al., 2018).

There exist several tools for word alignment an-
notation. Many of these tools are, however, either
(i) several years old, and to the best of our knowl-
edge no longer updated (Tiedemann, 2002; Zhang
et al., 2008) or, (ii) targeting a more complex an-
notation task, in which the word alignment task is
only a subtask (Hung-Ngo and Winiwarter, 2012;
Wirén et al., 2018).

We therefore aim to construct an annotation tool
that uses current libraries1 for web development,
and which is solely focused on the task of word
alignment in sentence-aligned texts.

2 Design ideas for the user interface

Our prototype interface for word alignment anno-
tation builds on a design template from the Jigsaw
system for investigative analysis. This template
has previously been used for visualising associa-
tions between entities extracted from text collec-
tions (Stasko, 2008; Skeppstedt et al., 2018). The

1D3 and Flask.

template dictates that the entities, which here corre-
spond to words that are to be aligned, are displayed
in separate lists, and that associations between el-
ements in the different lists are indicated by lines
that connect them and by highlighting.

By arranging the words vertically, the display
of the word associations becomes more compact
for most writing systems, which we hypothesise
will make it easier to trace the connecting lines.
While this potentially de-emphasises the sentence,
it instead emphasises the individual tokens.

Figure 1 shows the prototype applied to one
sentence-pair in a corpus of parallell texts collected
from translations made at Swedish government
agencies (Dahlberg and Domeij, 2017).

The prototype interface contains the following
components: (a) The sentence in the first language.
(b) The sentence in the second language. (c) An
alignment between two words is created by drag-
and-drop, i.e. by dragging an element in the left-
hand list and dropping it on an element in the right-
hand list. (d) Alignment is shown by a line that
connects the two list elements. (e) In addition,
when the user hovers the mouse over an element in
one of the lists, the associated elements in the other
list are highlighted. (f) An alignment is removed
by clicking on the corresponding delete button. (g)
Drop-down list for choosing which corpus to anno-
tate. (h) Drop-down list for choosing the criterium2

by which the next sentence-pair to annotate is to be
selected. (i) The user can choose either annotation
mode or to browse previously annotated sentences
in read-only mode. (j) Swap the two languages. (k)
Save annotation. (l) Go back to the previously an-
notated sentence-pair. (m) Remove sentence-pairs
from the annotation task (e.g. when the sentence-
pair stems from an incorrect sentence alignment).

2We plan to add the functionality of pre-annotated align-
ments. The user should then be able to select the order in
which the sentence-pairs are to be annotated, e.g. to choose to
start with the ones that the pre-alignment system estimates to
be easiest or estimates to be most difficult.
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Figure 1: User interface prototype, showing a Swedish-German sentence-pair annotated for word alignment.

3 Next steps

The immediate next steps will consist of refining
and evaluating the user interface. We also plan
to evaluate the usefulness of the alignment func-
tionality for tasks beyond core natural language
processing, e.g. usefulness for translation studies
and for research on the application of official ter-
minologies in translated texts (Dahlberg, 2017).

The annotation tool should also be able to pro-
vide an optional automatic pre-alignment, i.e. an
alignment on which the user can base their manual
annotation. To enable pre-alignment for language
pairs for which no large parallell corpora exist, the
alignment functionality should preferably be based
on methods suitable also for small corpora.
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Abstract 

This paper presents a study on the auto-
matic classification of default and non-de-
fault codings for aspect-marked verbs in 
six Slavic languages and in Latvian. As 
classifier a Support Vector Machine and as 
verbal features Shannon Information (SI) 
and Average Information Content (IC) 
have been utilised. In all languages high 
accuracy of the classification has been 
achieved. In addition, we found indica-
tions for the validity of the Uniform Infor-
mation Density principle within SI and IC.  

1 Introduction 

The research questions are: can Shannon’s theo-
rem be transferred to natural languages, and, in 
particular, does coding of aspect marked verbs in-
teract with the information that they carry? 
 Our point of departure is that verbs have a 
dominant aspect category and that this category 
can be determined by frequency distributions: de-
fault forms will occur more frequently than non-
default forms.  

2 Aims, Data and Method 

The first aim of the study is to test whether default 
and non-default coding of aspect-marked verbs in 
the six Slavic languages Bulgarian, Old Church 
Slavonic, Polish, Slovak, Slovenian, Ukranian 
and Latvian can be classified by two verbal infor-
mation features: Average Information Content 
(henceforth ‘IC’) (Cohen Priva, 2008; Piantadosi 
et al., 2011, see (1)) 
 
𝐼𝐶 = 	𝐸(−𝑙𝑜𝑔+(𝑃(𝑊 = 𝑤	|	𝑐𝑜𝑛𝑡𝑒𝑥𝑡)))      (1)         
 

                                                
1 Funded	by	the	Deutsche	Forschungsgemeinschaft	(DFG,	German	Research	Foundation)	project	number:	357550571. 

 

As contexts, we took  bigrams (lexical surprisal, 
Hale, 2001; Levy, 2008; Levy, 2013), to both di-
rections of the target verbs as a study of Richter et 
al. (2019) disclosed that target verbs convey the 
highest amount of information in bigram contexts. 
We took Shannon Information (henceforth ‘SI’, 
Shannon and Weaver, 1948)  as the negative log 
probability of a target verb form in the corpus. 
 The aim and the choice of the two information-
theory based features are motivated by Shannon’s 
source coding theorem (Shannon and Weaver, 
1948) on the interaction of information, coding 
and length of signs. As classifier we employed a 
Support Vector Machine (SVM) binary classifier 
with a radial basis function kernel (Joachims, 
1998).  

The second aim of the study is to test whether 
the Uniform Information Density – hypothesis, 
(henceforth UIDh; Genzel and Charniak, 2002; 
Aylett and Turk, 2004; Levy and Jaeger, 2007; 
Jaeger, 2010),  holds within the features IC and SI 
of the target verbs. In its original form, UIDh is 
applied to discrete signs: there should neither be 
extreme peaks nor extreme troughs in the stream 
of information in order to facilitate language pro-
cessing. We, however, apply UIDh to two differ-
ent information values of a single sign and hy-
pothesise based on previous research (Celano et 
al., 2018) that the variances in information density 
within IC and SI should tend towards zero (Col-
lins, 2014). We utilised Global Information Den-
sity UIDGLOBAL (see (3)): idi is the information 
density of  SI and IC of a single verb form, and µ 
is the mean of id: 

 
𝑈𝐼𝐷89:;<9 = 	−𝐸(∑ 𝑖𝑑@A

@BC − 	𝜇)+)    (3) 
 
As data resource we exploited Universal Depend-
ency Treebanks (version 2.3, https://universalde-
pendencies.org) because verbal aspect is encoded 
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in these corpora. For each verb, the default and 
non-default aspect was determined. The number 
of tokens and the numbers of word forms, respec-
tively, for each language are: Bulgarian 156,149 / 
13,714, Old Church Slavonic 57,563 / 9,575, 
Polish 1498042 / 7,199, Slovak 10,6043 / 11,749, 
Slovenian 170,158 / 11,629, Ukrainian 122,275 / 
9,789 and Latvian 208,965 / 17,046. We reduced 
aspect oppositions to the binary imperfective-per-
fective distinction, and took the difference of both 
occurrences. The differences were normalized, 
and ten thresholds between [.09:1] were set. 

3 Results 

We focused on the thresholds in the interval [.19, 
.59] in order to ensure a sufficient number of de-
fault and non-default encodings for the training of 
the SVM-classifier: the accuracy is almost inde-
pendent of the threshold and thus of the frequency 
distribution: even with an almost equal distribu-
tion of default and nondefault aspect frequencies 
that is, with threshold .19, almost perfect accuracy 
values are achieved. The range of accuracy in 
[.19,.59] is: Bulgarian 99.5 – 99.8, Old Church 
Slavonic 94.3 – 97.8, Polish 99.7 – 99.9, Slovak 
99.5 – 99.6, Slovenian 100 – 100, Ukrainian 99.1 
– 100 and Latvian 98.3 – 99.5. Estimating UID-
GLOBAL to our test set of languages, an identical 
pattern in all languages comes to light: the major-
ity of variance values tends to be close to zero. 

4 Conclusion 

As Shannon’s source coding theorem predicts,  we 
found interactions of aspectual coding and infor-
mation: Our study provides evidence that non-de-
fault coded verb forms are more informative than 
default forms. Almost identical accuracy has been 
achieved with all tested threshold values. 

With regard to the second aim, our study dis-
closes that UIDh holds within IC and SI: both fea-
tures convey a uniform stream of information 
throughout the  verb forms of the seven languages 
in focus.  

The practical impact of our study concerns the 
assignment of word classes in languages such as 
Tagalog: default and non-default forms of a lemma 
correspond with different word classes. 
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Abstract
We describe the creation of a German Red-
dit corpus, difficulties encountered along
the way, and some of the data’s linguistic
peculiarities.

1 Data Gathering

What’s Reddit? Reddit is a platform combin-
ing social news aggregation, discussion and micro-
blogging. Since its founding in 2005, it has grown
to be one of the most popular websites in the USA;
in recent years, its popularity has also increased in
Germany, as indicated by site rankings from Alexa
and SimilarWeb.1

Users submit content (e.g. text, images or links)
and can comment on submissions. Submissions
and comments can be voted up or down, affecting
the order in which they are displayed (submissions
with the most upvotes make it to the front page).

Reddit is structured into so-called “subreddits”
with their own community rules. Subreddits range
from being rather open-topic (e.g. r/de – anything
related to German) to extremely specific.

The German Reddit Sphere Just as subreddits’
topics and contents vary widely, so do linguistic
phenomena associated with particular subreddits.
While some subreddits exhibit mostly standard
language, others have rather unique memes and
practices; making them difficult for outsiders to
understand. In German subreddits, for instance,
emoticons may be replaced by German Umlaut
characters:

:) → Ü :o→ Ö :<→ Ä
On a lexical and phraseological level, typical

expressions commonly associated with online com-
munication as well as Reddit-specific ones are often

1Ranks as of October 9, 2019:
Alexa: 6 (US), 9 (DE); SimilarWeb: 10 (US), 31
(DE); see https://www.alexa.com/topsites/
countries and https://www.similarweb.com/
top-websites

translated word for word, leading to a humorous
effect: pfostieren ‘to post’, ausgelöst ‘triggered’,
Unterlases ‘subreddit’, fixierte das für dich ‘fixed
this for you’.

2 Corpus Creation

Building a Reddit Corpus In an ongoing effort,
Jason Baumgartner collects every Reddit submis-
sion and comment, publicly accessible via https:
//files.pushshift.io/reddit/2 (some
caveats apply, see Gaffney and Matias (2018)). The
first attempt at extracting German comments was
made by Barbaresi (2015). At the time, Reddit was
less widely used, especially by German-speaking
users, and the resulting corpus was relatively small
(97,505 comments, 566,362 tokens).

Detecting German Comments To detect Ger-
man comments in the vast dataset, we adapt Bar-
baresi’s approach of using a two-tiered filter rely-
ing on spell checking and language identification.
After some sanitizing steps to ignore extremely
short or deleted comments, every token is checked
against a German and an English dictionary with
a regular expression. A text is classified as poten-
tially German if at least 70% of its tokens are found
in the dictionary, and no more than 30% are present
in the English dictionary. Next, langid (Lui and
Baldwin, 2014) is run on these candidate comments
to ultimately classify comments as German. This
way, we identified more than 6,700,000 German
comments between 2016 and 2018, amounting to
roughly 230,000,000 tokens running text.

Evaluation of the Two-tiered Filter In a ran-
dom sample of 1,618 comments, we manually iden-
tified 26% which are not actually in German. While
longer comments are recognized rather reliably,

2See also https://www.reddit.com/r/
pushshift/comments/bcxguf/new_to_
pushshift_read_this_faq/
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Subreddit “German” Total Fraction
de 3,644,481 4,364,440 0.835
Austria 389,041 483,125 0.805
rocketbeans 142,787 164,699 0.867
AskReddit 125,411 183,147,454 0.000685
edefreiheit 121,370 147,150 0.825

Table 1: Comment counts in the top 5 subreddits
with “German” comments, 2016–2018

shorter comments are often misclassified – for in-
stance, due to the presence of proper names.

Possible Corpus Cleanup Table 1 shows the top
5 subreddits containing comments identified as Ger-
man. We interpret the low relative frequencies of
German comments in some subreddits as an indi-
cation of false positives. Thus, filtering out subred-
dits with less than e. g. 10% of German comments
seems like a plausible strategy. On the other hand,
for many predominantly German subreddits, the
two-tiered filter may have been too aggressive, and
it might be sensible to retain all comments from
these to keep conversations intact.3 In any case,
using the filter to identify predominantly German
subreddits in the first place works as intended.

3 Annotation

Pre-processing and Tokenization Some of Red-
dit’s peculiarities pose challenges to existing tools.
Comments can include Markdown markup, mak-
ing pre-processing necessary. Short form links
to subreddits and user profiles follow the pattern
r/oldschoolcool and u/username, which has to be
accounted for by a tokenizer. Punctuation is often
omitted and replaced by line breaks or emoticons:
So bin endlich zu was gekommen :D Habe [...]

Tokenization and POS Tagging A random sam-
ple of comments was tokenized using SoMaJo
(Proisl and Uhrig, 2016) and tagged with the
STTS_IBK tagset (Beißwenger et al., 2015) us-
ing SoMeWeTa (Proisl, 2018). To evaluate perfor-
mance, manual correction was performed on 1,186
tokens. The tagging accuracy was at 92.6%. POS
errors seemed to be largely systematic, with the
very fine-grained differentiation in particle types
being hard to achieve due to sparseness in the train-
ing data, i.e. the EmpiriST corpus (Beißwenger et
al., 2016).

Our evaluation leads us to the question whether
a revised CMC tagset might be beneficial: While

3Subreddits containing dialectal language use (such as
r/aeiou or r/BUENZLI) are a special case.

there are fine-grained categories for e.g. particle
types, more obvious distinctions are not made (e.g.
between definite and indefinite articles). Moreover,
only certain contractions are assigned tags, and
no differentiation is made for common acronyms
(scnr, imho) and different types of punctuation (also
affecting asterisks marking “action words” like
*lol*).

4 Outlook

Due to their peculiarities, Reddit data are a promis-
ing source for further (socio-)linguistic research.
Since the same features pose challenges to existing
tools, more corpus cleaning will be necessary and
rules for tokenization and tagging will need to be
updated.
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Abstract

This paper presents the setup and outcome of
the GermEval-2019 Task 1: Hierarchical Clas-
sification of Blurbs. A blurb is a short, oc-
casionally advertorial, description of a book.
The shared task consists of two subtasks:
Task A) classification of blurbs exclusively
into the most general categories, which can
be considered to be a multi-label classifica-
tion task, and Task B) hierarchical classifica-
tion of blurbs into the entire hierarchy of cat-
egories, spanning a total of 343 different cate-
gories and sub-categories. During the test pe-
riod, ten teams submitted 17 valid system so-
lutions for Task A, and eight teams submitted
16 system solutions for Task B. For Task A,
the best submission achieved a micro-F1 score
of 0.867, and for Task B the best submission
achieved a micro-F1 score of 0.677.

1 Introduction

Text classification (TC), as a sub-discipline in nat-
ural language processing (NLP), is an established
task where many datasets for many target domains
and challenges exist. Spam classification is prob-
ably the most well-known application of text clas-
sification algorithms. Here, the task is to classify
messages (emails or short text messages) into two
classes: spam (advertisements or any kind of ha-
rassment messages), or ham (relevant messages;
Gómez Hidalgo et al., 20061). Due to the nature
of this task and the fact that this resolves to bi-
nary text classification, it can be considered being
solved with accuracy scores reaching 98+%, see
e.g. (Taheri and Javidan, 2017). However, as more
and more data become digitally available and peo-
ple’s time and convenience are growing in priority,

1http://dcomp.sor.ufscar.br/talmeida/
smsspamcollection/

the demand for more, and finer-grained categories
increases. Multi-class text classification gathered
attention in this space (e.g. with the 20 News-
groups dataset2), here the task is to classify an
email (text and metadata) into one of 20 possi-
ble categories. As a next step, the multi-class text
classification problem has been developed into a
multi-label text classification problem, where a
single sample can have one or multiple class la-
bels. One of the popular datasets in this domain is
the Reuters-21578 dataset3 (Lewis, 1992) which
was superseded by the RCV1 dataset4 (Reuters
Corpus Volume 1; Lewis et al., 2004), implement-
ing a hierarchical structure on the classes. In hi-
erarchical multi-label classification (HMC), labels
are organized in a structured hierarchy, i.e. cer-
tain label combinations are irrelevant and should
never be classified in conjunction (Silla and Fre-
itas, 2011).

Hierarchical multi-label classification is not an
entirely new challenge in the area of natural lan-
guage processing (Sun and Lim, 2001; Silla and
Freitas, 2011), but with the increase of available
data, especially on the web, the desire for more
specific and specialized hierarchies increases. To
cover this desire, and to foster research for al-
gorithms dealing with hierarchically organized
classes for the German Language in a real-world
scenario, we present the GermEval-2019 Task 1:
Hierarchical Classification of Blurbs, which in-
cludes two subtasks, where automatic systems
have to infer: A) the most general categories of
a book described by a blurb, and B) the entire

2http://qwone.com/˜jason/20Newsgroups/
3https://archive.ics.uci.edu/

ml/datasets/reuters-21578+text+
categorization+collection

4http://www.daviddlewis.com/resources/
testcollections/rcv1/
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Task A Task B

# Teams: 10 8
# Submissions: 17 16
Best Team: EricssonResearch TwistBytes
Best Micro-F1: 0.867 0.6767
Impr. over Baseline: 0.067 0.1428

Table 1: Quantitative details of submissions.

set of categories in the class hierarchy.5,6 Since
a sample can belong to multiple classes on the
same level, Task A can be considered as a standard
multi-label classification task and a sub-problem
of Task B, which is a hierarchical multi-label clas-
sification task. We compiled a hierarchical dataset
of German blurbs by crawling the web pages of
a major publisher and taking care of proper data
cleaning and preparation.7 The details of the en-
tire process, as well as various statistics, can be
found in Section 3. For the shared task, we al-
lowed three system submissions per team where
eventually ten teams submitted 17 valid system so-
lutions for Task A, and 16 valid system solutions
were submitted by eight teams for Task B. Quanti-
tative details of the test-phase submissions can be
found in Table 1.

2 Prior Work

Text Classification Datasets:
The probably most well-known dataset with a hier-
archical class label structure is the RCV1 (Reuters
Corpus Volume 1; Lewis et al., 2004) dataset.
It consists of roughly 800K documents catego-
rized into several hierarchically structured cate-
gory sets. However, the access to the dataset
is limited and not freely usable by e.g. compa-
nies due to licensing. Lewis et al. (2004) dis-
tribute a term-document matrix where it has been
ensured that the original data cannot be recon-
structed. Therefore, many different variations of
the original dataset have been created and used,
and despite the wide acceptance of the dataset and
extensive usage, it is difficult to directly compare

5GermEval is a series of shared task evaluation campaigns
that focus on Natural Language Processing for the German
language. The workshop is held in conjunction with the Con-
ference on Natural Language Processing KONVENS 2019 in
Erlangen/Nürnberg.

6https://competitions.codalab.org/
competitions/20139

7We crawled the websites with the consent of the Random
House publisher group.

results presented in scientific work due to the lack
of availability of the standardized version.

Kowsari et al. (2017) introduced a hierarchi-
cally structured dataset for English, with a max-
imum depth of two, called the Web of Sci-
ence Dataset: WOS-11967, WOS-46985 and
WOS-5736 with 35, 134 and 11 categories and 7, 7
and 3 top-level categories respectively. However,
in this dataset, every sample consists of exactly
one parent-child label, which ultimately results
in a single-label multi-class problem on the more
specific category. This highly limits the diversity
and complexity of the dataset and the underlying
hierarchy. Several other large-scale datasets have
been presented, e.g. (Kim et al., 2019; Mencı́a and
Fürnkranz, 2010; Partalas et al., 2015). Some of
these datasets consist of an extensive number of
classes, up to several thousand. The classification
of these datasets carry their very own challenges
and are thus not further discussed here. In spe-
cial application domains, such as the biomedical
domain, more and more works include hierarchi-
cal structures in their data: e.g. Baker et al. (2015)
introduced an annotated dataset based on the hall-
marks of cancer (Baker et al., 2017) with a total of
37 classes and a hierarchy depth of 3 levels; Lars-
son et al. (2017) compiled a dataset for chemical
risk assessment with a 32 classes and 5 levels.

Many freely accessible hierarchical datasets for
the German language exist, however, no bench-
mark dataset has been established. For example,
the OAI Protocol for Metadata Harvesting is a pro-
tocol designed to share metadata of catalogs and
publications. However, the minimal requirements
for expressing valid records are fairly loose and
the practices of metadata management wildly dif-
fer across repositories. Attempts have been made
to normalize OAI metadata records according to
the hierarchical library taxonomy (Waltinger et al.,
2009), called the Dewey Decimal Classification
system. Multiple datasets of German patent col-
lections have been created to classify these doc-
uments into the IPC taxonomy (Fall et al., 2004;
Tikk et al., 2005).

HMC Approaches:
In text classification without hierarchical struc-
tures, neural architectures, especially Convolu-
tional Neural Networks (CNNs) and different
types of Recurrent Neural Networks (RNNs)
(Goodfellow et al., 2016; Kim, 2014), most no-
tably long short-term memory units (LSTMs,
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Hochreiter and Schmidhuber, 1997) have shown to
be highly effective. Cerri et al. (2014) use concate-
nated multi-layer perceptrons (MLP), where each
MLP is associated with one level of the class hi-
erarchy. In contrast, classifier chains (Read et al.,
2011) employ binary classifiers for each category
and propagate their predictions as a feature to the
classifier for the child categories. However, this
method is computationally expensive. Kowsari
et al. (2017) use multiple concatenated deep learn-
ing architectures (CNN, LSTM, and MLP) for
the WOS dataset – with a very shallow hierarchy
and a fixed number of classes per example (one
class label for each of the two hierarchy levels).
Traditional classification approaches, such as e.g.
KNN, Naı̈ve Bayes or SVM, appear to fail to gen-
eralize adequately for large hierarchies (Kowsari
et al., 2017). Summarizing, hierarchical multi-
label classification brings research-worthy chal-
lenges, which motivated the conduction of this
shared task.8

3 Dataset

In the following, we describe the preparation steps
of the dataset, which are strongly in line with Aly
et al. (2019).

3.1 Compiling the Dataset
The dataset is compiled using the openly avail-
able data of the (Bertelsmann) Random House
(RH) webpage9. Random House is worldwide the
largest publisher group and thus hosts an enor-
mous body of books.

The German webpages of RH provide various
meta information of books, such as a short descrip-
tion (the blurb), authorship information, title of the
book, etc. (c.f. Figure 1). With the permission of
the German RH division, we crawled10 the book
listings, parsed the HTML code11 and collected
the following information that we considered to be
relevant:

• title

• author(s)
8The official webpage of the shared task and re-

spective data can be found at https://www.inf.
uni-hamburg.de/en/inst/ab/lt/resources/
data/germeval-2019-hmc.html.

9https://www.randomhouse.de/
10We crawled the webpages with Scrapy (https://

scrapy.org/).
11XPath and CSS where used to find and extract the neces-

sary information.

• URL

• ISBN

• date of publication

• genres, i.e. categories

• info text, i.e. the blurb content

Other information such as about the author, or
reader’s ratings were ignored. The blurb of a book
can be considered to be a short incentive descrip-
tion, which is occasionally advertorial (i.e. adver-
tising and editorial) and thus clearly distinctive to
a summary. Blurbs aim to bestir a potential reader
to buy and read the book, they are thus designed
to occasionally contain advertorial content. Each
collected blurb can be considered unique, how-
ever, they might appear in similar forms, e.g. for
books that are part of a series or are being re-
published as a new edition due to their success.
Due to the extraction process of the sometimes
noisy web data, anomalies such as missing au-
thor, missing blurb or incorrect publication date
occurred infrequently for about 1% of the col-
lected data and were thus accepted and kept in the
dataset.

3.2 Category Refinement
The per-book extracted categories are lists of gen-
res connected with their ancestor genres. Each
book is thus categorized into a hierarchy. Still, this
hierarchy contains ambiguities caused by the as-
signment of identical names to different categories
allowing the formation of cycles as well as chil-
dren to have multiple parents, e.g. Science Fan-
tasy occurs as a subcategory of Science Fiction
and Fantasy. Thus, we automatically renamed am-
biguous categories by concatenating the category
name to its parent’s category name, and manually
refined the extracted hierarchy further, which re-
sults in a tree-like categorical structure. Further,
we manually checked all relations and merged or
removed similar labels and removed categories
that capture properties that do not rely on content
but the shape or form of a book, e.g. categories
such as audiobook, ebook, hardcover, softcover,
etc. were removed. Finally, samples that have as-
signed category combinations that appear less than
five times were also removed from the dataset.

3.3 Dataset Properties
The dataset follows the requirements as described
in (Lewis et al., 2004): First, every book is as-
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Figure 1: Snippet of website the data was collected from. The specific parts are highlighted in red boxes. Numbers
indicate specific parts: 1 author name(s), 2 title, 3 blurb, 4 ISBN, 5 release date, 6 book’s categories,
displayed in a tree structure according to the underlying hierarchy. [The screenshot was taken in October 2018.]

Science Fiction

Science Fiction
Science Fantasy

Science Fiction
Sachbuch

Hard Science Fiction
Dystopie

Urban Fantasy

Historische Fantasy

Abenteuer-Fantasy
Fantasy
Science Fantasy

Fantasy

Figure 2: Excerpt of the hierarchy of categories. Col-
ors indicate different levels in the hierarchy. The full
hierarchy can be found in (Aly, 2018, p. 58).

signed at least one category, and second, every
parent category in the path to the most general cat-
egory of a book’s most specific category is transi-
tively assigned to it as well. In the dataset, the
specified labels and the transitively assigned la-
bels are distinguishable with the XML property
label (value = true for most the specific la-
bel). Note that the most specific category of a book
is not necessarily a leaf category in the hierarchy.
For instance, the most specific category of a book
could be Children’s Books, although further child
categories, such as Middle-Grade books, exist.

Figure 4 shows the frequency distribution of
unique category combinations sorted by frequency

Figure 3: Frequency of category combinations (y-axis)
in the entire dataset sorted by frequency rank (x-axis).

rank. As expected, few label combinations appear
often and many label combinations appear rarely.
The distribution of labels remains highly diverse
with a total of 484 unique category combinations.
Table 2 lists further important quantitative charac-
teristics of the collected data such as the number
of categories on each level of the hierarchy, etc.
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Figure 4: Distribution of the category cardinality per
sample in the entire dataset.

For the task, we divided the dataset into three
subsets: 70% training, 10% development and 20%
test set (±0.2% respectively). The dataset was
split randomly with the constraint that every cat-
egory in the development and test set occurs at
least once in the training set. Additionally, max-
imally 2% of categories in the development and
test set occur less than three times in the train-
ing set. While the test set is only used for the fi-
nal evaluation of each system, the development set
was used for benchmarking during the first eval-
uation phase. During the entire runtime of the
task, participants were able to compare the perfor-
mances of their systems via the CodaLab leader-
board for the development set. For the final evalu-
ation phase, the development set labels have been
supplied to the participants to allow a larger train-
ing set, and the CodaLab leaderboard was disabled
for test set prediction submissions to avoid opti-
mization on the test set.

4 Task Definition

The shared task contains two subtasks:

Task A: The task is to classify German books
into one or multiple top-level categories. It can
thus be considered a standard multi-label classi-
fication task. In total, there are eight top-level
classes that can be assigned to a book: Lit-
eratur & Unterhaltung (Literature & Entertain-
ment), Ratgeber (Counsel), Kinderbuch & Jugend-
buch (Books for Children and Young Adult Read-
ers), Sachbuch (Nonfiction), Ganzheitliches Be-
wusstsein (Holistic Awareness), Glaube & Ethik
(Belief & Ethics), Künste (Arts), Architektur &
Garten (Architecture & Gardening). The label
distribution of these eight classes is highly imbal-
anced (cf. Figure 5).

# Samples 20, 784
Average blurb length in tokens 94.67
Total number of categories 343
# Categories on level:
1 8
2 93
3 242

# leaf nodes on level:
1 0
2 51
3 242

Average branching factor 6.7± 4.97
Average branching factor on level:
1 11.63± 6.39
2 5.76± 4.12

# Samples with labels of category on level:
1 20, 784
2 20, 406
3 11, 117

# Samples w/ cardinality (tlc*):
1 19, 422
2 1, 260
3 97
4 (maximum cardinality) 5

# Samples w/ cardinality:
see Figure 4 (maximum = 16)

Average cardinality (tlc*) 1.07± 0.28
Average cardinality 3.11± 1.37
# Distinct label combinations 484

Table 2: Quantitative characteristics of the dataset (*tlc:
top-level-categories).

Task B: The second task is a hierarchical multi-
label classification task where all categories of the
hierarchy have to be assigned to a book. In total,
343 different classes are hierarchically structured,
hence, not all combinations of categories are valid
as defined by the hierarchy.

Submission Setup: The entire submission pro-
cess was organized within the framework of a
CodaLab competition12. We limited the number of
system submissions to three per team. The data re-
lease cycle went in three phases: In the first phase
only a limited number of samples was released to
familiarize with the structure of the dataset; in the
second phase the training set with labels and the
development set without labels were released and
participants were able to submit their solutions for
the development set to the CodaLab website; the

12https://competitions.codalab.org/
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Figure 5: Top-level sample distribution.

third phase is the final test phase where the test set
samples without labels and the labels for the de-
velopment set samples were provided.

5 Systems

5.1 Organizer Systems

Baseline: SVM As a baseline method, we im-
plement a traditional, non-hierarchical classifier
using the local approach as described by Silla and
Freitas (2011). We chose to use a linear SVM
(Cortes and Vapnik, 1995) since it yielded good
results in preliminary experiments. We exclu-
sively use the blurb of a book to create features
for the SVM and decided on minimal preprocess-
ing, i.e. tokenization is performed using spaCy13

and stop words – as defined by spaCy – have been
filtered. We then created a bag-of-word represen-
tation of unigrams and bigrams. Since the SVM
is a binary classifier, we opted for a one-vs-all
multi-label classification scenario, which was im-
plemented using the scikit-learn library14. We use
the standard value for the hyperparameter C = 1
and did not fine-tune it. Because predictions by
independent classifiers do not necessarily lead to
valid combinations as defined by the underlying
hierarchy, we apply a post-processing step where
we add missing parents of each predicted child la-
bel – recap that every child has an unambiguous
parent. This process provides hierarchy-consistent
label combinations but might lead to incomplete
combinations because we do not add child labels

13https://spacy.io/
14https://scikit-learn.org

# Primary capsules 100
Convolution window size 50
Dimension of primary capsules 8
Dimension of class. capsules 8
Optimizer Adam (Kingma and Ba, 2014)
Learning rate 0.002
# Epochs 10

Table 3: Hyper-parameter settings of the capsule net-
work as found by non-exhaustive search.

for inner category nodes.

Contender: Capsule Networks Capsule net-
works have recently been shown to have advan-
tages over traditional neural networks when con-
fronted with structurally diverse categories and
complex label co-occurrences (Aly et al., 2019;
Zhao et al., 2018). For this reason, and the fact
that the dataset is inherently unbalanced (as il-
lustrated in Figure 3), we decided to employ a
capsule network architecture from our previous
work as a contender system for comparative rea-
sons and out-of-competition. For the input, we to-
kenize the fields containing texts (title, author, and
blurb) with spaCy and concatenate them. Tokens
that appear only once in the dataset are replaced
with a special unknown-token word. The sequence
length of has been limited to 100 tokens. We ini-
tialize an embedding layer with pre-trained fast-
Text embeddings15 provided by Bojanowski et al.
(2017) and adjust them during training. The struc-
ture of the capsule network follows tightly the im-
plementation by Aly et al. (2019): Similar to Cap-
sNet1 in (Xiao et al., 2018), our proposed system
consists of four layers and every category in the
hierarchy is associated with one class capsule in
the network. As a post-processing step, we apply
the same correction procedure as described above.
Further hyper-parameter settings can be found in
Table 3.

5.2 Submitted Systems
This section aims to give a quick overview of the
different approaches used by the various teams for
Task A and B, a short overview can be found in Ta-
ble 4. We observe that the applied approaches can
be grouped into two major groups, i.e. one focus-
ing on the local approach where each node of the
hierarchy is classified independently, here, mainly
traditional classifiers are used, and one using the
global approach where nodes are classified jointly

15https://fasttext.cc/docs/en/
pretrained-vectors.html
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Team RA RB Classifier Approach Text Features Label (Post-)
processing

Additional Data Hierachical Model
Categorization

EricssonResearch
(Umaashankar and
Shanmugam S, 2019)

1 2 Conv Seq2Seq fastText random
oversampling

– global

TwistBytes
(Benites, 2019)

2 1 one-vs-all SVM TF-IDF n-grams +
char n-grams

LCA – local per parent

DFKI-SLT
(Ostendorff et al., 2019)

3 4 Transformer (BERT) BERT – Wikidata KG
Embeddings

global

Averbis
(Genc et al., 2019)

6 3 Global CNN fastText T Criterion – global

Raghavan
(K et al., 2019)

4 – one-vs-all SVM TF-IDF bi-grams label count
classifier

– –

Fosil-hsmw
(Bellmann et al., 2019)

5 – SVM chain GloVe + fastText – Author Database
from RH

–

HSHL
(Rother and Rettberg,
2019)

7 5 Logistic Regression
+ Naı̈ve Bayes

TF-IDF uni-grams limit by threshold – local

COMTRAVO-DS
(Batista and Lyra, 2019)

8 6 Local CNNs fastText – – local

HUIU
(Andresen et al., 2019)

9 – one-vs-all SVM BOW n-grams limit by threshold – –

Baseline – – one-vs-all-SVM BOW uni- & bi-grams root path completion – local
Contender – – capsule networks fastText root path completion – global

Table 4: Overview of submitted approaches.

in the same model, here traditional and neural net-
work classifiers are employed.

A variety of solution approaches have been
submitted, 4 teams used SVM classifiers, where
Fosil-hsmw opted for an RBF kernel and
TwistBytes, HUIU, and Raghavan used
a linear kernel function. HSHL decided to
use a combinded approach using Logistic Re-
gression and Naı̈ve Bayes, and 4 teams used
neural network approaches, whereas 3 teams
(EricssonResearch, COMTRAVO-DS, and
Averbis) included convolutional layers in their
architecture, and DFKI-SLT used an approach
based on the transformer architecture (Vaswani
et al., 2017), specifically BERT (Devlin et al.,
2019). Whereas most teams used standard to-
kenization approaches such as spaCy, NLTK16,
scikit-learn, etc., Raghavan use a Byte-Pair-
Encoding (BPE) approach for tokenization.
With those more general pieces of words, team
Raghavan can build a more general vocabulary
with reduced size. As text-representation within
the classifier architecture, 4 teams decided to used
traditional sparse representations in form of TF-
IDF feature vectors (TwistBytes, Raghavan,
HSHL) based on token-, POS-, or character
n-grams and varying n (mostly n = {1, 2}).
Fosil-hsmw, EricssonResearch,
DFKI-SLT, COMTRAVO-DS, and Averbis
relied on pre-trained embeddings, whereas
Fosil-hsmw and EricssonResearch also
trained embeddings on the provided blurbs.

16http://www.nltk.org/

fastText17 (Bojanowski et al., 2017) was mostly
selected as the embedding framework of choice
due to its ability to account for sub-word informa-
tion and thus better handling of out-of-vocabulary
words.

Other (provided) metadata processing, e.g.
the number of authors, age of a book, gender
of the author(s), ISBN-part splitting, etc., has
been employed by several teams: Fosil-hsmw,
EricssonResearch, DFKI-SLT, HUIU, and
Raghavan. Further, external data was used by
2 teams: DFKI-SLT used knowledge graph em-
beddings based on Wikidata18, and Fosil-hsmw
crawled the Random House website for additional
author information to set up an author database
and train task-specific embeddings.

Several teams studied the issue of label post-
processing, i.e. the coherence of the hierarchy
or more generally the number of labels to pre-
dict for a sample, by using several approaches:
TwistBytes used a technique called LCA (La-
bel Cardinality Adjustment; details can be found
in their paper) for limiting the number of labels to
predict, Averbis used a similar correction step
as described in Section 5.1 named T-Criterion in
order to correct non-connected child nodes, HSHL
and HUIU used a threshold mechanism for the
number of labels to predict (the threshold(s) were
treated as a hyperparameter and optimized accord-
ingly), and Raghavan used an independent pre-
diction model for the number of labels. Motivated
by the inherent imbalance of the sample size per

17https://fasttext.cc
18https://wikidata.org
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label, EricssonResearch used random over-
sampling as a technique to balance the dataset.

6 Results and Discussion

6.1 Evaluation Metrics
Several metrics have been introduced to evaluate
systems for hierarchical classification tasks, here,
we use micro-averaged recall, precision, and F1-
score and follow suggestions by Silla and Fre-
itas (2011) and Sorower (2010). While macro-
averaging, the respective scores are computed for
each label individually and then averaged to pro-
duce a final single score; micro-averaged scores
are computed globally for each metric over all in-
stances. Thus, more frequent labels have a higher
impact on the micro-averaged score, which essen-
tially affects more general labels, since they ap-
pear more frequently in the dataset. Hence, we
impose more importance on correct predictions on
higher levels believing this yields to a more real-
istic scenario. (Silla and Freitas, 2011) suggest
the use of micro-averaged scores for hierarchical
classification tasks and even refer to them as hier-
archical precision, recall, and F1. However, these
flat performance measures do not necessarily align
with hierarchical ones, as shown in (Brucker et al.,
2011), we thus additionally measure the hierarchi-
cal consistency score (HC) for Task B. This score
measures the ratio of predictions made by the sys-
tem that conform with the underlying label hier-
archy, i.e. that all ancestors of a label are also as-
signed to the sample.

We further employ the exact match ratio or
so-called subset accuracy (Acc) as described in
(Sorower, 2010) because it captures how well la-
bels are selected in relation to each other. In con-
trast to the F1-score, which takes partially correct
classifications into account, the subset accuracy
is a very strict metric as there is no distinction
between partially correct classification and com-
pletely incorrect classifications.

6.2 Quantitative evaluation
The extensive list of results during the test phase
and the post-evaluation phase is shown in the ap-
pendix A and B. The following analysis is based
only on the results of the best system submitted by
each team during the test phase.

Task A: Scores of the best system submission
from each team for Task A are listed in Ta-
ble 6. The best performing system achieved a

micro-F1 score of 0.867 and was submitted by
EricssonResearch19. Besides, this system
has also achieved the highest subset accuracy with
a significant margin to the second-highest score.

Further analysis of the scores for each
top-level category shows that the system by
EricssonResearch performed especially
well on categories with the fewest samples in the
dataset, i.e. Architektur & Garten (Architecture
and Gardening) and Künste (Arts) as can be
seen in Table 5. In contrast, our Baseline
system performs the worst for these classes and
lacks behind significantly to all submissions. For
categories with a high number of examples such
as Literatur & Unterhaltung (Literature & Enter-
tainment), all submitted systems perform equally,
which indicates that the main challenge for Task
A might be data sparsity. EriccsonResearch
was the only team that explicitly addressed this
issue by using random oversampling.

Task B: Results for Task B are listed in Ta-
ble 7. Team TwistBytes submitted the sys-
tem with the highest F1 score of 0.6767. The
subset accuracy score of 0.3791 of the system by
EricssonResearch (2nd rank) is particularly
interesting, outperforming all other teams by at
least 11%. Regarding hierarchy conformity (HC),
five out of six systems have a perfect score con-
cerning the inherent category hierarchy (HC). No-
tably, the system submitted by DFKI-SLT has an
almost perfect hierarchy consistency (HC) score
although they do not directly encode any hierar-
chy information within their model. Again, the
Baseline system was outperformed by a large
margin, scoring lowest of all systems in terms of
recall, but surprisingly also achieving the highest
precision score.

The capsule network (contender) performs in
the mid-range, while the only other global ap-
proach that outperforms the capsule network is by
EricssonResearch.

Further analysis of F1 scores on each hierarchy
level shows a performance decline throughout all
systems for categories on deeper, and thus sparser,
levels (c.f. Figure 6 (a) and (b)).

19Note that team Raghavan submitted improved results
in the post-evaluation phase that beat the best results of the
test phase.
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Team
Literatur &

Unterhaltung Sachbuch
Kinderbuch &

Jugendbuch Ratgeber
Ganzheitliches

Bewusstsein
Glaube &

Ethik
Architektur &

Garten Künste
EricssonResearch 0.93 0.75 0.88 0.79 0.78 0.75 0.77 0.85
twistbytes 0.92 0.76 0.87 0.79 0.80 0.78 0.71 0.74
DFKI-SLT 0.93 0.78 0.84 0.79 0.79 0.73 0.69 0.81
Raghavan 0.93 0.75 0.87 0.79 0.74 0.74 0.65 0.65
Fosil-hsmw 0.92 0.71 0.84 0.73 0.73 0.74 0.71 0.77
Averbis 0.92 0.71 0.82 0.73 0.77 0.74 0.56 0.68
HSHL 0.90 0.72 0.76 0.74 0.74 0.72 0.65 0.62
Comtravo-DS 0.90 0.71 0.78 0.76 0.74 0.73 0.65 0.67
HUIU 0.89 0.70 0.74 0.73 0.71 0.68 0.61 0.73
Contender 0.91 0.71 0.83 0.76 0.78 0.77 0.71 0.77
Baseline 0.90 0.68 0.69 0.72 0.69 0.63 0.34 0.45
# Samples in test set 2182 (49%) 650 (14%) 575 (13%) 536 (12%) 262 (6%) 183 (4%) 44 (1%) 38 (<1%)

Table 5: F1 scores for top-level categories for Task A.

Rank best System by Team Acc Precision Recall F1

1 EricssonResearch .84 .89 .84 .87
2 TwistBytes .79 .87 .86 .86
3 DFKI-SLT .82 .88 .85 .86
4 Raghavan .83 .88 .84 .86
5 Fosil-hsmw .79 .84 .83 .84
6 Averbis .79 .86 .81 .83
7 HSHL .77 .82 .82 .82
8 Comtravo-DS .72 .81 .83 .82
9 HUIU .76 .81 .81 .81

Contender .74 .82 .85 .84
Baseline .71 .86 .75 .80

Table 6: Results for Task A of participating teams.
Only the best performing system per team is listed.
Scores are micro-averaged.

Rank Model Acc Precision Recall F1 HC

1 Twistbytes .25 .71 .65 .68 1
2 EricssonResearch .38 .74 .62 .67 1
3 Averbis .27 .68 .61 .64 1
4 DFKI-SLT .21 .78 .52 .62 .97
5 HSHL .26 .72 .54 .62 1
6 Comstravo-DS .19 .70 .53 .60 1

Contender .25 .76 .56 .64 1
Baseline .15 .85 .39 .53 1

Table 7: Results for Task B of all participating systems.
Only the best performing system is listed. Illustrated
scores are micro-averaged.

7 Summary

We presented the summary report of the
GermEval-2019 Task 1: Hierarchical Classi-
fication of Blurbs which included two sub-tasks:
classification of categories of different granu-
larities. As part of this shared task, participants
were provided with a dataset consisting of blurbs
including metadata in German of around 20K
books. The shared task consisted of three phases:
the first phase was designed to familiarize with the
task and the data, the second phase provided the
training data and a platform to compare the perfor-
mance of submissions on the held-out validation
set, and the third phase provided access to the

(a) F1 scores on categories that are on the second level of the
label hierarchy.

(b) F1 scores on categories that are on the third level of the
label hierarchy.

Figure 6: Performance report on different levels of the
hierarchy.

validation data for additional training and disabled
performance comparisons on the held-out test set
for fairness purposes. System submissions cover
a variety of approaches to deal with the category
hierarchy: three systems (+ baseline) were de-
signed using the local approach, either by learning
one model (SVM or CNN) per parent node or
per level. Four (+ contender) systems employed
the global approach: three teams use CNNs
and one uses transformer networks with a linear
decoder on top. Most systems incorporated the
hierarchy directly into their system or employed a
post-processing step to adjust predictions. While

288



some of the top-performing teams employed deep
neural network architectures either for learning a
representation of blurbs or for the classification
task itself, well adjusted and fine-tuned traditional
classifiers have shown competitive results.
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Qiuyi Hu, Tamara Lange, Alica Stuhr, Jian Xi, Dirk Labudde, Michael Spranger

University of Applied Sciences Mittweida
Technikumplatz 17
09648 Mittweida

spranger@hs-mittweida.de

Abstract
Due to the increasing digitalisation multi-label
classification gains in importance in many ar-
eas. In this paper we propose a method to clas-
sify blurbs into eight basic book genre using an
ensemble of classifier chains composed of ra-
dial support vector machines using word em-
beddings and author information as features.
Five models were tested using different imple-
mentations and features, as well as different
numbers of chains. The best model reached
a performance of a micro average F1 of 0.841.

1 Introduction

The increasing digitalisation often requires the in-
tegration of data and print media. In most cases,
the first step is the classification of the datasets,
or more specifically the documents, into a taxon-
omy, for example in order to assign these to differ-
ent fields. For instance, before a bank approves a
credit request, all the information given by the ap-
plicant has to be assigned to different categories to
assess whether all required documents have been
handed in or, when necessary, to inform the re-
sponsible official. Additional applications might
be in forensics to classify evidential documents or
in the library system. For the latter, the task is
to sort the books into a thematic library taxonomy
based on the short summary given on the back of
a book’s cover (blurbs). The difficulty, compared
to a simple classification task, is the multinomially
mapping of the books to the labels in a taxonomy,
meaning each book can be assigned to more than
one category which can belong to different taxon-
omy levels (Remus et al., 2019).

The GermEval 2019 shared task addresses this
task for the German language with two subtasks,
whereas the second one focuses on the different
taxonomy levels. The data consists of blurbs of
German books, which are provided by the pub-
lisher Random House. These blurbs and several

meta information for instance the title and author
have to be categorized into the most common writ-
ing genres and subgenres of German literature.
For the first task these are only the taxonomy en-
tries of the first level, namely: Literatur & Un-
terhaltung, Ratgeber, Kinderbuch & Jugendbuch,
Sachbuch, Ganzheitliches Bewusstsein, Glaube &
Ethik, Künste, and Architektur & Garten. In this
paper an approach based on chained SVM models
is presented and tested for the first task. The paper
is organized as follows: First, some related work is
presented in Section 2. Then an overview is given
of the data and the methods in Sections 3 and 4.
The results are presented in Section 5 before we
conclude with Section 6.

2 Related Work

In the last two decades a lot of research has been
conducted in the field of multi-label text classifi-
cation whereas over time research has focused on
several approaches. The most obvious approach
is to adapt classifiers, such as kNN (Zhang and
Zhou, 2005) or neural networks, to the multi-label
task. Yet, typically, such classifiers have some
shortcomings such as a high algorithmic complex-
ity, which may lead to high computational costs.
Another possibility is the transformation of the
problem into several binary classification prob-
lems, also known as binary relevance approach. In
this case two approaches exist. The one-versus-
all approach trains one binary classifier per label
and the all-versus-all one for each possible label
combination. While the complexity of the one-
versus-all approach grows linearly, the complexity
of the all-versus-all approach increases approxi-
mately quadratically. However, the disadvantage
of the one-versus-all approach is that it does not
consider possible label correlations. One way to
address this problem is to build a final classifier
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with two stages. In the first stage each docu-
ments is classified using the binary classifier and
then, in the second stage, the decisions are added
to the input vector before the classifier is trained
again, so that, in fact, the classifiers do not work
independently anymore (Godbole and Sarawagi,
2004). Based on the aforementioned paper Read
et al. (2009; 2011) developed classifier chains and
subsequently ensembles of them which address
the problem that different classifier orders result
in different decisions.

Another important part is the representation of
the documents. Usually, they are modelled as a
term frequency vector (bag of words) in a Vec-
tor Space as described in Salton et al. (1975), yet,
the resulting document vectors are high dimen-
sional and sparse. Subsequently, vectors repre-
senting words and their relations in low dimen-
sional space can be used as introduced in Mikolov
et al. (2013a). Additionally, methods like Global
Vectors (Pennington et al., 2014) and FastText
(Joulin et al., 2017) were developed but with these
approaches alone complete texts cannot be rep-
resented as low dimensional vectors. Addressing
this problem Mikolov et al. (2013b) described that
the addition of this word vectors produces mean-
ingful results. Furthermore Yin and Jin (2015) hy-
pothesize that the sum of word vectors of all words
in a document results in a meaningful document
vector. Although they apply the idea only to skip
gram models Chilakapati (2018) generalized this
to all word embeddings.

3 Data

The data used in this paper was provided by the or-
ganizers of the first task for the GermEval2019 and
consisted of blurbs from 20,784 books from the
publisher Random House. The models described
in this paper were trained on the training set con-
taining 14,548 blurbs and evaluated with the vali-
dation set (2079 blurbs). For the submitted model
both, the training set as well as the validation data
set, were used.

Each document consists of title, blurb, author,
URL, ISBN, release date and associated labels. As
can be seen in Table 1 the dataset is unbalanced
with the category Literatur & Unterhaltung with
the largest amount of books having 7817 books
compared to 128 in the category Architektur &
Garten.

Furthermore, some anomalies could be ob-

served while exploratively analysing the data,
which, however, only concerned about one percent
of the data. For example, for some books no au-
thors were available, while for others the blurbs
were missing. In the second case, the data sam-
ples would have a null vector as a document vector
and, consequently, would not have been assigned
to a category. However, as additional author infor-
mation was used as one feature some documents
with a missing body were simply assigned to the
author’s genre. Books with no author information
were handled in the same way as those books for
which no information was available in the created
author database (see Section 4.3).

Additionally, a few special books were found in
the dataset. Their ISBN starts with a four, whereas
usually the ISBN begins with the digit nine. Af-
ter a short overall inspection concerning these ob-
jects, it was discovered that a few so called fan
products were placed in the data set. The first
idea was to delete them, but because of an exist-
ing body, it was decided to keep them. In fact,
it turned out that most of them were assigned to
the correct genre. Another problem was that the
category Ratgeber has no equivalent category on
www.randomhouse.de. This problem could
not be solved. As a result the category Ratgeber
was not taken into account for the additional fea-
ture based on the writing genre of the authors.

Genre # blurbs

Literatur & Unterhaltung 7817
Sachbuch 2201
Kinderbuch & Jugendbuch 1987
Ratgeber 1862
Ganzheitliches Bewusstsein 803
Glaube & Ethik 598
Künste 146
Architektur & Garten 128

Table 1: Number of blurbs in each genre.

4 Methods

To solve the given classification task, an ensemble
classifier chain as described by Read et al. (2009;
2011) was used. Global Vector as well as Fast-
Text representations of the texts combined with
the information in which genre the respective au-
thor mostly publishes their work were considered
as features. Due to the unbalanced nature of the
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data the micro average F1-measure was used as
the main evaluation criterion.

4.1 Encoding multi-class labels
For this task each possible category combination a
book can belong to is encoded in one single num-
ber in order to handle these multi label categories
easier. Hence, the category vector is considered as
a bit pattern of the size eight. Each position in this
pattern is related to one genre, as shown in Table 2.

Encoding Genre

1 Literatur & Unterhaltung
2 Sachbuch
4 Kinderbuch & Jugendbuch
8 Ratgeber
16 Ganzheitliches Bewusstsein
32 Glaube & Ethik
64 Künste
128 Architektur & Garten

Table 2: Encoding for each genre.

Consequently, multi-label categories can be
represented by adding up those bit values, so ev-
ery combination has its own unique number. For
example, if a document was classified as Literatur
& Unterhaltung and Glaube & Ethik at the same
time, the binary code would be 00100001 (in dec-
imal: 1 + 32 = 33). Therefore, its (multi label)
category would be 33.

4.2 Preprocessing
As the data was provided by the organizers in an
XML format, in a first step, it was converted into
CSV data sets. Then, the data was filtered in or-
der to get rid of the fine-grained categories. Fur-
thermore, all columns except of title, author and
body were removed. Afterwards, the blurbs con-
tained in the body were tokenized into words and
normalized. This included the conversion to lower
case as well as lemmatizing and POS tagging us-
ing TreeTagger (Schmid, 1994). For further pro-
cess steps only adjectives, nouns, verbs and ad-
verbs were used.

4.3 Feature modelling
Vectorization
Next, the blurbs were vectorized, by converting
each blurb into a low dimensional document vec-
tor. To do so, a pre-trained Global Vector (GloVe)

with 300 dimensional word vectors based on a
bag of words (BOW) containing a corpus with
about 850,000 words of the German Wikipedia
was downloaded from Pietsch et al. (2018). In or-
der to create low dimensional and non-sparse doc-
ument vectors the method described in Yin and
Jin (2015) was used. The authors show that tak-
ing word vectors into account leads to more mean-
ingful results which is basically the idea of word
embeddings.

Subsequently, each document representation is
simply the sum of these vectors weighted by the
term frequency of the respective word, as show in
Equation 1, were n is the number of words in the
corpus, tj is the frequency of each word wi in the
specific document, and vj represents the word vec-
tor of each word wi.

~d∗i =
n∑

j=1

(tj · vj) (1)

For comparison, we built a new 230 di-
mensional FastText model (continues bag of
words), which was trained on about 29,000
blurbs, consisting of the blurbs in the provided
data and additional blurbs crawled from www.
randomhouse.de.

At the end, the document vectors were standard-
ized to the euclidean length 1.

Including author information
As mentioned above, information about the au-
thor was included as an additional feature. The
necessary information was crawled from the pub-
lisher’s website www.randomhouse.de. More
precisely, information about 15,717 authors was
crawled to find out how many books an author
wrote in each of the eight categories. Then, this
information was transformed into one vector a for
each author containing eight elements a1, ..., a8,
one for each category, each including the publish-
ing frequency of the author in this category. As al-
ready discussed before, no information was avail-
able for the category Ratgeber. Further, each vec-
tor was normalized in order to get comparable re-
sults as well as weighted to achieve higher values
if the author is very active as shown in Equation 2.

a′i =
ai∑n
j=1 aj

log(ai + 1) (2)

Finally, the author vector was appended to the
document vector to include it in the model.
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4.4 Classifier Chains
Classifier chains are first described in Read et
al. (2009) and consist of several binary classi-
fiers linked together. It is a method which turns
a multi-label classification problem into n binary
ones, whereas n is the number of possible cate-
gories. In this specific case, there is one binary
classifier for each of the eight categories. The ad-
vantage of this method is that the classifiers do
not work independently, but take into account the
other classifiers’ results. Thereby, correlations be-
tween the labels will have an influence on the final
result. This is especially valid if there exist in-
terdependencies between categories as is the case
in highly branched taxonomies. Even though this
is obviously not the case for the coarse classifica-
tion task, it can not be completely excluded and
it is definitely relevant for the fine-grained classi-
fication task (classification including subgenres).
The models in this paper use these classifier chains
as described in Read et al. (2009; 2011) and an
overview is given in Figure 1.

The input for the classifier chain is a document’s
feature vector ~f containing the word features wi

from the document vector ~d∗i and the author fea-
tures a1, ..., a8. In a specified order each bi-
nary classifier predicts one category and forwards
[~f, ci] as an extended document vector, whereas ci
is the predicted result of this classifier. The addi-
tional dimensions represent the multi-label classi-
fication of the document.

Classifier 1

(𝑤1, … , 𝑤𝑛, 𝑎1, … , 𝑎8)

𝟏/𝟎 (𝑤1, … , 𝑤𝑛, 𝑎1, … , 𝑎8, 𝒄𝟏)
Category 1

Classifier 2 𝟏/𝟎 (𝑤1, … , 𝑤𝑛, 𝑎1, … , 𝑎8, 𝑐1, 𝒄𝟐)
Category 2

Classifier 2

Classifier 8 𝟏/𝟎 (𝑤1, … , 𝑤𝑛, 𝑎1, … , 𝑎8, 𝑐1, … , 𝒄𝟖)
Category 8

Classifier 2…

Figure 1: Structure of a classifier chain. The input for
the chain is a document vector consisting of word fea-
tures wi and author features ai. Each linked classifier
adds its decision as feature ci to that vector. The result-
ing vector serves as the input for the next classifier.

Basically, the order of the classifiers in the chain
can be chosen arbitrarily or randomly. If there is
an inherent order between categories then this or-
der should be resembled in the order of the classi-

fiers. As already described there is no such inher-
ent order in the coarse classification task. There-
fore, a random order was chosen. Any hidden de-
pendencies can be considered by classifying re-
peatedly in different orders as described in Sec-
tion 4.5.

The binary classifiers represent the core of a
classifier chain. For the used models a Support
Vector Machine with a one-versus-all technique
was chosen because it works well with high di-
mensional vectors. The Support Vector Machine
finds the optimal hyper-plane in the feature space
in order to separate the categories and then classi-
fies new vectors by mapping them into the feature
space (Lee et al., 2011).

In this study, two different implementations of
Support Vector Machines were tested. Both were
used with an Radial Basis Function kernel which
maps the vectors in a non linear way into the fea-
ture space. Therefore, it can handle non linear cor-
relations between the features. Additionally, the
classes were weighted because the dataset is very
unbalanced (Hsu et al., 2016).

Both implementations differ in the way to train
the Support Vector Machine. Using LibSVM
(SVM-C) (Chang and Lin, 2001) requires the user
to set the parameters C and γ manually. In this
study the standard parameters C = 1 and γ =
1/|~f | were chosen. In contrast, the caret package
(version 6.0-84) for R implements a radial Support
Vector Machine that tries to optimize its parame-
ters using a given number (in this case 20) of ran-
domly chosen parameter sets (Kuhn, 2019).

4.5 Ensemble Classifier Chains

The ensemble classifier chains are a method to
overcome limitations of classifier chains and to
improve their performance. As mentioned be-
fore, the performance of a classifier chain may de-
pend on the order of the single classifiers and may
lead to different results. In a learning ensemble
this problem is minimized by grouping together
a number of classifier chains each with a differ-
ent order. It was used as described in Read et
al. (2009; 2011).

Subsequently, a function is needed to determine
the number of chains that need to come to the same
voting in order to determine the overall category
for a given document. Read et al. (2011) suggest to
use the method by Tsoumakas and Katakis (2007)
to calculate a threshold value as a lower bound
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for the number of chains that need to be in agree-
ment. In more detail, they use the label cardinality
LCard which is the average number of labels L
per document over all categories (see Equation 3),
whereas Li,j is the label assigned to the i-th docu-
ment for the j-th category.

LCARD =
1

N

N∑

i=1

|L|∑

j=1

Li,j (3)

The number of the voting classifier chains v that
minimizes the difference between the LCard of
the training set and the LCard of the test set is
considered to be the optimal number of of voters v̂
which have to be in agreement (see Equation 4).

v̂ = argmin
v
|LCardtrain − LCardtest| (4)

5 Experimental Results

The models used in the study were trained on
the training set containing 14,548 blurbs. For the
evaluation the provided validation set containing
2079 blurbs and the Python script was used (Aly
et al., 2019). The models were named accord-
ing to which method or feature was used. An
overview of the abbreviations is given in Table 3.
Each name thus consist of the SVM implementa-
tion used (L or C), the vectorization method (G or
F) and whether or not the author information was
used as an additional feature (A or nothing).

method/feature value abbrev.

SVM LibSVM / Caret L / C
vectorization GloVe / FastText G / F
author yes/no A

Table 3: Explanation of abbreviations for naming the
models.

5.1 Comparison of different Models
Overall, five different models were compared with
each other, whereas for each model 5 chains were
used to prevent anomalies of single chains. The
results can be found in Table 4. It can be seen that
the CGA-model has the best performance with an
F-score of 0.8291, as well as the best results for
precision and recall. Furthermore, it can be noted
that both models using FastText perform worse
than the models using GloVe. The reason could

be the vectorization method itself, yet, it should
also be considered that for GloVe pre-trained vec-
tors were used whereas FastText was trained on
the blurbs, a much smaller corpus.

Additionally, it can be seen that those models
containing the author information as a feature per-
form better than those not considering this infor-
mation. This can be easily explained. Most au-
thors wrote books in only one of the eight cat-
egories and correspondingly, about 93% of all
books only belong to a single category. Hence,
using the additional information can improve the
results.

Model Precision Recall F1

CFA 0.7758 0.7619 0.7688
CF 0.6515 0.6596 0.6555
CGA 0.8429 0.8157 0.8291
CG 0.7656 0.7794 0.7724
LG 0.7690 0.7955 0.7820

Table 4: Evaluation results for different models each
containing five chains.

5.2 Influence of the number of chains

The influence of the number of chains in an en-
semble classifier chain was analysed using the ex-
ample of the CG-model. The results are shown in
Table 5. It can be seen that the performance only
slightly increases with the number of chains and
that the best F1-score is reached with 10 chains.
However, the difference to the F1-score of one
chain is only minimal. The results confirm the
assumption that there is no clear interdependency
between the categories at the upper level.

# chains Precision Recall F1

1 0.8083 0.7395 0.7724
2 0.7756 0.7704 0.7730
3 0.7793 0.7614 0.7702
4 0.7743 0.7722 0.7732
5 0.7656 0.7794 0.7724
6 0.7748 0.7776 0.7762
7 0.7748 0.7776 0.7762
8 0.7796 0.7709 0.7752
9 0.7778 0.7785 0.7781
10 0.7802 0.7897 0.7849

Table 5: Performance of the CG model with different
numbers of chains.
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Moreover, when a single chain is used, the dif-
ference between precision and recall is greater
than when more chains are used. This can be ex-
plained with the threshold value. That means, the
more chains need to be in agreement, the more
decreases the probability to assign a certain cate-
gory erroneously, but the more decreases the prob-
ability to assign that category generally. In other
words, the classifier chain is more conservative in
assigning a label. As a consequence less cate-
gories are predicted which leads to a higher pre-
cision but a lower recall.

5.3 Combination of different models
As was discussed in Section 5.1, the models dif-
fer in their performance depending on what fea-
tures are used. Hence, one idea was to combine
the two best performing models (CGA and LG) in
order to get better results. Thus, the models were
combined by using different numbers of chains
from each model. However, no further improve-
ment could be noticed. The best F1-scores are
still reached when only the CGA model is used.
This indicates that both models misclassify ap-
proximately the same books. Consequently, these
books cannot be classified correctly, even when
combining two models.

5.4 Performance of the different categories
In this section the performance of each category
is presented using the example of the CGA-model
containing 10 chains and using a minimal consen-
sus of four voters. This model is the one with the
best overall performance, reaching an F1-score of
0.841.

We found out that the categories (1, 2, 4, 8, 16,
32, 64, 128) perform very good if they occur as
the only category for a book (single label). The
category with the best results is category one (Lit-
eratur & Unterhaltung) with an F-score of 0.931,
whereas the category with the worst results is 16
(Ganzheitliches Bewusstsein) with an F-score of
0.625. The first category is also the category with
the most books in the corpus; about 50% of all
books. Thus, it is not surprising that this category
has the best classification results. It is also the rea-
son for the good overall performance of the model.
In contrast, the performance is much worse when
categories are combined (multi label). Then all F-
scores are below 0.3333 and most of them are even
0. In all those cases precision as well as recall are
very low. Nevertheless, it does not affect the over-

all performance much because it is evaluated us-
ing the micro average F-score and the multi label
classes only rarely appear (about 7%).

6 Conclusion

This paper deals with multi-label classification of
blurbs using ensembles of classifier chains. The
best result was achieved with an ensemble of 10
classifier chains, whereas for each classifier a Sup-
port Vector Machine with a radial kernel function
was used as well as a global vector representation
combined with the author information as one fea-
ture with an micro F1-score of 0.841. It was shown
that neither the number of chains nor the combi-
nation of different models had an important influ-
ence on the performance. Furthermore, the per-
formance of each category was analysed and the
results show that the best performing category is
Literatur und Unterhaltung, whereas the worst on
is Ganzheitliches Bewusstsein.
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Abstract

In this paper, We describe our approach for
Germeval 2019 Task 1, a hierarchical multi-
label multi-class text classification task. This
task involves two subtasks where short de-
scriptive text about German books need to be
classified into one or multiple (a) top level cat-
egories (8 classes). (b) specific categories (343
classes). We present a novel approach of using
Convolutional Seq2Seq modeling for solving
both the tasks with a single model. In addition,
We use category based random over sampling
to handle the imbalance. Our approach reaches
f1-micro score of 0.867 on Subtask (a) and
0.6722 on Subtask (b). Our approach achieved
first rank in Subtask (a) and second rank in
Subtask (b) in the test phase of the shared
task. Our code is available in the link https:
//gitlab.com/vumaasha/germeval.

1 Introduction

Multi-label Multi-class Hierarchical classification
(MLMCHC) refers to a setting where We can as-
sign one or more labels to each instance (multi-
label) where each label can have more than two
possible classes (multi-class) that could be or-
ganized in a hierarchical structure (hierarchical).
MLMCHC problems are common in domains like
text classification (Rousu et al. (2006)), image
classification (Hsu et al. (2009)) and bioinformat-
ics (Barutcuoglu et al. (2006), Feng et al. (2017)).
It is more commonly used in the field of Natural
Language Processing (NLP) to classify text doc-
uments where a document can have multiple top-
ics associated with them. Unlike the traditional
flat classification approach, in MLMCHC the la-
bel cardinality (Charte et al., 2015) and number of
labels is typically high. Also, the labels are inter-
dependent and their distribution is skewed.

Traditionally, the hierarchical classification
problem is solved by a binary relevance approach

where the task is reduced to a flat classification
problem by ignoring the label hierarchy and learn-
ing an independent binary classifier for each la-
bel in the taxonomy or ontology (Tsoumakas et al.
(2009)). However, this approach neglects the cor-
relations between labels. Cerri et al. (2016) follow
a top-down strategy using neural networks where
they use the previous level along with the feature
vectors to predict the current level. The issue in
this strategy is that the error in a level gets prop-
agated to all the levels following it. Classifier
chains (CC) proposed by Read et al. (2011) uses
a chain of binary classification problems to model
the correlations between labels. This approach is
computationally expensive since it relies on train-
ing a cascade of classifiers.

Seq2Seq models have achieved tremendous
success in machine translation (Bahdanau et al.
(2014), Cho et al. (2014)). Li et al. (2018) and
Hiramatsu and Wakabayashi (2018) have used
RNN in their Seq2Seq models for product taxon-
omy classification. For machine translation tasks,
RNNs are most preferred choice than CNN be-
cause of their superior performance on text ap-
plications. Gehring et al. (2017) have proposed
a Convolutional Seq2Seq model which achieves
state-of-the-art accuracy at nine times the speed of
recurrent neural systems.

In our approach, we use Convolutional
Seq2Seq architecture to model MLMCHC as a
translation task, apply it to Germeval Task1 and
evaluate the results. Experiments show that our
approach can classify the books more precisely
and our model reaches the f1-micro scores of
0.867 on Subtask (a) and 0.6722 on Subtask (b).
Our approach achieved first rank in Subtask (a)
and second rank in Subtask (b) in the test phase of
the shared task. The rest of the paper is organized
as follows. We describe the characteristics of the
dataset in Section. 2. In Section. 3, we present
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our modeling pipeline that explains the sequence
of steps in our approach. Feature engineering, im-
balance handling and model architecture are ex-
plained in Section. 3.1, Section. 3.3 and Section.
3.6 respectively. In Section. 3.9 and Section. 4
we provide our experiment setup. Finally, in Sec-
tion. 5 we conclude and provide details about the
possible future works.

2 Germeval 2019 Task 1 Dataset

The dataset contains the attributes URL, ISBN, ti-
tle, authors, blurbs, categories, and date of publi-
cation corresponding to German books which are
crawled from randomhouse.de. The categories
could be organized as a hierarchy tree and the
metadata corresponding to the hierarchy is pro-
vided. This dataset follows the policies described
in the RCV1 dataset by Lewis et al. (2004).

343 unique categories are hierarchically struc-
tured (8, 93 and 242 on level 1, 2 and 3 respec-
tively). One or more specific categories are as-
signed to each book. Specific categories need not
have to be a leaf node. For instance, the most
specific category of a book could be Romane &
Erzäulungen, although Roman & Erzählungen has
further children categories, such as Romanbiogra-
phien.

Figure 1: Top Level label distribution

The category distribution for top levels, all lev-
els and specific categories are shown in figures
1, 3 and 2. From the distributions, it can be ob-
served that label distributions on the top level and
all levels are much skewed than that of specific
categories.

Charte et al. (2015) provides various metrics for
characterizing imbalance in Multi-Label Datasets
(MLD). According to them, any MLD with a Max
Imbalance Ratio per Label (MeanIR) value higher
than 1.5 (50% more of samples with majority label
vs minority label, in average) and Coefficient of
variation of IRLbl (CVIR) value above 0.2 (20% of
variance in the IRLbl values) should be considered

Figure 2: Label distribution for specific categories ex-
cluding ancestors for top 30 classes

Figure 3: Label distribution including ancestors for top
30 classes

as imbalanced. Our dataset has a high MeanIR of
118.46 and high CVIR of 1.76 for specific category
assignments. This shows that this dataset suffers
from severe imbalance.

3 Modeling Pipeline

Our modeling work flow is shown in the figure 4.
we used a single model for both the subtasks. Our
model was trained to perform the Subtask (b). The
results from the Subtask (b) are used to generate
the results for Subtask (a).

3.1 Data Preparation
We created a hierarchy object from the relation-
ship information provided in the file hierarchy.txt.
This hierarchy object provides a programmatic
interface to get information about any category
in the hierarchy. The raw data is provided in
the XML format. We parsed the XML files us-
ing BeautifulSoup, a Python package for parsing
HTML and XML documents and converted them
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Figure 4: Modeling Pipeline

into CSV format.
We concatenated author, title, year along with

the blurb into a single text for every book. For
the author, title and year, we applied contextual
concatenation by inserting markers at the start
and end of the context. We concatenated the au-
thor information as (@AUTHOR <Author names>
AUTHOR@) and similarly for title and year, we
used (@TITLE <Title> TITLE@) and (@YEAR
<Year> YEAR@). A 13 digit ISBN consists
of five parts. We extracted the 2 and 3rd part
corresponding to Group and Publisher and ap-
pended them to the input text as (@ISBN_GRP
<Group> ISBN_GRP@ and @ISBN_PUB <Pub-
lisher> ISBN_PUB@). This contextual concate-
nation allows us to use a single shared embed-
ding representation for multiple modalities such as
author, title, year, ISBN without losing the con-
text of individual attributes. Also, we preserve
the punctuation and special characters by mak-
ing them valid tokens. We split the labeled data
into two splits for training (95%) and validation
(5%) and use the unlabelled data as the test split.

3.2 Hierarchical Pruning

For each book, we only pick their specific cate-
gories (category tags that contain label="True"
attribute) as labels. When a book has multiple spe-

cific categories, our label is a concatenated string
of all the corresponding specific categories. After
predicting these specific categories, the hierarchy
object explained in Section. 3.1 can be used to
query the ancestor categories of a predicted node,
so we avoided including ancestor categories in our
labels.

3.3 Category Based Random Over Sampling

In our approach, we only use specific category
assignments as labels and skip the correspond-
ing ancestors that can be looked using the hier-
archy. Still, as we highlighted already in Sec-
tion. 2 the training split suffers from severe im-
balance. We alleviate this problem by performing
category based random oversampling on the train-
ing split. Our oversampling algorithm is shown in
Algorithm. 1. We oversample the training split by
15%, by using a value of fraction = 0.15. We
observe improvements in the imbalance metrics,
particularly the MeanIR reduces to 45.17 from
118.46. The imbalance metrics for specific cate-
gories on oversampled data is shown in Table 1
and a comparison of the distribution of top 30 mi-
nority classes are shown in the figure 5.

Actual Oversampled
Label Cardinality 1.46 1.55
Label Density 0.0043 0.0045
MeanIR 118.46 45.17
MaxIR 1474.00 1474.00
CVIR 1.76 1.85

Table 1: Imbalance characteristics for specific cate-
gories in Actual and Oversampled data

input : dataset, fraction
output: oversampled_dataset

1 oversample_size← size_of(dataset) ∗ fraction;
2 category_wise_freq← category_frequencies(dataset);
3 category_freq_mean← mean (category_wise_freq);

4 minority_categories← {};
5 foreach category, freq ∈ category_wise_freq do
6 if freq < category_freq_mean then
7 minority_categories← minority_categories ∪ {category};
8 end
9 end

10 // Average number of samples to be added for each
minority category

11 mean_increment← oversample_size/size_of(minority_categories);

12 over_samples← {};
13 foreach category ∈ minority_categories do
14 mean_diff← category_freq_mean− frequency(category);
15 samples_to_add← min(mean_diff, mean_increment);
16 over_samples

← over_samples ∪ random_sample(category, samples_to_add);
17 end
18 oversampled_dataset← dataset ∪ over_samples

Algorithm 1: Category Based ROS
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Figure 5: Top 30 Minority categories distribution

3.4 fastText Pretraining

In this phase, We use all the available data (over-
sampled training, validation and test splits) to
learn fastText embeddings for all the tokens in
the corpus. fastText provides an implementa-
tion for learning character n-grams based continu-
ous word representations proposed by Bojanowski
et al. (2017). Each word is considered as a bag
of character n-grams and the representation for a
word is obtained by the sum of the corresponding
character n-gram embeddings. This approach has
the advantage of taking morphological features of
a word into consideration and also provides repre-
sentations for words that are not seen in the train-
ing corpus.

We learn 2 sets of 100 dimensional embeddings.
One for the tokens in the input text (blurbs, title,
author, year and ISBN) and another for the cate-
gories. Each category in the hierarchy is consid-
ered as an individual token. We have a total of
142624 tokens in the input text and 343 tokens
in the categories. We use skip-gram and nega-
tive sampling options available in fastText. We
trained the word embeddings in the input text for
20 epochs and the category embeddings for 100
epochs with a learning rate of 0.05. We use these
generic word embeddings to initialize the embed-
dings in our Seq2Seq model.

3.5 Seq2Seq Preprocessing

We use FAIRSEQ (Ott et al., 2019), a sequence
modeling toolkit based on PyTorch. FAIRSEQ

provides predefined architectures and compo-
nents for Seq2Seq modeling. During preprocess-
ing, FAIRSEQ uses our predefined vocabulary (a
global dictionary of tokens from the whole corpus)
and encodes the training, validation and test data
into integers. The encoded data is saved data in
a binary format that supports indexed access and
faster loading time.

3.6 Seq2Seq Model Training

A Seq2Seq model mainly contains 2 components,
namely encoder and decoder. The encoder con-
verts the input sequence into a fixed size thought
vector and the decoder sequentially generates the
output sequence one step at a time by conditioning
on the encoder output and predicted value in the
previous time step. Recurrent Neural Networks
(RNN) are a popular choice for solving Seq2Seq
problems. However, their sequential nature im-
plies that they take longer to train since the train-
ing cannot be parallelized.

Gehring et al. (2017) introduced a Seq2Seq ar-
chitecture that is entirely based on Convolutional
Neural Networks (CNN). Convolutional architec-
ture reduces the training time significantly by al-
lowing parallel computation across time and sam-
ples. The predictions have to be still performed se-
quentially, one step at a time. In this architecture,
both encoder and decoder are made of convolu-
tional blocks (figure 6). Each block contains one
dimensional convolution with a kernel width k,
which is followed by a Gated Linear Unit (GLU)
(Dauphin et al., 2017) as non-linearity. The GLU
facilitates the gradient propagation by implement-
ing a simple gating mechanism over the convolu-
tion output. The GLU operation is given by the
equation 1, where Y = [A B] ∈ R2d is the con-
volution output A,B,GLU([A B]) ∈ Rd,⊕ is
point-wise multiplication and σ is sigmoid opera-
tion.

GLU([A B]) = A⊕ σ(B) (1)

The convolutional blocks are stacked in multi-
ple layers with residual connections from the in-
put of the block to the output of the block to fa-
cilitate the flow of gradients during backpropaga-
tion. When the input and the output dimensions
of block differ, linear projections are used in the
residual connections to match the number of di-
mensions. Multi-layer CNN networks create hier-
archical representations over the input sequence.
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Figure 6: Convolutional Block

This provides a quicker way to obtain dependen-
cies between elements which are far apart in the
sequence. With only O(nk ) convolutional oper-
ations, the representations for n words in a se-
quence can be obtained, k is the kernel width.
However, in a RNN, it would takeO(n) linear op-
erations to get the representation for nwords. Fur-
ther, an attention network is added to every layer
in the decoder.

In our approach, We have modeled the
MLMCHC as a Seq2Seq based translation
task. We built a model that translates the given
input text into a list of categories. Conceptu-
ally, this is similar to the Classifier Chaining
since at each time step, We model the distribution
P (next category|previous categories, input text).
However, our approach does not suffer from the
problem of learning several classifiers.

3.6.1 Encoder
Our encoder (figure 7) starts with a linear layer
of size (100 × 100) followed by 5 convolution
blocks with output sizes (100, 100, 200, 200, 300)
and ends with a linear layer of size (300 × 100).
All the convolutional blocks have a kernel width of
3. We experimented with different number of con-
volution blocks such 20,15,10,7 and 5. We choose
to use 5 convolution blocks finally, since adding
more number of blocks did not improve the vali-
dation f-score but increased the model complexity
and size. The inputs to the encoder are the sum
of the word and positional embeddings. Positional
embeddings capture the ordering information by
embedding the absolute position of the token in
the input sequence.

3.6.2 Decoder
Our decoder architecture is similar to that of en-
coder. It starts with a linear layer of size (100 ×

Figure 7: Encoder

Figure 8: Decoder with Multi-Hop Attention

100) followed by 3 convolutions blocks with out-
put sizes (100, 100, 200), a linear layer of size
(200 × 256) and ends with a linear layer of size
(256× 343) where 343 is the total number of cat-
egories in the hierarchy. Additionally, every de-
coder layer has an attention layer which allows the
network to take repeated glimpses at the sequence
and decide which input words are more relevant
to predict the next word. At every decoder step, a
decoder summary is calculated by combining the
current decoder state with an embedding of the
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previous target element.

3.6.3 Multi-Hop Attention
We use multi-hop attention mechanism similar to
Sukhbaatar et al. (2015) by carrying out this pro-
cess for each step or hops. The attention for each
source element is a dot product of the decoder
summary and the output of the last encoder block.
In multi-hop attention, the attention outputs for a
layer is calculated based on the previous layer’s
attention results. Hence the decoder has access to
attention values of all the previous layers which it
uses to predict current layers output.

3.6.4 Model Parameters and Optimization
We initialize the word and category embeddings
in the encoder and decoder using the fastText em-
beddings that We explained in the Section. 3.4 and
fine-tune them as a part of training the Seq2Seq
Model. We use Nesterov’s accelerated gradient
method with a momentum value of 0.99. We
renormalize gradients if their norm exceeds 0.1.
We use a fixed learning rate of 0.25. The hyper-
parameters were chosen based on manual search.
We trained the model for 13 epochs, after which
the validation loss stopped improving. Our model
has a total of 15962496 parameters and the size of
our trained model is 122 MB.

3.7 Seq2Seq Model Predict

We use fairseq-generate to generate predictions
using the Convolutional Seq2Seq model that We
trained in the previous section. The predicted out-
put is a sequence of all specific categories for the
given input data. During the prediction phase, We
use beam search with a beamwidth of 5 to identify
the most probable output sequence.

3.8 Hierarchical Inclusion

We use hierarchy object introduced in the Section.
3.1 to query the ancestor categories of specific cat-
egories predicted by the Seq2Seq Model. This
gives the solution for Subtask (b). We derive the
solution for Subtask (a) from the solution for Sub-
task (b) by picking the corresponding top levels
for predicted specific categories.

3.9 Experiment Setup

(1) Nvidia GPU GEFORCE GTX 1080 Ti 11GB
RAM (2) Intel R© Xeon R© Processor E5-2650 v4
30M Cache, 2.20 GHz, 12 Cores, 24 Threads
(3) 250 GB RAM (4) CentOS 7

4 Results

The test evaluation metrics are given in the Table.
2. In the test evaluation of the competition, Our
model secured the first rank in Subtask (a) with a
f1 score of 0.867 and second in Subtask (b) with
a f1 score of 0.6722.

Subtask (a) Subtask (b)
Precision 0.8923 0.7377
Recall 0.8432 0.6174
F1-Score (micro) 0.867 0.6722
Accuracy 0.8364 0.3791

Table 2: Evaluation metrics on test data

5 Conclusion

In our solution, We have successfully demon-
strated that Convolutional Seq2Seq modeling is
a promising approach to address MLMCHC. We
observed that the oversampling and pretraining
phases were key ingredients of our successful
recipe. In general, this emphasizes the importance
of transfer learning in NLP problems. In the fu-
ture, We plan to extend our approach by using
sophisticated transformers based architecture for
both pretraining and modeling phases.
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Abstract

In this paper, we focus on the classification
of books using short descriptive texts (cover
blurbs) and additional metadata. Building
upon BERT, a deep neural language model, we
demonstrate how to combine text representa-
tions with metadata and knowledge graph em-
beddings, which encode author information.
Compared to the standard BERT approach we
achieve considerably better results for the clas-
sification task. For a more coarse-grained clas-
sification using eight labels we achieve an F1-
score of 87.20, while a detailed classification
using 343 labels yields an F1-score of 64.70.
We make the source code and trained models
of our experiments publicly available.

1 Introduction

With ever-increasing amounts of data available,
there is an increase in the need to offer tooling
to speed up processing, and eventually making
sense of this data. Because fully-automated tools
to extract meaning from any given input to any
desired level of detail have yet to be developed,
this task is still at least supervised, and often (par-
tially) resolved by humans; we refer to these hu-
mans as knowledge workers. Knowledge work-
ers are professionals that have to go through large
amounts of data and consolidate, prepare and pro-
cess it on a daily basis. This data can originate
from highly diverse portals and resources and de-
pending on type or category, the data needs to be
channelled through specific down-stream process-
ing pipelines. We aim to create a platform for cu-
ration technologies that can deal with such data
from diverse sources and that provides natural lan-
guage processing (NLP) pipelines tailored to par-
ticular content types and genres, rendering this ini-
tial classification an important sub-task.

In this paper, we work with the dataset of the
2019 GermEval shared task on hierarchical text

classification (Remus et al., 2019) and use the pre-
defined set of labels to evaluate our approach to
this classification task1.

Deep neural language models have recently
evolved to a successful method for representing
text. In particular, Bidirectional Encoder Rep-
resentations from Transformers (BERT; Devlin
et al., 2019) outperformed previous state-of-the-
art methods by a large margin on various NLP
tasks. We adopt BERT for text-based classifica-
tion and extend the model with additional meta-
data provided in the context of the shared task,
such as author, publisher, publishing date, etc.

A key contribution of this paper is the inclu-
sion of additional (meta) data using a state-of-the-
art approach for text processing. Being a transfer
learning approach, it facilitates the task solution
with external knowledge for a setup in which rela-
tively little training data is available. More pre-
cisely, we enrich BERT, as our pre-trained text
representation model, with knowledge graph em-
beddings that are based on Wikidata (Vrandecic
and Krötzsch, 2014), add metadata provided by
the shared task organisers (title, author(s), publish-
ing date, etc.) and collect additional information
on authors for this particular document classifica-
tion task. As we do not rely on text-based fea-
tures alone but also utilize document metadata, we
consider this as a document classification problem.
The proposed approach is an attempt to solve this
problem exemplary for single dataset provided by
the organisers of the shared task.

2 Related Work

A central challenge in work on genre classification
is the definition of a both rigid (for theoretical pur-
poses) and flexible (for practical purposes) mode

1https://www.inf.uni-hamburg.
de/en/inst/ab/lt/resources/data/
germeval-2019-hmc.html
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of representation that is able to model various di-
mensions and characteristics of arbitrary text gen-
res. The size of the challenge can be illustrated
by the observation that there is no clear agreement
among researchers regarding actual genre labels or
their scope and consistency. There is a substan-
tial amount of previous work on the definition of
genre taxonomies, genre ontologies, or sets of la-
bels (Biber, 1988; Lee, 2002; Sharoff, 2018; Un-
derwood, 2014; Rehm, 2005). Since we work with
the dataset provided by the organisers of the 2019
GermEval shared task, we adopt their hierarchy of
labels as our genre palette. In the following, we
focus on related work more relevant to our contri-
bution.

With regard to text and document classifica-
tion, BERT (Bidirectional Encoder Representa-
tions from Transformers) (Devlin et al., 2019) is
a pre-trained embedding model that yields state
of the art results in a wide span of NLP tasks,
such as question answering, textual entailment and
natural language inference learning (Artetxe and
Schwenk, 2018). Adhikari et al. (2019) are among
the first to apply BERT to document classifica-
tion. Acknowledging challenges like incorporat-
ing syntactic information, or predicting multiple
labels, they describe how they adapt BERT for
the document classification task. In general, they
introduce a fully-connected layer over the final
hidden state that contains one neuron each repre-
senting an input token, and further optimize the
model choosing soft-max classifier parameters to
weight the hidden state layer. They report state
of the art results in experiments based on four
popular datasets. An approach exploiting Hierar-
chical Attention Networks is presented by Yang
et al. (2016). Their model introduces a hierarchi-
cal structure to represent the hierarchical nature
of a document. Yang et al. (2016) derive atten-
tion on the word and sentence level, which makes
the attention mechanisms react flexibly to long and
short distant context information during the build-
ing of the document representations. They test
their approach on six large scale text classification
problems and outperform previous methods sub-
stantially by increasing accuracy by about 3 to 4
percentage points. Aly et al. (2019) (the organisers
of the GermEval 2019 shared task on hierarchical
text classification) use shallow capsule networks,
reporting that these work well on structured data
for example in the field of visual inference, and

outperform CNNs, LSTMs and SVMs in this area.
They use the Web of Science (WOS) dataset and
introduce a new real-world scenario dataset called
Blurb Genre Collection (BGC)2.

With regard to external resources to enrich
the classification task, Zhang et al. (2019) ex-
periment with external knowledge graphs to en-
rich embedding information in order to ultimately
improve language understanding. They use struc-
tural knowledge represented by Wikidata enti-
ties and their relation to each other. A mix of
large-scale textual corpora and knowledge graphs
is used to further train language representation
exploiting ERNIE (Sun et al., 2019), consider-
ing lexical, syntactic, and structural information.
Wang et al. (2009) propose and evaluate an ap-
proach to improve text classification with knowl-
edge from Wikipedia. Based on a bag of words
approach, they derive a thesaurus of concepts from
Wikipedia and use it for document expansion. The
resulting document representation improves the
performance of an SVM classifier for predicting
text categories.

3 Dataset and Task

Our experiments are modelled on the GermEval
2019 shared task and deal with the classification
of books. The dataset contains 20,784 German
books. Each record has:

• A title.

• A list of authors. The average number of
authors per book is 1.13, with most books
(14,970) having a single author and one out-
lier with 28 authors.

• A short descriptive text (blurb) with an aver-
age length of 95 words.

• A URL pointing to a page on the publisher’s
website.

• An ISBN number.

• The date of publication.

The books are labeled according to the hierar-
chy used by the German publisher Random House.
This taxonomy includes a mix of genre and top-
ical categories. It has eight top-level genre cat-
egories, 93 on the second level and 242 on the

2Note that this is not the dataset used in the shared task.
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most detailed third level. The eight top-level
labels are ‘Ganzheitliches Bewusstsein’ (holistic
awareness/consciousness), ‘Künste’ (arts), ‘Sach-
buch’ (non-fiction), ‘Kinderbuch & Jugendbuch’
(children and young adults), ‘Ratgeber’ (coun-
selor/advisor), ‘Literatur & Unterhaltung’ (liter-
ature and entertainment), ‘Glaube & Ethik’ (faith
and ethics), ‘Architektur & Garten’ (architecture
and garden). We refer to the shared task descrip-
tion3 for details on the lower levels of the ontol-
ogy.

Note that we do not have access to any of the
full texts. Hence, we use the blurbs as input for
BERT. Given the relatively short average length of
the blurbs, this considerably decreases the amount
of data points available for a single book.

The shared task is divided into two sub-task.
Sub-task A is to classify a book, using the in-
formation provided as explained above, according
to the top-level of the taxonomy, selecting one or
more of the eight labels. Sub-task B is to classify a
book according to the detailed taxonomy, specify-
ing labels on the second and third level of the tax-
onomy as well (in total 343 labels). This renders
both sub-tasks a multi-label classification task.

4 Experiments

As indicated in Section 1, we base our experiments
on BERT in order to explore if it can be success-
fully adopted to the task of book or document clas-
sification. We use the pre-trained models and en-
rich them with additional metadata and tune the
models for both classification sub-tasks.

4.1 Metadata Features

In addition to the metadata provided by the organ-
isers of the shared task (see Section 3), we add the
following features.

• Number of authors.

• Academic title (Dr. or Prof.), if found in au-
thor names (0 or 1).

• Number of words in title.

• Number of words in blurb.

• Length of longest word in blurb.

• Mean word length in blurb.
3https://competitions.codalab.org/

competitions/20139

Train Validation Test

Gender 12,681
(87%)

1,834
(88%)

3,641
(88%)

Author emb. 10,407
(72%)

1,549
(75%)

3,010
(72%)

Total books 14,548 2,079 4,157

Table 1: Availability of additional data with respect to
the dataset (relative numbers in parenthesis).

• Median word length in blurb.

• Age in years after publication date.

• Probability of first author being male or fe-
male based on the Gender-by-Name dataset4.
Available for 87% of books in training set
(see Table 1).

The statistics (length, average, etc.) regarding
blurbs and titles are added in an attempt to make
certain characteristics explicit to the classifier. For
example, books labeled ‘Kinderbuch & Jugend-
buch’ (children and young adults) have a title that
is on average 5.47 words long, whereas books la-
beled ‘Künste’ (arts) on average have shorter titles
of 3.46 words. The binary feature for academic ti-
tle is based on the assumption that academics are
more likely to write non-fiction. The gender fea-
ture is included to explore (and potentially exploit)
whether or not there is a gender-bias for particular
genres.

4.2 Author Embeddings
Whereas one should not judge a book by its cover,
we argue that additional information on the au-
thor can support the classification task. Authors
often adhere to their specific style of writing and
are likely to specialize in a specific genre.

To be precise, we want to include author iden-
tity information, which can be retrieved by se-
lecting particular properties from, for example,
the Wikidata knowledge graph (such as date of
birth, nationality, or other biographical features).
A drawback of this approach, however, is that one
has to manually select and filter those properties
that improve classification performance. This is
why, instead, we follow a more generic approach
and utilize automatically generated graph embed-
dings as author representations.

4Probability of given names being male/female based on
US names from 1930-2015. https://data.world/
howarder/gender-by-name
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Figure 1: Visualization of Wikidata embeddings
for Franz Kafka (3D-projection with PCA)5. Nearest
neighbours in original 200D space: Arthur Schnitzler,
E.T.A Hoffmann and Hans Christian Andersen.

Graph embedding methods create dense vector
representations for each node such that distances
between these vectors predict the occurrence of
edges in the graph. The node distance can be in-
terpreted as topical similarity between the corre-
sponding authors.

We rely on pre-trained embeddings based on
PyTorch BigGraph (Lerer et al., 2019). The graph
model is trained on the full Wikidata graph, us-
ing a translation operator to represent relations6.
Figure 1 visualizes the locality of the author em-
beddings.

To derive the author embeddings, we look up
Wikipedia articles that match with the author
names and map the articles to the corresponding
Wikidata items7. If a book has multiple authors,
the embedding of the first author for which an
embedding is available is used. Following this
method, we are able to retrieve embeddings for
72% of the books in the training and test set (see
Table 1).

4.3 Pre-trained German Language Model
Although the pre-trained BERT language models
are multilingual and, therefore, support German,
we rely on a BERT model that was exclusively

6Pre-trained Knowledge Graph Embeddings.
https://github.com/facebookresearch/
PyTorch-BigGraph#pre-trained-embeddings

7Mapping Wikipedia pages to Wikidata IDs and vice
versa. https://github.com/jcklie/wikimapper

Title

Concatenate

Metadata Author Embeddings

BERT
12 layers

Text

Output Layer

2-layer MLP

Figure 2: Model architecture used in our experiments.
Text-features are fed through BERT, concatenated with
metadata and author embeddings and combined in a
multilayer perceptron (MLP).

pre-trained on German text, as published by the
German company Deepset AI8. This model was
trained from scratch on the German Wikipedia,
news articles and court decisions9. Deepset AI
reports better performance for the German BERT
models compared to the multilingual models on
previous German shared tasks (GermEval2018-
Fine and GermEval 2014).

4.4 Model Architecture

Our neural network architecture, shown in Fig-
ure 2, resembles the original BERT model (Devlin
et al., 2019) and combines text- and non-text fea-
tures with a multilayer perceptron (MLP).

The BERT architecture uses 12 hidden layers,
each layer consists of 768 units. To derive con-
textualized representations from textual features,
the book title and blurb are concatenated and then
fed through BERT. To minimize the GPU mem-
ory consumption, we limit the input length to 300
tokens (which is shorter than BERT’s hard-coded
limit of 512 tokens). Only 0.25% of blurbs in the
training set consist of more than 300 words, so this
cut-off can be expected to have minor impact.

The non-text features are generated in a sep-
arate preprocessing step. The metadata features
are represented as a ten-dimensional vector (two
dimensions for gender, see Section 4.1). Author
embedding vectors have a length of 200 (see Sec-

8Details on BERT-German training procedure: https:
//deepset.ai/german-bert

9German legal documents used to train BERT-German:
http://openlegaldata.io/research/2019/
02/19/court-decision-dataset.html
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tion 4.2). In the next step, all three representa-
tions are concatenated and passed into a MLP with
two layers, 1024 units each and ReLu activation
function. During training, the MLP is supposed to
learn a non-linear combination of its input repre-
sentations. Finally, the output layer does the actual
classification. In the SoftMax output layer each
unit corresponds to a class label. For sub-task A
the output dimension is eight. We treat sub-task
B as a standard multi-label classification problem,
i. e., we neglect any hierarchical information. Ac-
cordingly, the output layer for sub-task B has 343
units. When the value of an output unit is above
a given threshold the corresponding label is pre-
dicted, whereby thresholds are defined separately
for each class. The optimum was found by varying
the threshold in steps of 0.1 in the interval from 0
to 1.

4.5 Implementation

Training is performed with batch size b = 16,
dropout probability d = 0.1, learning rate η =
2−5 (Adam optimizer) and 5 training epochs.
These hyperparameters are the ones proposed by
Devlin et al. (2019) for BERT fine-tuning. We
did not experiment with hyperparameter tuning
ourselves except for optimizing the classification
threshold for each class separately. All experi-
ments are run on a GeForce GTX 1080 Ti (11
GB), whereby a single training epoch takes up to
10min. If there is no single label for which predic-
tion probability is above the classification thresh-
old, the most popular label (Literatur & Unterhal-
tung) is used as prediction.

4.6 Baseline

To compare against a relatively simple baseline,
we implemented a Logistic Regression classifier
chain from scikit-learn (Pedregosa et al., 2011).
This baseline uses the text only and converts it
to TF-IDF vectors. As with the BERT model, it
performs 8-class multi-label classification for sub-
task A and 343-class multi-label classification for
sub-task B, ignoring the hierarchical aspect in the
labels.

5 Results

Table 2 shows the results of our experiments. As
prescribed by the shared task, the essential evalu-
ation metric is the micro-averaged F1-score. All
scores reported in this paper are obtained using

models that are trained on the training set and
evaluated on the validation set. For the final sub-
mission to the shared task competition, the best-
scoring setup is used and trained on the training
and validation sets combined.

We are able to demonstrate that incorporating
metadata features and author embeddings leads to
better results for both sub-tasks. With an F1-score
of 87.20 for task A and 64.70 for task B, the setup
using BERT-German with metadata features and
author embeddings (1) outperforms all other se-
tups. Looking at the precision score only, BERT-
German with metadata features (2) but without au-
thor embeddings performs best.

In comparison to the baseline (7), our evaluation
shows that deep transformer models like BERT
considerably outperform the classical TF-IDF ap-
proach, also when the input is the same (using
the title10 and blurb only). BERT-German (4) and
BERT-Multilingual (5) are only using text-based
features (title and blurb), whereby the text repre-
sentations of the BERT-layers are directly fed into
the classification layer.

To establish the information gain of author em-
beddings, we train a linear classifier on author
embeddings, using this as the only feature. The
author-only model (6) is exclusively evaluated on
books for which author embeddings are available,
so the numbers are based on a slightly smaller val-
idation set. With an F1-score of 61.99 and 32.13
for sub-tasks A and B, respectively, the author
model yields the worst result. However, the infor-
mation contained in the author embeddings help
improve performance, as the results of the best-
performing setup show. When evaluating the best
model (1) only on books for that author embed-
dings are available, we find a further improvement
with respect to F1 score (task A: from 87.20 to
87.81; task B: 64.70 to 65.74).

6 Discussion

The best performing setup uses BERT-German
with metadata features and author embeddings.
In this setup the most data is made available to
the model, indicating that, perhaps not surpris-
ingly, more data leads to better classification per-
formance. We expect that having access to the ac-
tual text of the book will further increase perfor-

10The baseline model uses the blurbs only, without the ti-
tle, but we do not expect that including the title in the input
would make up for the considerable gap between the two.
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Sub-Task A – 8 labels Sub-Task B – 343 labels
Model / Features F1 Prec. Recall F1 Prec. Recall
(1) BERT-German + Metadata + Author 87.20 88.76 85.70 64.70 83.78 52.70
(2) BERT-German + Metadata 86.90 89.65 84.30 63.96 83.94 51.67
(3) BERT-German + Author 86.84 89.02 84.75 64.41 82.02 53.03
(4) BERT-German 86.65 89.65 83.86 60.51 83.44 47.47
(5) BERT-Base-Multilingual-Cased 83.94 86.31 81.70 54.08 82.63 40.19
(6) Author 61.99 75.59 52.54 32.13 72.39 20.65
(7) Baseline 77.00 79.00 74.00 45.00 67.00 34.00
Results of best model (1) on test set 88.00 85.00 86.00 78.00 52.00 62.00

Table 2: Evaluation scores (micro avg.) on validation set with respect to the features used for classification. The
model with BERT-German, metadata and author embeddings yields the highest F1-scores on both tasks and was
accordingly submitted to the GermEval 2019 competition. The scores in the last row are the result on the test set
as reported by Remus et al., 2019.

Title / Author Correct Labels Predicted Labels

Coenzym Q10
Dr. med. Gisela Rauch-Petz Ratgeber (I); Gesundheit & Ernährung (II) Gesundheit & Ernährung (II)

Gelebte Wertschätzung
Barbara von Meibom

Glaube & Ethik (I);
Psychologie & Spiritualität (II) Sachbuch (I); Politik & Gesellschaft (II)

Wie Romane entstehen
Hanns-Josef Ortheil,
Klaus Siblewski

Literatur & Unterhaltung (I); Sachbuch (I);
Romane & Erzählungen (II);
Briefe, Essays, Gespräche (II)

Literatur & Unterhaltung (I)

Das Grab ist erst der Anfang
Kathy Reichs

Literatur & Unterhaltung (I);
Krimi & Thriller (II)

Literatur & Unterhaltung (I);
Krimi & Thriller (II)

Table 3: Book examples and their correct and predicted labels. Hierarchical label level is in parenthesis.

mance. The average number of words per blurb
is 95 and only 0.25% of books exceed our cut-off
point of 300 words per blurb. In addition, the dis-
tribution of labeled books is imbalanced, i.e. for
many classes only a single digit number of training
instances exist (Fig. 3). Thus, this task can be con-
sidered a low resource scenario, where including
related data (such as author embeddings and au-
thor identity features such as gender and academic
title) or making certain characteristics more ex-
plicit (title and blurb length statistics) helps. Fur-
thermore, it should be noted that the blurbs do
not provide summary-like abstracts of the book,
but instead act as teasers, intended to persuade the
reader to buy the book.

As reflected by the recent popularity of deep
transformer models, they considerably outperform
the Logistic Regression baseline using TF-IDF
representation of the blurbs. However, for the
simpler sub-task A, the performance difference
between the baseline model and the multilingual
BERT model is only six points, while consum-

ing only a fraction of BERT’s computing re-
sources. The BERT model trained for German
(from scratch) outperforms the multilingual BERT
model by under three points for sub-task A and
over six points for sub-task B, confirming the find-
ings reported by the creators of the BERT-German
models for earlier GermEval shared tasks.

While generally on par for sub-task A11, for
sub-task B there is a relatively large discrepancy
between precision and recall scores. In all setups,
precision is considerably higher than recall. We
expect this to be down to the fact that for some
of the 343 labels in sub-task B, there are very
few instances. This means that if the classifier
predicts a certain label, it is likely to be correct
(i. e., high precision), but for many instances hav-
ing low-frequency labels, this low-frequency label
is never predicted (i. e., low recall).

As mentioned in Section 4.4, we neglect the hi-
erarchical nature of the labels and flatten the hi-
erarchy (with a depth of three levels) to a sin-

11Except for the Author-only setup.
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Figure 3: In sub-task B for many low-hierarchical la-
bels only a small number of training samples exist,
making it more difficult to predict the correct label.

gle set of 343 labels for sub-task B. We expect
this to have negative impact on performance, be-
cause it allows a scenario in which, for a par-
ticular book, we predict a label from the first
level and also a non-matching label from the sec-
ond level of the hierarchy. The example Coen-
zym Q10 (Table 3) demonstrates this issue. While
the model correctly predicts the second level label
Gesundheit & Ernährung (health & diet), it misses
the corresponding first level label Ratgeber (advi-
sor). Given the model’s tendency to higher pre-
cision rather than recall in sub-task B, as a post-
processing step we may want to take the most de-
tailed label (on the third level of the hierarchy) to
be correct and manually fix the higher level labels
accordingly. We leave this for future work and
note that we expect this to improve performance,
but it is hard to say by how much. We hypothesize
that an MLP with more and bigger layers could
improve the classification performance. However,
this would increase the number of parameters to be
trained, and thus requires more training data (such
as the book’s text itself, or a summary of it).

7 Conclusions and Future Work

In this paper we presented a way of enriching
BERT with knowledge graph embeddings and ad-
ditional metadata. Exploiting the linked knowl-
edge that underlies Wikidata improves perfor-
mance for our task of document classification.
With this approach we improve the standard BERT
models by up to four percentage points in accu-
racy. Furthermore, our results reveal that with
task-specific information such as author names

and publication metadata improves the classifi-
cation task essentially compared a text-only ap-
proach. Especially, when metadata feature en-
gineering is less trivial, adding additional task-
specific information from an external knowledge
source such as Wikidata can help significantly.
The source code of our experiments and the
trained models are publicly available12.

Future work comprises the use of hierarchi-
cal information in a post-processing step to refine
the classification. Another promising approach to
tackle the low resource problem for task B would
be to use label embeddings. Many labels are simi-
lar and semantically related. The relationships be-
tween labels can be utilized to model in a joint
embedding space (Augenstein et al., 2018). How-
ever, a severe challenge with regard to setting up
label embeddings is the quite heterogeneous cat-
egory system that can often be found in use on-
line. The Random House taxonomy (see above)
includes category names, i. e., labels, that relate
to several different dimensions including, among
others, genre, topic and function.

This work is done in the context of a larger
project that develops a platform for curation tech-
nologies. Under the umbrella of this project, the
classification of pieces of incoming text content
according to an ontology is an important step that
allows the routing of this content to particular, spe-
cialized processing workflows, including parame-
terising the included pipelines. Depending on con-
tent type and genre, it may make sense to apply
OCR post-processing (for digitized books from
centuries ago), machine translation (for content in
languages unknown to the user), information ex-
traction, or other particular and specialized proce-
dures. Constructing such a generic ontology for
digital content is a challenging task, and classifi-
cation performance is heavily dependent on input
data (both in shape and amount) and on the na-
ture of the ontology to be used (in the case of this
paper, the one predefined by the shared task organ-
isers). In the context of our project, we continue to
work towards a maximally generic content ontol-
ogy, and at the same time towards applied classi-
fication architectures such as the one presented in
this paper.

12https://ostendorff.org/r/germeval19
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Abstract

We present two systems developed by the
Comtravo Data Science team for the Ger-
mEval’19 Task 1 on hierarchical classification
of blurbs. The challenge is a document clas-
sification task where the hierarchical structure
of each document needs to be captured. Our
systems achieved the 13th place out of 19 sub-
missions for Sub-Task A and the 11th place
out of 19 submissions for Sub-Task B. We de-
scribe in detail these two systems pointing out
the advantages and disadvantages of each as
well as laying out future research directions.

1 Introduction

This paper describes the approach taken by the
Comtravo Data Science team for the GermEval’19
Task 1 (Remus et al., 2019). The task aimed at de-
veloping systems to tackle the task of multi-label
hierarchical classification of text.

Several real-world classification problems are
naturally cast within a hierarchy, where the labels
to be predicted are organized in an hierarchy. Typ-
ically the hierarchies form a tree, several trees (a
forest) or a directed acyclic graph.

Examples of hierarchical document categoriza-
tion are for instance categorizing news articles
into an hierarchy of categories (Lewis et al.,
2004), a web page into a web directory struc-
ture, Wikipedia articles into the Wikipedia taxon-
omy (Partalas et al., 2015), or in biomedical lit-
erature, for instance, the assignment of Medical
Subject Headings to PubMed abstracts (Lipscomb,
2000).

We developed two distinct approaches, one
based on a local classifier strategy, where different
classifiers are trained according to the hierarchical
structure of the label space, another approach uses
a single classifier which tries to naively predict the
entire label hierarchy for each sample.

This paper is organized as follows, in Section 2
we describe the task in detail and give a statisti-
cal description of the provided dataset. In Sec-
tion 3 we briefly describe some of the proposed
approaches in the literature for hierarchical docu-
ment classification. In Section 4 we describe our
approaches to tackle both sub-tasks. Section 5 de-
tails the our experimental setup and results. Fi-
nally in Section 6 we outline some ideas for future
work.

2 Task

The GermEval 2019 Task 1 on hierarchical clas-
sification of blurbs involved the classification of
german language books into genres given a book’s
blurb i.e., a short textual description of the book
and related meta-data. The competition contained
two sub-tasks:

• Sub-Task A: classify German books into one
or multiple general genres, a non-hierarchical
multi-label classification task with a total of 8
classes.

• Sub-Task B: targets hierarchical multi-label
classification into multiple writing genres. In
addition to the general genres from Sub-Task
A, any number of sub-genres of increasing
specificity can be assigned to a book.

2.1 Dataset

The dataset made available for these tasks contains
3 label levels organized in a hierarchy; any book
can be can associated with more than one label at
any given level of the hierarchy. In the hierarchy
every child-label has exactly one parent-label.

The hierarchy contains a total of 343 distinct
classes, 3 datasets were provided: 14 548 samples
available for training, 2 079 for development and
4 157 for testing. Tables 1, 2, 3 contain a detailed
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Training set
Avg. length of blurb (tokens) 96.78
Std. deviation σ (tokens) 39.63
Avg. length of blurb (sentences) 6.55
Std. deviation σ (sentences) 2.76
Nr. unique tokens original 114 903
Nr. unique tokens lowercase 107 998
Total number of genres 343
Possible genres per level (1;2;3) 8; 93; 242
Avg. genres per blurb 3.1
Std. deviation σ 1.36
Avg. genres per blurb at level (1;2;3) 1.06; 1.34; 0.69
Std. deviation σ 0.27; 0.76; 0.79
Avg. blurb per co-occurrence 6.48
Co-Occurrence std. deviation 35.90
Nr. samples with leaf nodes at:
- Level 1 1.9% (311)
- Level 2 44,6% (7.422)
- Level 3 53,5% (8.894)
Total number of samples 14 548

Table 1: Quantitative analysis of the training dataset.

description of the datasets provided i.e.: training,
development and test, respectively. One can see
that in terms of tokens and sentences the 3 datasets
are aligned, and also between training and devel-
opment in terms of labels per blurb, and labels per
blurb per level.

3 Hierarchical Document Classification

There are have been different strategies to ap-
proach the problem of hierarchical classifying a
document (Silla and Freitas, 2011; Wehrmann
et al., 2017; Kowsari et al., 2017). Within the con-
text of GermEval’19 Task 1 we explored two main
strategies: a local classifier and a global classifier.

3.1 Local Classifier

The local classifier strategy is one way to approach
the hierarchical document classification task and it
was first proposed, to the best of our knowledge, in
the seminal work of Koller and Sahami (1997), it
is also sometimes referred to as top down approach
in the literature.

There are different approaches, based on the
idea of a local classifier, depending on how they
use the local information and devise a strategy to
build several classifiers.

3.1.1 A classifier per node

The local classifier per node approach consists
of training one binary classifier in a one-versus-
rest scenario for each node in the hierarchy, where
each label in the hierarchy is a node. Normally,

Development set
Avg. length of blurb (tokens) 98.71
Std. deviation σ (tokens) 46.29
Avg. length of blurb (sentences) 6.68
Std. deviation σ (sentences) 3.80
Nr. unique tokens original 33 599
Nr. unique tokens lowercase 31 818
Total number of genres 343
Possible genres per level (1;2;3) 8; 93; 242
Avg. genres per blurb 3.1
Std. deviation σ 1.39
Avg. genres per blurb at level (1;2;3) 1.07;1.35;0.69
Std. deviation σ 0.27;0.80;0.79
Avg. blurb per co-occurrence 3.08
Co-Occurrence std. deviation 8.19
Nr. samples with leaf nodes at:
- Level 1 1.6% (34 )
- Level 2 44.8% (932 )
- Level 3 53.6% (1113)
Total number of samples 2 079

Table 2: Quantitative analysis of the development
dataset.

Test set
Avg. length of blurb (tokens) 96.91
Std. deviation σ (tokens) 39.83
Avg. length of blurb (sentences) 6.55
Std. deviation σ (sentences) 2.62
Total number of samples 4 157

Table 3: Quantitative analysis of the test dataset.

the negative training data is taken from the same
level in the label hierarchy as the positive data.

During prediction a top-down strategy is ap-
plied, the output of each binary classifier is a pre-
diction of whether or not a given test sample be-
longs to the classifier’s predicted class. This ap-
proach is naturally multi-label since it is possible
to predict multiple labels at each level of the hier-
archy.

This approach, however, is prone to label in-
consistency. Consider a document that has, for
the first level, labels 1, 2 and 3, and, for the sec-
ond level, labels 1.1, 1.2. Since the classifiers
for nodes 1 and 1.1 are independently trained, it
is possible to classify a sample as having labels
1.2 and 1.1 but not the parent label 1. This ap-
proach should, therefore, be complemented by a
post-processing method that tries to correct the la-
bel inconsistency.

3.1.2 A classifier per parent node
In a classifier per parent node approach, a multi-
class classifier, possibly also multi-label, is trained
for each parent node in the label hierarchy. The
classifier is trained to classify the probability of
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a given sample belonging to each of the parent’s
child nodes. In this case, a parent node is every
label in the hierarchy-tree which has one or more
child labels.

Given a test sample, first the top-level classifier
is applied, then for every top-level predicted la-
bel (e.g., class 2 and 3) its child classifiers, e.g.: a
classifier trained to predict the 2.x labels and an-
other for 3.x labels, and so on until the last level is
reached.

Note that the sub-classifiers are only trained
with the children of each respective parent label,
therefore this approach avoids the label inconsis-
tency problem and respects the constrains of class-
membership defined by the label hierarchy.

3.1.3 A classifier per level

The local classifier per level approach consists of
training one multi-class, and possibly also multi-
label, classifier for each level of the label hierar-
chy. When a new test sample is presented the out-
put of the classifiers from each level is used as the
final classification.

This approach, however, is prone to label incon-
sistency, as different classifiers are trained for each
level of the hierarchy and should, therefore, also
be complemented by a post-processing method to
correct the prediction inconsistency.

One common problem for all local classifier
strategies the utilize the top-down class-prediction
approach is the propagation of errors down the hi-
erarchy.

3.2 Global Classifier

Another type of strategy is to learn a classifier
than can globally learn to output the predictions
for each level in the hierarchical structure. This is
done by flattening the whole hierarchical structure.

Having only a single classifier, although easier
to tune, it can turn the hierarchical classification
into a much harder problem, specially having a
sparse label space with an order of magnitude of
102, i.e. there are 343 possible classes, but the la-
bels co-occurrence can be a good guiding heuristic
for a statistical model to infer the hierarchical label
structure associated with a given sample.

4 Systems Developed

We developed two systems implementing the fol-
lowing approaches:

Local Classifier: a classifier per parent node us-
ing different types of classifiers;

Global Classifier: a single classifier relying on
the hypothesis to explore the labels co-
occurrence;

4.1 Local Classifier

We employed a classifier per parent node ap-
proach, which has the advantage of not being
prone to label inconsistency errors. We need to
train classifiers for each parent node. For Level 3
we don’t need to train any classifier since it con-
tains only leaf nodes, plus some nodes on Level 2
are already leaf nodes.

According to Table 1 the Level 1 has 8 possible
labels, which means that the parent node of the
first level (i.e, the Root Node) needs to be trained
in a multi-label fashion and predict over 8 classes.
Each of these 8 classes represents a parent node of
some child classes on the next level of the hierar-
chy. So for Level 1 we need to train eight multi-
label classifiers where the labels are the child‘s of
each parent in the root level. Finally, for Level 2,
we train only 42 classifiers, since according to the
hierarchy-tree some labels in this level are already
leaf nodes, and only 42 labels have then child la-
bels. So, in total we trained 51 classifiers dis-
tributed by different levels as described in Table 4.

Level Nr. Parent Nodes
Root Node 1
Level 1 8
Level 2 42
Total Classifiers 51

Table 4: Number of parent nodes per level in the hier-
archy.

As stated before, one of the advantages of this
approach is that it always produces a label struc-
ture that is enforced by the hierarchy-tree, but it
is prone to error propagation from the top levels
further down the tree.

4.2 Global Classifier

The global classifier needs to be a multi-label clas-
sifier targeting a label space with a total of 343
classes. One of the advantages is that there is
only one single multi-label classifier to tune and
explore, but on the other and it has a high and
sparse label space. Plus, one needs to employ
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some post-processing cleaning to enforce the hi-
erarchical structure, since there is an hierarchical
dependency between the some of the 343 possible
classes. For instance, the classifier can predict the
labels 4.3 and 4.4 - corresponding to labels in the
Level 2 in the hierarchy - but not the label 4, cor-
responding to Level 1 in the hierarchy.

5 Experiments and Results

In this section we describe the experimental setup
and results for the two devised strategies for tack-
ling both sub-tasks.

5.1 Results on the Development Set

During the development phase we only had the la-
bels for training, so we randomly split the train-
ing dataset into two-subsets of 70% and 30% for
training and parameter tuning, respectively. Then,
train on the whole dataset with the best parameters
and using the model to generate predictions on the
development dataset. This approach was mainly
to have a working framework for experiments and
submit valid results.

During the test phase the labels for the devel-
opment set were made available and we could
use them to tune the classifiers. We used 3-fold
cross-validation to perform parameter search us-
ing the training dataset. The parameter configura-
tion which yielded the best results was then used
to train the classifiers over the complete training
dataset, and the classifier is then evaluated against
the development set. Results reported in this sec-
tion are all in regard to the development set.

5.1.1 Pre-processing
For representing a book we concatenated the
book’s title with book’s textual description. In
some cases only the title is present, for this cases
we simply use the title.

We explored two tokenization schemas, one to-
kenizes the blurbs into sentences, and then from
sentences into tokens, considering the title of the
book as a sentence, this tokenization strategy was
based on the german sentence tokenizer, and the
word punkt tokenizer from NLTLK 3.4.1 (Bird
et al., 2009), and considered alphanumeric tokens
only. The other approach was based on a simple
regular expression: (?u)\b\w\w+\b. We also
experimented lower casing and removing stop-
words. After running a few experiments and com-
paring some initial results we opted for the regular

expression for tokenization, lower case token rep-
resentations and removal of stop-words. For the
neural networks the padding was done to match
the size of the longest document in the dataset.

5.1.2 Prediction threshold gltment
We set the prediction threshold to 0.5, so any label
with a predicted probability above 0.5 is selected.
We noticed that for some samples no labels were
being selected, as all labels had predicted proba-
bility scores lower than 0.5. To tackle this prob-
lem, for a given sample, if no predictions were
done we lowered the threshold to 0.4, if still no
label predictions are done, we lowered again the
threshold to 0.3. This was done in a simple ad-hoc
way, and no proper strategy was employed, and is
done in a per label fashion.

5.1.3 Models implementation
For all the neural network models we used pre-
trained embeddings, specifically the public avail-
able German fastText embeddings trained on
Wikipedia, of dimension 300 and obtained using
the skip-gram model as described in Bojanowski
et al. (2017), the embeddings are fine-tuned dur-
ing learning and out of vocabulary words are ran-
domly initialized.

The training was done with the Adam opti-
mizer (Kingma and Ba, 2014) using binary cross-
entropy as a loss function and 30% of the train-
ing dataset for validation. Unless stated otherwise
training was performed with mini-batch sizes of
16 for 10 epochs. All the neural network models
were implemented in Keras 2.2.4 with Tensorflow
1.13.1 backend. The Logistic Regression classifier
was based on the scikit-learn 0.21.1 (Pedregosa
et al., 2011).

All the code used for this experiments is avail-
able on-line 1.

5.1.4 Local classifier per node: Root Node
We explored different classifiers for the Root Node
and for Level 1 and Level 2 we selected a Convo-
lutional Neural Network (CNN).

We briefly describe the models used for the
Root Node and the parameters explored, in bold
we have the parameters that yielded the best
scores:

Logit (TF-IDF): a logistic regression classifier
with TF-IDF weighted vectors in a one-

1https://github.com/davidsbatista/
GermEval-2019-Task_1
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versus-rest scenario varying the following pa-
rameters:

• n-grams: 1, 2, 3;
• class weight: balanced, not-balanced;
• norm: l1, l2;
• regularization C: 0.1, 10, 100, 300;

Training was performed with Stochastic Av-
erage Gradient for a maximum of 5 000 iter-
ations.

CNN (Kim, 2014): for sentence classification
with rectified linear units in the activation
functions of the 1D convolutions, and with a
fully connected layer of size 600 and varying:

• filter windows: (1), (1, 2), (1, 2, 3);
• feature maps: 256, 300;

LSTM (Hochreiter and Schmidhuber, 1997): re-
cursively reads each token in the text updat-
ing it’s internal state and using the last state to
represent the document, with a dropout layer
of rate 0.1 between the LSTM’s last state and
the final sigmoid layer.

• single LSTM vs bi-directional LSTM;
• hidden units: 32, 64, 128;

Bag-of-Tricks (Joulin et al., 2017): token embed-
dings representations are averaged into a sin-
gle vector representation, which is fed to a
sigmoid classifier, we varied the following
parameters:

• n-grams: 2, 3, 4, 5;
• top-k most frequent tokens: 100k, 90k,

80k;

Table 5 shows the results for different classifiers
when trained with the best parameters on the train-
ing set and evaluated against the development set.

Method Precision Recall F1
Logit (TF-IDF) 0.8211 0.8359 0.8284
CNN 0.8542 0.7879 0.8197
bi-LSTM 0.8062 0.7987 0.8024
Bag-of-Tricks 0.3787 0.6717 0.4843

Table 5: Results for different classifiers on the Sub-
Task A on the development set.

The Logistic Regression classifier achieved the
best results although the CNN classifier had a sim-
ilar F1 score, essentially by trading recall for pre-
cision.

5.1.5 Local classifier per node: Level 1 and 2
For Level 1 and 2 in the hierarchy tree we trained
a total of 50 classifiers for each parent node, 8 for
Level 1 and 42 for Level 2. All these classifiers
were based on the CNN model.

We explored some parameters configurations by
varying the filter windows size and the filter maps
size, Table 6 shows a subset of the different con-
figuration parameters tried which yielded some of
the best results. All these classifiers were training
with mini-batch size of 16 for 5 epochs.

Filter Windows Filter Maps
Conf1 1,2 300
Conf2 1,2,3 200
Conf3 1,2,3,5,7 300
Conf4 3,5,6,10 256

Table 6: Different configuration parameters for the
CNN classifiers for Level 1 and 2.

In these experiments we used the Root Node
classifier which yielded the best results, i.e. the lo-
gistic regression, to predict the labels for the root
level, and experiment with different parameters for
the Levels 1 and 2. Table 7 shows the results for
Sub-Task B for configurations of parameters in Ta-
ble 6.

Precision Recall F1
Conf1 0.7151 0.5330 0.6108
Conf2 0.7144 0.5303 0.6087
Conf3 0.7219 0.5235 0.6069
Conf4 0.7274 0.5085 0.5986

Table 7: Results for Sub-Task B for different configu-
rations of the CNN-based classifier for Levels 1 and 2
of the hierarchy, using the best classifier for the Root
Level from Table 6.

We opted not to use a logistic regression classi-
fier for Level 1 and 2 since this type of classifier
needed to be trained in a one-versus-rest fashion.
This would mean that for Level 2 we would need
to train 93 classifiers and 242 for Level 3.

5.1.6 Global classifier
The global classifier uses a flattened hierarchy and
learns how to predict a vector of 343 dimensions.

One advantage of this approach, in contrast to
the local one, is the we need only to tune a single
classifier, and both sub-tasks can also be tackled
with this single classifier.
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Our initial idea was to use a neural net-
work architecture and leverage on the labels co-
occurrence by initializing a weight matrix - we de-
scribe this idea in Section 6 - but due to time con-
strains this was not possible to explore this idea to
the end. Also, due to time constrains we did not
employ a post-processing step.

Nevertheless, we still applied a CNN architec-
ture and explored different configuration parame-
ters, varying the filter windows and the filter maps.

We used the same tokenization schema as with
the Local classifier, as well as the same pre-trained
word embeddings, which are fine-tuned during
training.

The training was done with the Adam opti-
mizer (Kingma and Ba, 2014) using binary cross-
entropy as a loss function, with mini-batch sizes of
128 for 250 epochs and using 30% of the training
dataset for validation.

We also used the same threshold filtering strat-
egy as described in Section 5.1.2.

Table 8 presents some of the configurations of
parameters used in the experiments and Table 9 the
corresponding results for the same configurations
for both sub-tasks.

Filter Windows Filter Maps
Conf1 1, 2, 3 300
Conf2 3, 5, 7, 10 256
Conf3 1, 2, 3, 5, 7, 10 256

Table 8: Different configuration parameters for the
CNN classifiers for the global classifier.

Precision Recall F1
Conf1
Sub-Task A 0.7163 0.7484 0.7320
Sub-Task B 0.5257 0.4603 0.4909
Conf2
Sub-Task A 0.7353 0.7686 0.7516
Sub-Task B 0.5470 0.4717 0.5066
Conf3
Sub-Task A 0.8389 0.7659 0.8008
Sub-Task B 0.6733 0.5032 0.5760

Table 9: Results for both sub-tasks using the configu-
ration parameters from Table 8.

5.2 Test Results
We applied the classifiers described in the Sec-
tion 5 with the parameters that yielded the best re-
sults on the development dataset, by training on all
available data (i.e., training + development sets)
and applied them on the test dataset, therefore gen-
erating two submissions for each sub-task.

5.2.1 Parent Per Node
With the one parent per node strategy classifier,
we achieved the 13th best place on Sub-Task A,
and the 11th best place on Sub-Task B, out of a
total of 19 submissions. Results for the detailed
evaluation metrics are described in Table 10.

This classifier achieved the 9th best recall and
the 15th best precision for Sub-Task A, and the
8th best recall and the 14th best precision for Sub-
Task B.

For roughly 5% of the test samples the classifier
did not produce any predictions, due to the class
probabilities scores being lower 0.3., the lowest
possibly threshold selected in the adjustment.

Task Precision Recall F1
Sub-Task A 0.8144 0.8255 0.8199
Sub-Task B 0.7042 0.5274 0.6031

Table 10: Best achieved results on the development set
for both Sub-Tasks A and B with the parent per node
classifier.

5.2.2 Global
With the global classifier strategy we achieved the
17th best place on Sub-Task A, and the 13th best
place on Sub-Task B. Detailed results are pre-
sented in Table 11.

Task Precision Recall F1
Sub-Task A 0.7761 0.7839 0.7839
Sub-Task B 0.5672 0.5185 0.5418

Table 11: Best achieved results on the development set
for both Sub-Tasks A and B with the global classifier.

This classifier achieved the 15th best recall and
the 17th best precision for Sub-Task A, and the
9th best recall and the 18th best precision for Sub-
Task B. For roughly 1% of the samples the classi-
fier did not produced any predictions. The hierar-
chy consistency is of 0.9363, reflecting the lack of
a post-processing step to enforce the hierarchical
structure, which would be 1.0 if employed.
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Considering only the best submissions from all
teams, we ranked 8th for Sub-Task A and 6th for
Sub-Task B.

6 Future Work

We had planned to explore different features and
carry more experiments but time constraints for
the submission of the test results did not allowed
us to experiment all that was planned.

One crucial aspect in the global classifier is a
post-processing step to make sure that the labels
output is in-line with the hierarchy-tree constrains.
The global classifier could also be improved by
initializing a weight matrix based on label co-
occurrence. Kurata et al. (2016) proposed a neu-
ral network initialization method to treat some of
the neurons in the final hidden layer as dedicated
neurons for each pattern of label co-occurrence.
These dedicated neurons are initialized to con-
nect to the corresponding co-occurring labels with
stronger weights than to others representing non
co-occurring labels. Baker and Korhonen (2017)
applied this idea in the biomedical domain and to
a much more compact hierarchy than the one pre-
sented in this paper.

In the local classifier strategy for Level 1 and 2
we use the same architecture for all classifiers and
tuned them in the same way, the type of architec-
ture and tuning process could be made dependent
on the numbers of samples available to train and
level in the hierarchical tree.

A few more features could have been explored,
for instance the author’s name and the release date
of the book. The padding of the documents rep-
resentation for the neural network could be set to
the average since of the documents, instead of the
longest one.

The values for the prediction threshold were se-
lected in an ad-hoc fashion, these could also be
properly set, through a set of experiments.
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Abstract

This paper presents the submission of the
system AVERBIS BOHB CNN for the Shared
Task on hierarchical classification of German
blurbs (short texts) - GermEval 2019 Task 1.
We optimized the hyperparameters of a CNN
based on a fastText word embedding layer and
combined it with a variant of a T-Criterion
classification method. The model was able to
achieve an F1 score of 0.834 (ranked 6th) for
subtask a and of 0.644 (ranked 3th) for subtask
b on the respective test sets.

1 Introduction

Hierarchical multi-label text-classification (HMC)
is the task of classifying text into categories with
an underlying hierarchical structure. As more and
more text becomes available in digital form the
need for such automated and robust text classifi-
cation grows bigger. To foster research in the do-
main of HMC the organizers of GermEval 2019
called for participation in Shared Task 1 - hier-
archical classification of German blurbs. In this
work, we describe our submission to the task.

The task consists of two subtasks (subtask a,
subtask b) in which the participants are chal-
lenged to classify short German text snippets
advertising books into one or multiple of 8
non-hierarchically (a) and 343 (b) hierarchically
structured categories, respectively.

We approach the subtasks with a convolutional
neural net (CNN) (Kim, 2014), using word
embeddings trained with fastText (Bojanowski
et al., 2017). In order to optimize the involved
hyperparameters, we used BOHB (Falkner et al.,
2018). BOHB is a hyperparameter search tech-
nique, which combines Bayesian optimization
with bandit-based methods to find good configu-
rations in feasible time. The hierarchy of labels in

subtask b was not incorporated in the learning
process, i.e. the labels’ hierarchical structure
was flattened. To further improve the predictions
based on the probability distributions, we adapted
the T-Criterion (Boutell et al., 2004) classification
method. The approach reaches F1 scores of 0.850
on the validation set of subtask a and 0.664 on
subtask b.

The rest of the paper is structured as fol-
lows. The next Section (2) describes the provided
dataset. Section 3 introduces the preliminaries. In
Section 4, the system description is layed out. Sec-
tion 5 illustrates the results and Section 6 summa-
rizes the learnings and gives an outlook for future
work.

2 Dataset

The dataset is a collection of short German text
sequences, so called blurbs, advertising German
books. Figure 1 shows an example of a blurb.
Each instance features different fields such as title,
body, copyright, categories, authors, published,
isbn, url. The body is the main text field and con-
tains the advertising description.

The categories are the target classes of the clas-
sification tasks. Each blurb can be classified into
one or multiple categories. Each category consists
of one or many hierarchically structured topics.

For subtask a the blurbs need to be classified
into one or multiple of the eight first level classes,
i.e. root level topics (d = 0):
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• Literatur & Unterhaltung
• Sachbuch
• Kinderbuch & Jugendbuch
• Ratgeber
• Ganzheitliches Bewusstsein
• Glaube & Ethik
• Künste
• Architektur & Garten

For subtask b, the blurbs need to be classi-
fied into multiple hierarchical classes, i.e. topics
(d ∈ {1, 2}). In total there are 343 topics with a
maximum level depth of three.

The complete dataset contains 20,784 instances
of German blurbs. 14,548 labeled instances for
training (train) as well as 2,079 labeled in-
stances for local validation (dev). All results in
this work are based on these two sets. A third set
of 4,157 unlabeled instances was made available
for result submission (test).

Figure 1: Example blurb taken from the dev set.

With concatenated fields, the average length of
a blurb is 231 words with a standard deviation of
64. The smallest blurb counts 66 words, the largest
1017.

The distribution of classes in the train set
for subtask a are shown in Figure 2. As we
can see, the distribution is highly imbalanced with
more than half of the instances being labeled with
the topic Literatur & Unterhaltung.

3 Preliminaries

This section introduces the preliminaries. The
support vector machine that serves as baseline in
Subsection 3.1, word embeddings (3.2), convolu-
tional neural networks (3.3) and hyperparameter
optimization (3.4).
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Figure 2: Number of samples per class for subtask a
in the train set.

3.1 SVM

Support Vector Machines (SVM) are a well es-
tablished machine learning approach for text clas-
sification (Manevitz and Yousef, 2001). In this
work, the multi-label classifier is implemented
by several one-vs-all linear SVMs (Fan et al.,
2008). The features of the single SVMs consist
of a bag-of-stems1. The stems are prefixed to en-
code the information to which field it belongs to,
e.g. title stem or body stem. The features are
weighted using logarithmic frequencies with re-
dundancy (Leopold and Kindermann, 2002) and
are L2-normalized. At prediction time the T-
Criterion classification method with a threshold of
0.5 is used for all labels. Opposed to state-of-
the-art neural classifiers in which the input is en-
coded using distributed representations for words,
e.g. word embeddings, SVMs with a bag-of-words
feature representation neglect all sequential infor-
mation.

3.2 Word Embeddings

A word embedding describes a mapping that trans-
lates single words or phrases taken from a vo-
cabulary into an n-dimensional real-valued vector
space. Using the context of the words, it is usually
the rationale to find a representation which pre-
serves syntactic and semantic attributes and can be
passed on to a machine learning algorithm.

The choice of an effective word embedding de-
pends on a large variety of parameters, e.g. the
model itself, embedding size, the corpora used for
training or the action taken for unknown words.
Many standardized and well-described word em-
beddings, trained on different corpora, can be
found online.

1https://snowballstem.org/, accessed September 18, 2019
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For this work, fastText (Bojanowski et al., 2017)
was selected as it additionally considers n-gram
sub-words as input instead of whole words as
atomic units. Apart from the increased training
time, it enables the model to embed unseen words.
The word ”Propene”, for example, might be un-
seen in the training corpus, yet fastText is able to
assign a vector near the vector of the seen word
”Propylene” which can be advantageous in do-
mains with complex language.

3.3 CNN

Early improvements in text classification with
deep learning started with the Dynamic Convolu-
tional Neural Networks (DCNN) method (Kalch-
brenner et al., 2014). The authors first adopted
CNNs, a model well-received in the computer vi-
sion domain, to the field of NLP. Following this
work, Yoon Kim created another CNN architec-
ture (Kim, 2014). The main improvement was
to embed the input words using pre-trained word
embeddings (Mikolov et al., 2013) before passing
them into the neural network. Contrary to other
convolutional networks, Kim’s CNN uses a sin-
gle stage of wide parallel convolutions instead of
several stacked convolutions on top of each other.
This architecture has been selected as main ap-
proach in this work as it has been proven to be
versatile and efficient.

3.4 Hyperparameter Optimization

In general the parameters of a neural network can
be divided into two categories: the normal and
the hyperparameters. Normal parameters, such
as weights and biases, are changed during train-
ing time. Hyperparameters, such as learning rate
and batch size, are set before the training begins.
The right choice of parameters can effect the per-
formance of a neural network significantly (Hen-
derson et al., 2017). Therefore, hyperparameter
optimization aims to determine a set of hyperpa-
rameter values such that a objective function is
maximized. These techniques range from sim-
ple random search to more sophisticated, efficient
methods such as Bayesian Optimization (BO). In
this work, BOHB, a state-of-the-art hyperparam-
eter optimization technique developed by Falkner
et al., is used to tune the parameters. It combines
the best of two worlds leveraging the strong per-
formance of BO while maintaining the speed of
hyperband (HB).

4 System Description

This section presents a detailed description of the
used system and how the experiments were con-
ducted. It introduces the preprocessing steps, used
word embeddings, the model itself as well as the
hyperparameter optimization steps and the used
classification methods that turn the probabality
distributions into predictions.

4.1 Preprocessing

This subsection describes the applied preprocess-
ing steps for the experiments. The different fields
of the blurbs are first concatenated and then to-
kenized using JTok2. The text is normalized by
lower-casing, removing all non-alphabetic char-
acters and reducing all multi-spaces to a single
white space. As the types of CNNs used in this
work require a constant sized input the blurbs are
truncated/padded to a fixed length. This sequence
length is optimized as a hyperparameter.

4.2 Word embeddings

As mentioned before, fastText (Grave et al., 2018)
was used to obtain the word embeddings. In this
work the pre-trained German model is used.3 The
number of words, i.e. the top-n most frequent
words in the dataset that are embedded, is opti-
mized as a hyperparameter.

4.3 Model

The main focus of this work relies on optimiz-
ing CNNs for the task of classifying German text
blurbs. The preprocessed text is fed to the net-
work through the earlier described word embed-
ding lookup, which converts word IDs to vectors
represented in a high-dimensional vector space.

Afterwards, a convolutional layer is applied on
top of the embedding layer. The layer is specified
by two central hyperparameters: region sizes and
number of filters.

A region size can be understood as the 1-D con-
volution window size in the domain of computer
vison or the n-gram size in the domain of NLP.
Each region has a number of filters with different
weights. The weights of each filter are adjusted
during training time to detect different lexical fea-
tures in the text.

2https://github.com/DFKI-MLT/JTok, accessed July 30,
2019

3https://fasttext.cc/docs/en/crawl-vectors.html, accessed
August 05, 2019
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In order to reduce the output of the differ-
ent filters at each position in the text, max-over-
time pooling is applied. The pooling returns the
highest value for each filter with respect to all
positions; i.e. after the pooling step, a layer
with |region sizes|·number of filters neurons is ob-
tained. These neurons are fully connected to the
final sigmoid layer which turns the input into a
probability distribution over the label classes.

In order to mitigate overfitting, a Dropout rate
is established between these last two layers. This
way the network is forced to not solely rely on the
activation of single filters.

Besides the CNN’s specific hyperparameters, it
is also recommended to optimize the learning rate
and batch size.

To adjust the weights during learning, Adam
optimization (Kingma and Ba, 2015) is used.

4.4 Applied Hyperparameter Optimization

In this section, the results of applying Hyperpa-
rameter Optimization by using BOHB (Falkner
et al., 2018) are investigated. The hyperparam-
eters are optimized by sampling a random 20%
train/test split at the beginning of each run, which
is necessary to mitigate overfitting. In total BOHB
evaluated 30 iterations to find the final configura-
tion. The search hyperparameter space is shown
in Table 1. The final hyperparameters are shown
in Table 2. The parameters are very different
for both subtasks. It can be seen that the best
parameters for the fine-grained classification of
subtask b span a more complex network than
for subtask a which intuitively makes sense.
The sequence length is more than twice as long
(191→ 410), the number of words almost reaches
the upper limit of the range (29, 524 → 48, 736)
and the number of filters per region is also highly
increased (560 → 975). The region size on the
other hand drops (15 → 7), which may indicate
that smaller text sequences play a more important
role for the fine-grained classification.

4.5 Classification Methods

A special classification method based on the T-
Criterion (Boutell et al., 2004) was used to fur-
ther improve the classification results based on
the probability distribution over the label classes.
In the standard above threshold classification
method, all class probabilities with a value above
a pre-set threshold (0.5), are considered as posi-

Table 1: Hyperparameter search ranges.

Parameter Range
Sequence Length [50; 1,000]
Number of Words [10,000; 50,000]
Regions Size [3; 18]
Number of Filters [200; 2,000]
Dropout Rate [0.0; 0.7]
Learning Rate [1e−4; 5e−2]
Batch Size [16; 256]

Table 2: Best found hyperparameter configurations for
both subtasks.

subtask
Parameter a b
Sequence Length 191 410
Number of Words 29,524 48,736
Regions Size [15] [7]
Number of Filters 560 975
Dropout Rate 0.10 0.03
Learning Rate 0.0017 0.0022
Batch Size 32 64

tive classes. There are two problems with this ap-
proach.

First, given the Closed World Assumption that
every blurb belongs to at least one class, if there
is not a single label with a confidence greater than
0.5, there will be no prediction. This problem is
solved by using the T-Criterion, if all confidences
are lower than the pre-set threshold the label with
the highest confidence is assigned if the overall
confidence entropy is above a minimal threshold
(0.1).

Second, as we flatten the hierarchy structure of
subtask b for the training of the CNN, using T-
Criterion alone may result in positive classes for a
single node in the hierarchy. Therefore, a recon-
struction step is applied which additionally pre-
dicts the classes in the path from root to predicted
node. This classification method will be described
as T-Criterion.

5 Results

Table 3 illustrates the results for both subtasks
per approach based on the dev and test set.
As expected, the F1 scores for subtask a
(0.850) are higher than the scores for the HMC
subtask b (0.664) with 343 classes. The
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dev test
Approach subtask a subtask b subtask a subtask b

SVM 0.783 0.577 - -
AVERBIS BOHB CNN 0.837 0.641 - -
AVERBIS BOHB CNN + T-Criterion 0.850 0.664 0.834 0.644

Table 3: F1 scores for both subtasks per approach.

AVERBIS BOHB CNN outperforms the baseline
SVM approach (+0.054). Moreover, applying the
T-Criterion classification method further im-
proves AVERBIS BOHB CNN (+0.013). Unfor-
tunately, the scores deteriorate comparing dev to
test set. This could indicate overfitting on the
test + dev set and therefore question the relia-
bility of the found hyperparameters. For more ro-
bust results we suggest to tweak the hyperparame-
ter ranges and increase the iteration budget of the
optimization.

6 Conclusion

In conclusion we have shown that a strong classi-
fier for German blurbs can be build using a CNN
with optimized hyperparameters. Yet, especially
the HMC subtask b is a challenging problem
that requires further work. The found hyperparam-
eters for both subtasks illustrate how the complex-
ity of a CNN, i.e. number of trainable parameters,
grows from a simple text-classification task with
8 labels to the hierarchical task with 343 labels,
given the same input.

As deployment into production is an impor-
tant factor for us, we plan to compare our results
to more recent approaches in terms of accuracy,
training and inference time; e.g. Acharya et al. re-
port on decreased model sizes and inference times
while maintaining high accuracy by compressing
the word embeddings.
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Abstract
We present here our approach to the Ger-
mEval 2019 Task 1 - Shared Task on hier-
archical classification of German blurbs. We
achieved the first place in the hierarchical sub-
task B and second place on the root node, flat
classification subtask A. In subtask A, we ap-
plied a simple multi-feature TF-IDF extraction
method using different n-gram range and stop-
word removal, on each feature extraction mod-
ule. The classifier on top was a standard linear
SVM. For the hierarchical classification, we
used a local approach, which was more light-
weighted but was similar to the one used in
subtask A. The key point of our approach was
the application of a post-processing to cope
with the multi-label aspect of the task, increas-
ing the recall but not surpassing the precision
measure score.

1 Introduction

Hierarchical Multi-label Classification (HMC) is
an important task in Natural Language Process-
ing (NLP). Several NLP problems can be formu-
lated in this way, such as patent, news articles,
books and movie genres classification (as well as
many other classification tasks like diseases, gene
function prediction). Also, many tasks can be for-
mulated as hierarchical problems in order to cope
with a large amount of labels to assign to the sam-
ple, in a divide and conquer manner (with pseudo
meta-labels). A theoretical survey exists Silla and
Freitas (2011) discussing how the task can be en-
gaged, several approaches and the prediction qual-
ity measures. Basically, the task in HMC is to
assign a sample to one or many nodes of a Di-
rected Acyclic Graph (DAG) (in special cases a
tree) based on features extracted from the sample.
In the case of possible multiple parent, the eval-
uation of the prediction complicates heavily, for
once since several paths can be taken, but only in
a joining node must be considered.

The GermEval 2019 Task 1 - Shared Task on
hierarchical classification of German blurbs focus
on the concrete challenge of classifying short de-
scriptive texts of books into the root nodes (sub-
task A) or into the entire hierarchy (subtask B).
The hierarchy can be described as a tree and con-
sisted of 343 nodes, in which there are 8 root
nodes. With about 21k samples it was not clear
if deep learning methods or traditional NLP meth-
ods would perform better. Especially, in the sub-
task A, since for subtask B some classes had only
a few examples. Although an ensemble of tradi-
tional and deep learning methods could profit in
this area, it is difficult to design good heteroge-
neous ensembles.

Our approach was a traditional NLP one, since
we employed them successfully in several projects
Benites (2017); Benites and Cieliebak (2017);
Benites et al. (2019), with even more samples and
larger hierarchies. We also compared new libraries
and our own implementation, but focused on the
post-processing of the multi-labels, since this as-
pect seemed to be the most promising improve-
ment to our matured toolkit for this task. There-
fore, we aimed to push recall up and hoped to not
overshot much over precision.

2 Related Work

The dataset released by Lewis et al. (2004) en-
abled a major boost in HMC on text. This was a
seminating dataset since it not only was very large
(800k documents) but the hierarchies were large
(103 and 364). Many different versions were used
in thousands of papers. Further, the label density
Tsoumakas and Katakis (2007) was considerably
high allowing also to be treated as multi-label,
but not too high as to be disregarded as a com-
mon real-world task. Some other datasets were
also proposed (Partalas et al. (2015), Mencı́a and
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Fürnkranz (2010)), which were far more difficult
to classify. This means consequently that a larger
mature and varied collection of methods was de-
veloped, from which we cannot cover much in this
paper.

An overview of hierarchical classification was
given in Silla and Freitas (2011) covering many
aspects of the challenge. Especially, there are lo-
cal approaches which focus on only part of the hi-
erarchy when classifying. They are in contrast to
the global (big bang) approaches.

A difficult open problem relates to the selection
of which hierarchical quality prediction measure
to use since there are dozens of them. An overview
with a specific problem is given in Brucker et al.
(2011). An approach which was usually taken
was to select several measures, and use a vote,
although many measures inspect the same aspect
and therefore correlate, creating a bias. The Ger-
mEval competition did not take that into account
and concentrates only on the flat micro F-1 mea-
sures1.

Still, a less considered problem in HMC is the
number of predicted labels, especially regarding
the post-processing of the predictions2. We dis-
cussed this thoroughly in Benites (2017). The
main two promising approaches were proposed by
Yang (1999) and Read et al. (2009). The former
focuses on column and row based methods for es-
timating the appropriate threshold to convert a pre-
diction confidence into a label prediction. Read
et al. (2009) used the label cardinality (Tsoumakas
and Katakis (2007)), which is the mean average la-
bel per sample, of the training set and change the
threshold globally so that the test set achieved sim-
ilar label cardinality.

3 Data and Methodology

3.1 Task Definition and Data Description

The shared task aimed at Hierarchical Multi-
label Classification (HMC) of Blurbs. Blurbs are
short texts consisting of some German sentences.
Therefore, a standard framework of word vector-
ization could be applied. There were 14548 train-

1The harmonic mean between micro recall and precision
gives more weight for the predominant label. Many new tasks
consider the macro averaged F-1 since it gives equal weights
for all labels which can be interesting for a large amount of
labels (or samples to come).

2This is especially important if macro F-1 is used as qual-
ity prediction measure, in order to predict as many labels as
possible.

ing, 2079 development, and 4157 test samples.
The used hierarchy can be considered as an on-

tology, but for the sake of simplicity, we regard it
as a simple tree, each child node having only one
single parent node, with 4 levels of depth, 343 la-
bels of which 8 are root nodes, namely: ’Literatur
& Unterhaltung’, ’Ratgeber’, ’Kinderbuch & Ju-
gendbuch’, ’Sachbuch’, ’Ganzheitliches Bewusst-
sein’, ’Glaube & Ethik’, and ’Künste, Architektur
& Garten’.

The label cardinality (average number of labels
per sample) of the training dataset was about 1.070
(train: 1.069, dev: 1.072) in the root nodes, point-
ing to a clearly low multi-label problem, although
there were samples with up to 4 root nodes as-
signed. This means that the traditional machine
learning systems would promote single label pre-
dictions. Subtask B has a label cardinality of 3.107
(train: 3.106, dev: 3.114), with 1 up to 14 labels
assigned per sample. Table 1 shows a short dataset
summary by task.

Task samples labels cardinality density
subtask A 20,784 8 1.069 0.1336
subtask B 20,784 343 3.11 0.0091

Table 1: Specs for dataset for subtasks A and B

3.2 System Definition
We used two different approaches for each sub-
task. In subtask A, we used a heavier feature
extraction method and a linear Support-Vector-
Machine (SVM) classifier. Whereas for subtask B,
we used a more light-weighted feature extraction
with the same SVM but in a local-hierarchical-
classification fashion, i.e. for each parent node
such a base classifier was used. Also the use of
a different postprocessing step per task differenti-
ate the approaches. They were designed to be light
and fast, to work almost out of the box, and to eas-
ily generalise.

3.2.1 Classifiers
Base Classifier For subtask A, we use the one
depicted in Fig. 1, for subtask B, a similar more
light-weight approach was employed as base clas-
sifier (described later). As can be seen, several
vectorizers based on different n-grams (word and
character) with a maximum of 100k features and
preprocessing, such as using stopwords or not,
were applied to the blurbs. The obtained term fre-
quencies were then weighted with inverse docu-
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Figure 1: SVM-TF-IDF classifier with ensemble of tex-
tual features

ment frequency (TF-IDF). The results of five dif-
ferent feature extraction and weighting modules
were given as input for a vanilla linear SVM clas-
sifier (scikit-learn LinearSVC) (parameter C=1.5)
which was trained in an one-versus-all fashion.

3.2.2 Hierarchical Classifier

For the hierarchical task, we used a local parent
node strategy, i.e. the parent node decided which
of its children was assigned to the sample (one-vs-
rest, in this case child versus siblings). This cre-
ated also the necessity of a virtual root node. For
each node the same base classifier is trained in-
dependently of the other nodes, so the amount of
labels each classifier was confronted with was lim-
ited. We also adapted each feature extraction with
the classifier in each single node much like Paes
et al. (2014). As base classifier, a similar one to
Fig. 1 was used, where only one 1-7 word n-gram,
one 1-3 word n-gram with German stopwords re-
moval and one char 2-3 n-gram feature extraction
were employed, all with maximum 70k features,
since it was performed for each parent node. We
used two implementations achieving very similar
results. In the following, we give a description of
both approaches.

Recursive Grid Search Parent Node Our im-
plementation is light-weighted and optimized for a
short pipeline, nonetheless it is prepared for large
amounts of data, saving each local parent node
model to the disk. However, it does not conforms
the way scikit-learn is designed. Further, in con-
trast to the Scikit Learn Hierarchical, we give the
possibility to optimize with a grid search each fea-
ture extraction and classifier per node. This can be
quite time consuming, but can also be heavily par-
allelized. In the final phase of the competition, we

did not employ it because of time constrains3 and
the amount of experiments performed in the Ex-
periments Section was only possible with a light-
weighted implementation.

Scikit Learn Hierarchical Scikit Learn Hier-
archical4 (Hsklearn) was forked and improved to
deal better with multi-labels, which was a key fea-
ture of the shared task, as well as to allow each
node to perform its own preprocessing5. This
guaranteed that the performance of our own im-
plementation was surpassed and that a contribu-
tion for the community was made. This ensured
as well that the results are easily reproducible.

3.2.3 Post-processing: Threshold
Many classifiers can predict a score or confidence
about the prediction. Turning this score into the
prediction is usually performed by setting a thresh-
old, such as 0 and 0.5, so labels which have a score
assigned greater than that are assigned to the sam-
ple. This might not be the optimal threshold in the
multi-label classification setup and there are many
approaches to set it (Yang (1999)). Although these
methods concentrate in the sample or label, we
have had good results with a much more general
approach.

As described in Benites (2017), Read and
Pfahringer Read et al. (2009) introduce a method
(referred hereinafter to as Label Cardinality Ad-
justment (LCA)) to estimate the threshold glob-
ally. Their method chooses the threshold that min-
imizes the difference between the label cardinality
of the training set and the predicted set.

t = argmin
t∈[0,1]

|LCard(DT )− LCard(Ht(DS))|

where LCard(DT ) denotes the label cardinality
of training set and LCard(Ht(DS)) the label car-
dinality of the predictions on test set if t was ap-
plied as the threshold. For that the predictions
need to be normalized to unity6. We also tested
this method not for the label cardinality over all

3The system was trained on a Intel Xeon 32 cores and 100
Gb RAM.

4https://github.com/globality-corp/sklearn-hierarchical-
classification/

5https://github.com/fbenites/sklearn-hierarchical-
classification/

6Although a sample wise normalization can be applied,
we used a normalization over all predicted samples. This
works especially good for Task A, since there is only one
classifier at the top.
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samples and labels but only labelwise. In our im-
plementation, the scores of the SVM were not nor-
malized, which produced slightly different results
from a normalized approach.

For the HMC subtask B, we used a simple
threshold based on the results obtained showing
that on this task LCA performed worse (see Sec-
tion 4.3). Especially, using multiple models per
node could cause a different scaling and conse-
quently making it difficult to use one threshold for
all classifiers.

3.3 Alternative approaches
We also experimented with other different ap-
proaches. The results of the first two were left out
(they did not perform better), for the sake of con-
ciseness.

• Meta Crossvalidation Classifier: Benites
et al. (2019)

• Semi-Supervised Learning: Jauhiainen et al.
(2018); Benites et al. (2019)

• Flair: Flair Akbik et al. (2018) with differ-
ent embeddings (BERT (out of memory)7,
Flair embeddings (forward and backward
German)). Such sophisticated language mod-
els require much more computational power
and many examples per label. This was the
case for the subtask A but subtask B was not.

4 Experiments

We divide this Section in three parts, in first we
conduct experiments on the development set and
in the second on the test set for Task A and in the
third for Task B, in the latter two we also discuss
the competition results.

4.1 Preliminary Experiments on
Development Set

The experiments with alternative approaches, such
as Flair, meta-classifier and semi-supervised learn-
ing8 yielded discouraging results, so we will con-
centrate in the SVM-TF-IDF methods. Especially,
semi-supervised proved in other setups very valu-
able, here it worsened the prediction quality, so we
could assume the same ”distribution” of samples

7The system was trained on an Intel icore 7 CPU with 32
Gb RAM with a NVIDIA GeForce 1060 6Gb GPU.

8The training, dev and test set seems to come from the
same distribution, so the quality prediction when using a
semi-supervised method was worse than without.

Figure 2: Threshold/micro F-1 dependency

were in the training and development set (and so
we assume for the test set).

In Table 2, the results of various steps towards
the final model can be seen. An SVM-TF-IDF
model with word unigram already performed very
well. Adding more n-grams did not improve the
prediction quality, on the contrary using n-grams
1-7 decreased the performance. Only when re-
moving stopwords it improved again, but then sub-
stantially. Nonetheless, a character 2-3 n-gram
performed best between these simple models. This
is interesting, since this points much more to not
which words were used, but more on the morphol-
ogy9.

Using the ensemble feature model produced the
best results without post-processing. The simple
use of a low threshold yielded also astonishingly
good results. This indicates that the SVM’s score
production was already very good, yet the thresh-
old 0 was too cautious.

In Fig. 2, a graph showing the dependency be-
tween the threshold set and the micro F-1 score
achieved in the development set is depicted. The
curve fitted was a∗x2+b∗x+c which has the max-
imum at approx. -0.2. We chose -0.25 in the ex-
pectation that the test set would not have the exact
characteristics as the development set and based
on our previous experience with other multi-label
datasets (such as the RCv1-v2) which produced
best results at a threshold of -0.3. Also as we will
see, the results proved us right achieving the best
recall, yet not surpassing the precision score. This
is a crucial aspect of the F-1 measure, as it is the

9For the sake of conciseness, we will not discuss it here.
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Nr. Method micro F-1
1 SVM-TF-IDF, word unigram 0.7965
2 SVM-TF-IDF, word unigram, t=-0.25 0.8234
3 SVM-TF-IDF, word n-gram (1-7) 0.7875
4 SVM-TF-IDF, word n-gram (1-7), t=-0.25 0.8152
5 SVM-TF-IDF, word n-gram (1-3), stopwords 0.8075
6 SVM-TF-IDF, word n-gram (1-3), stopwords, t=-0.25 0.8240
7 SVM-TF-IDF, char n-gram (2-3) 0.8205
8 SVM-TF-IDF, char n-gram (2-3), t=-0.25 0.8332
9 SVM-TF-IDF, feat. ensemble 0.8414

10 SVM-TF-IDF, feat. ensemble, threshold LCA 0.8545
10 SVM-TF-IDF, feat. ensemble, threshold LCA normed 0.8534
11 SVM-TF-IDF, feat. ensemble, threshold LCA-labelwise 0.8603
12 SVM-TF-IDF, feat. ensemble, threshold -0.25 0.8540
13 SVM-TF-IDF, feat. ensemble, threshold -0.2 0.8557
14 Flair Embeddings German (forward,backward), 60 epochs 0.8151
15 SVM-TF-IDF, feat. ensemble, threshold LCA, fixing null 0.8577
16 SVM-TF-IDF, feat. ensemble, threshold LCA-labelwise, fixing null 0.8623

Table 2: Micro F-1 scores of different approaches on the development set classifying root nodes (subtask A), best
four values marked in bold

harmonic mean it will push stronger and not lin-
early the result towards the lower end, so if de-
creasing the threshold, increases the recall linearly
and decreases also the precision linearly, balanc-
ing both can consequently yield a better F-1 score.

Although in Fig. 2, the curve fitted is parabolic,
in the interval between -0.2 and 0, the score is al-
most linear (and strongly monotone decreasing)
giving a good indication that at least -0.2 should
be a good threshold to produce a higher F-1 score
without any loss.

Even with such a low threshold as -0.25, there
were samples without any prediction. We did not
assign any labels to them, as such post-process
could be hurtful in the test set, although in the de-
velopment it yielded the best result (fixing null).

In Table 3, the results are shown of the one-vs-
all approach regarding the true negative, false pos-
itives, false negatives and true positives for the dif-
ferent threshold 0, -0.25 and LCA. Applying lower
threshold than 0 caused the number of true pos-
itives to increase without much hurting the num-
ber of true negatives. In fact, the number of false
positives and false negatives became much more
similar for -0.25 and LCA than for 0. This results
in the score of recall and precision being similar,
in a way that the micro F-1 is increased without
changing the scores of the prediction. Also, the
threshold -0.25 resulted that the number of false

positive is greater than the number of false nega-
tives, than for example -0.2. LCA produced sim-
ilar results, but was more conservative having a
lower false positive and higher true negative and
false negative score.

We also noticed that the results produced by
subtask A were better than that of subtask B for
the root nodes, so that a possible crossover be-
tween the methods (flat and hierarchical) would be
better, however we did not have the time to imple-
ment it. Although having a heavier feature extrac-
tion for the root nodes could also perform similar
(and decreasing complexity for lower nodes). We
use a more simple model for the subtask B so that
the model would probably not overfit.

Table 4 shows the comparison of the different
examined approaches in subtask B in the prelimi-
nary phase. Both implementations, Hsklearn and
our own produced very similar results, so for the
sake of reproducibility, we chose to continue with
Hsklearn. We can see here, in contrary to the sub-
task A, that -0.25 achieved for one configuration
better results, indicating that -0.2 could be overfit-
ted on subtask A and a value diverging from that
could also perform better. The extended approach
means that an extra feature extraction module was
added (having 3 instead of only 2) with n-gram
1-2 and stopwords removal. The LCA approach
yielded here a worse score in the normalized but
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Label t=0 t=-0.25 LCA
tn fp fn tp tn fp fn tp tn fp fn tp

Architektur & Garten 2062 0 4 13 2061 1 2 15 2061 1 2 15
Ganzheitliches Bewusstsein 1959 8 45 67 1951 16 29 83 1951 16 30 82
Glaube & Ethik 1986 3 31 59 1983 6 23 67 1984 5 24 66
Kinderbuch & Jugendbuch 1783 8 80 208 1759 32 50 238 1762 29 51 237
Künste 2061 0 6 12 2061 0 4 14 2061 0 4 14
Literatur & Unterhaltung 874 98 58 1049 801 171 31 1076 807 165 31 1076
Ratgeber 1799 20 110 150 1781 38 75 185 1785 34 77 183
Sachbuch 1701 40 148 190 1672 69 106 232 1674 67 111 227
Total 14225 177 482 1748 14069 333 320 1910 14085 317 330 1900

Table 3: Confusion matrix between label and others for threshold (t) =0 and =-0.25 (true negative: tp, false
negative: fn, false positive: fp, true positive: tp)

Method micro F-1
Hsklearn 0.6544
Hsklearn, t=-0.25 0.6758
Hsklearn, t=-0.2 0.6749
Hsklearn, LCA normalized 0.6645
Hsklearn, LCA 0.6717
Hsklearn extended 0.6589
Hsklearn extended, t=-0.25 0.6750
Hsklearn extended, t=-0.2 0.6765
own imp. 0.6541
own imp., t=-0.25 0.6704
own imp., t=-0.2 0.6715

Table 4: Preliminary experiments on subtask B, best
three values marked in bold

almost comparable in the non-normalized. How-
ever, the simple threshold approach performed
better and was therefore more promising.

4.2 Subtask A
In Table 5, the best results by team regarding mi-
cro F-1 are shown. Our approach reached sec-
ond place. The difference between the first four
places were mostly of 0.005 between each, show-
ing that only a minimal change could lead to
a place switching. Also depicted are not null
improvements results, i.e. in a following post-
processing, starting from the predictions, the high-
est score label is predicted for each sample, even
though the score was too low. It is worth-noting
that the all but our approaches had much higher
precision compared to the achieved recall.

Despite the very high the scores, it will be dif-
ficult to achieve even higher scores with simple
NLP scores. Especially, the n-gram TF-IDF with
SVM could not resolve descriptions which are sci-
ence fiction, but are written as non-fiction book10,

10Exemplary are books describing dystopias which from a

where context over multiple sentences and word
groups are important for the prediction.

4.3 Subtask B

The best results by team of subtask B are depicted
in Table 6. We achieved the highest micro F-1
score and the highest recall. Setting the threshold
so low was still too high for this subtask, so preci-
sion was still much higher than recall, even in our
approach. We used many parameters from subtask
A, such as C parameter of SVM and threshold.
However, the problem is much more complicated
and a grid search over the nodes did not complete
in time, so many parameters were not optimised.
Moreover, although it is paramount to predict the
parent nodes right, so that a false prediction path
is not chosen, and so causing a domino effect, we
did not use all parameters of the classifier of sub-
task A, despite the fact it could yield better results.
It could as well have not generalized so good.

The threshold set to -0.25 shown also to produce
better results with micro F-1, in contrast to the
simple average between recall and precision. This
can be seen also by checking the average value be-
tween recall and precision, by checking the sum,
our approach produced 0.7072+0.6487 = 1.3559
whereas the second team had 0.7377+0.6174 =
1.3551, so the harmonic mean gave us a more
comfortable winning marge.

5 Conclusion

We achieved first place in the most difficult setting
of the shared Task, and second on the ”easier” sub-
task. We achieved the highest recall and this score
was still lower as our achieved precision (indicat-

n-gram perspective have very much the same vocabulary of a
non-fiction book. Here, more aspects of the language need to
be captured, such as a focus to constructions like ”in a future
New York City”.
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Rank Teamname precision recall micro F-1
1 EricssonResearch 0.8923 0.8432 0.8670
- twistbytes LCA fixing null 0.8536 0.8790 0.8661
- twistbytes LCA-labelwise fixing null 0.8536 0.8763 0.8648
2 twistbytes 0.8650 0.8617 0.8634
3 DFKI-SLT 0.8760 0.8472 0.8614
4 Raghavan 0.8777 0.8383 0.8575
5 knowcup 0.8525 0.8362 0.8443
6 fosil-hsmw 0.8427 0.832 0.8373
7 Averbis 0.8609 0.8083 0.8337
8 HSHL1 0.8244 0.8159 0.8201
9 Comtravo-DS 0.8144 0.8255 0.8199
10 HUIU 0.8063 0.8072 0.8067
11 LT-UHH 0.8601 0.7481 0.8002

Table 5: Results of subtask A, best micro F-1 score by team

Rank Teamname precision recall micro F-1
1 twistbytes 0.7072 0.6487 0.6767
2 EricssonResearch 0.7377 0.6174 0.6722
3 knowcup 0.7507 0.5808 0.6549
4 Averbis 0.677 0.614 0.644
5 DFKI-SLT 0.7777 0.5151 0.6197
6 HSHL1 0.7216 0.5375 0.6161
7 Comtravo-DS 0.7042 0.5274 0.6031
8 LT-UHH 0.8496 0.3892 0.5339
9 NoTeam 0.4166 0.276 0.332
10 DexieDuo 0.0108 0.0034 0.0052

Table 6: Results of subtask B, best micro F-1 score by team

ing a good balance). We could reuse much of the
work performed in other projects building a solid
feature extraction and classification pipeline. We
demonstrated the need for post-processing mea-
sures and how the traditional methods performed
against new methods with this problem. Fur-
ther, we improve a hierarchical classification open
source library to be easily used in the multi-label
setup achieving state-of-the-art performance with
a simple implementation.

The high scoring of such traditional and light-
weighted methods is an indication that this
dataset has not enough amount (or variety) of
data to use deep learning methods, so keyword-
spotting/word-usage was already good whereas
synonyms, context, negations, etc. were not so rel-
evant. Nonetheless, the amount of such datasets
will probably increase, enabling more deep learn-
ing methods to perform better.

Many small improvements were not performed,
such as elimination of empty predictions and using

label names as features. This will be performed in
future work.
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Abstract

In this paper, we present the HUIU system for
the GermEval 2019 shared task 1. Our sys-
tem uses linear SVMs with word and POS uni-
grams and the number of authors as features.
We obtain a micro-averaged F-score of 80.67
on the test data, thus ranking 15th out of 19
submissions, or 9th out of nine groups.

1 Introduction

This paper describes the contribution of the HUIU
team to the shared task on hierarchical classi-
fication of book blurbs at GermEval 2019 (Re-
mus et al., 2019). The task is a multi-label clas-
sification that assigns categories to books. The
labels constitute a hierarchy, i.e., there are sev-
eral sub-labels to each category. Two tasks were
offered: one focusing on assigning more gen-
eral labels, the second one focusing on addi-
tionally assigning finer grained, hierarchical la-
bels. Our team participated in the first task on
assigning general labels, i.e., our system assigns
each book one or more labels from the following
set: ’Architektur & Garten’ (Architecture & Gar-
dening), ’Ganzheitliches Bewusstsein’ (Holistic
Awareness), ’Glaube & Ethik’ (Belief & Ethics),
’Kinderbuch & Jugendbuch’ (Books for Children
and Young Adult Readers), ’Künste, Literatur &
Unterhaltung’ (Arts, Literature & Entertainment),
’Ratgeber’ (Counseling), and ’Sachbuch’ (Nonfic-
tion).

The HUIU system was developed as a class
project at the University of Hamburg, i.e., all au-
thors participated in a 6-day compact course that
provided an introduction to machine learning for
linguists and digital humanities researchers, under
the supervision of Kuebler and Zinsmeister. All
participants had some experience in programming,
but only one of the participants had had prior ex-
perience with machine learning. This project was

intended to provide a practical introduction to ma-
chine learning and to familiarize the participants
with every step in the process of translating a prob-
lem into a machine learning problem, deciding on
a machine learning algorithm, a feature set, ex-
tracting features, running machine learning exper-
iments, and evaluating the outcomes. The team
submitted a contribution to this shared task as well
as to the GermEval 2019 shared task 2 (Andresen
et al., 2019).

Because of the setting in a short compact
course, the team decided to focus on standard ma-
chine learning algorithms available in scikit-learn
(Pedregosa et al., 2011), with a fairly basic fea-
ture set and initially reducing the problem to a sin-
gle label classification system. We then extended
the feature set only minimally, and used a simple
method to extend the classification approach to-
wards a system where we can assign at most three
labels. Also because of the course setting, we
decided that we would not experiment with deep
learning architectures.

The remainder of the paper is structured as fol-
lows: Section 2 discusses related work, section 3
describes our experimental setup, including the
data set, the machine learning experiments, and
the evaluation metrics. Section 4 shows the official
results, and we discuss additional results on the de-
velopment set: experiments to determine good set-
tings for our thresholding approach to multi-label
classification and a feature ablation study. We con-
clude in section 5 and discuss future work.

2 Related Work

Multi-label classification has not received much
attention in the field of Computational Linguistics.
The few exceptions concern work in the fields of
offense detection (e.g. Ibrohim and Budi, 2019),
relation detection (e.g. Surdeanu et al., 2012), and
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the prediction of medical codes in clinical notes
(Mullenbach et al., 2018). These tasks are similar
to our problem in that the number of labels dif-
fers per instance. For example, each tweet may
contain abusive and/or hate speech and the latter
may be related to one or to several issues such as
creed, sexual orientation, or disability. Similarly,
each sentence may contain a wide range of differ-
ent relations, and each clinical note may contain a
different number of medical codes. An interesting
case is presented by Chalkidis et al. (2019), who
have annotated legal texts with about 7 000 con-
cepts from the European Vocabulary (EUROVOC).
This does not only present a case of an extreme
multi-label classification, but it also requires few-
shot or one-shot learning approaches since most
of these concepts are used very infrequently in the
texts.

El Kafrawy et al. (2015) present an overview
of methods for addressing multi-label classifica-
tion and ranking. For multi-label classification,
they distinguish between methods that transform
the problem into single-label classification, adap-
tations of single-label classifiers, and ensemble
methods. Problem transformations consist of sets
of 1-vs-all classifiers, 1-vs-1 classifiers, or creat-
ing all combinations of labels and treating them
as single labels. For classifier adaptation, neural
networks are ideal since every label can be repre-
sented as a single output node, and depending on
their activation level, multiple levels can be cho-
sen, but other methods can be adapted as well.
El Kafrawy et al. (2015) come to the conclusion
that ensembles of classifiers work best in a multi-
label classification situation.

3 Experimental Setup

3.1 Data Set

We use the data set provided by the shared task.
It consists of a training set (containing 14 548
book blurbs), a development set (containing 2 079
book blurbs), and a test set (containing 4 157 book
blurbs). For the final submission, we trained on
the combination of the training plus the develop-
ment set. For the additional experiments described
in section 4.2, we trained on the training set and
evaluated on the development set. Figure 1 shows
an example of a book entry, reduced to the relevant
fields.

Since we started with a single label classifica-
tion system, we first used only the first label as-

<book date="2019-01-04" xml:lang="de">
<title>Die Essenz der Lehre Buddhas</title>
<body>Klar und verständlich führt der Dalai
Lama in die buddhistische Lehre ein und
eröffnet praktische Wege für alle, die
Gelassenheit und inneren Frieden suchen.
Wer diese einfachen, aber bewährten
Grundsätze des Dalai Lama übernimmt
und nach ihnen lebt, der lebt auch in
Harmonie mit sich und seinen Mitmenschen
dies ist die Essenz der Lehre Buddhas.
</body>
<categories>
<category>
<topic d="0">Glaube & Ethik</topic>
</category>
<category>
<topic d="0">Ganzheitliches Bewusstsein
</topic>
</category>
</categories>
<authors>Dalai Lama</authors>
<isbn>9783453702479</isbn>
</book>

Figure 1: Example of a book blurb.

signed to a book in the training data. However, the
training data may contain more than one label per
book. Therefore, we decided to add one training
instance per label. I.e., a book with three labels
would contribute three training instances, each be-
ing assigned one of the labels.

3.2 Extracted Features

We extracted word and part of speech (POS) n-
grams as well as the number of authors as fea-
tures. For the n-grams, we used the title and
the body of the text, as delineated in the XML
(see Figure 1 for an example). We then performed
minimal tokenization via a script. For POS tag-
ging, we used TnT (Brants, 1998), trained on the
Tübingen Treebank of Written Language (TüBa-
D/Z) (Telljohann et al., 2006), version 10.

For words and POS tags, we experimented with
n-grams of length 1-3. In the final system, only
unigrams were used as features since bigrams and
trigrams negatively affected the results of the clas-
sifier. In addition to word and POS unigrams, we
used the number of authors as a feature, using the
number of commas as indicator of the number of
authors.

3.3 Methodology

We used scikit-learn (Pedregosa et al., 2011)
for our experiments. An initial investigation
comparing SVMs (Support Vector Machines) and
Random Forest classifiers showed that a linear
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Rank Team Subset Acc. Recall Precision micro-F
1 Ericsson Research 83.64 89.23 84.32 86.70

15 HUIU 75.63 80.63 80.72 80.67

Table 1: The official results of the HUIU system in comparison to the best performing system.

SVM gave the best results on the development
set (in the single-label setting). For this reason,
we only report experiments with the linear SVM.
A non-exhaustive parameter search reached the
best results using the default settings (penalty=l2,
loss=squared hinge, dual=True, tol=0.0001,
C=1.0, multi class=ovr, fit intercept=True, inter-
cept scaling=1, class weight=None, verbose=0,
random state=None, max iter=1000).

3.4 From Single-Label to Multi-Class
Classification

Since SVMs are inherently binary classifiers, they
internally already split the problem into multiple
classification steps. The linear SVM implemen-
tation in scikit-learn follows liblinear and imple-
ments a 1-vs-all strategy. We decided to use the
internal results of the SVM by looking at the de-
cision function provided for linear SVMs to de-
cide whether we should add a second or third la-
bel. We used a manually determined threshold of
the difference between the probability of the first
and second label (or between the second and third
respectively). Our best results are based on allow-
ing a second label only and setting the threshold to
≤ 0.19. For a closer look at the effects of setting
thresholds and using multiple labels, see section
4.2.

3.5 Evaluation

For evaluation, we used the official scorer pro-
vided by the shared task. It reports precision, re-
call and the micro-averaged F-score, along with
subset accuracy (i.e., the percentage of instances
that were assigned the correct set of labels). The
micro-averaged F-score serves as the main ranking
function in the shared task.

4 Results

4.1 Official Shared Task Results

9 teams had submitted an overall number of 19 re-
sults. The HUIU contribution was ranked no. 15,
or 9th group. Table 1 shows the HUIU official re-
sults in comparison to the best system. Our sys-
tem is based on word and POS unigrams and the

number of authors as features, allowing up to two
labels.

The results show that our results reach a micro-
averaged F-score that is about 6 percent points
lower than the best ranked system.

4.2 Additional Results

In this section, we report on additional experi-
ments, where we evaluated on the development
set. In an investigation the required number of
labels, we use word and POS n-grams, but only
create one instance per book in the training data,
using the first label. In the ablation study, we start
with the full system and then systematically take
away options.

However, note that the ablation results need to
be taken with a large grain of salt since different
runs of the SVM with the same setting often result
in larger differences than the differences between
settings1. The settings where we use one label per
book seem to be stable, thus the experiments for
determining the best number of labels are run only
once per setting. The ablation experiments were
run twice, and we report the averages. Ideally,
every setting should be run several times, but the
time constraints of this project did not allow such
a procedure.

4.2.1 Number of Labels and Thresholds
Table 2 shows the results when we vary the num-
ber of permissible labels from 1 to 3, and it shows
the effects of choosing corresponding thresholds.
The threshold is defined as the difference between
the probability the SVM assigns to the first and the
second label (or the second and third respectively)
in the internal 1-vs-all binary classifications. I.e.,
if we have a high threshold, corresponding to a
large difference between the probabilities of the
two labels, the system is very permissive in choos-
ing a second label. If the threshold/difference is
low, the first and second label need to be very close
in probability for the second label to be added.

The results show that there are small differences
in the F-score when allowing different numbers of

1The cause for this large variation is unclear.
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Setting Threshold Subset Acc. Recall Precision micro-F
1 label n/a 76.48 76.95 82.54 79.65
2 labels 1.0 68.40 83.50 74.84 78.93

0.3 72.10 81.52 77.86 79.65
0.2 73.64 80.40 79.20 79.80
0.19 73.88 80.31 79.49 79.90
0.15 73.93 80.09 79.48 79.79
0.1 74.80 78.74 80.55 79.64
0.05 75.52 77.80 81.34 79.53

3 labels 0.19; 0.2 73.79 80.81 78.62 79.70
0.19; 0.19 73.79 80.85 78.70 79.76
0.19; 0.18 73.79 80.85 78.73 79.78
0.19; 0.17 73.79 80.76 78.78 79.76
0.19; 0.15 73.79 80.76 78.85 79.80
0.19; 0.12 73.88 80.63 78.96 79.79

Table 2: Results when varying the number of permissible labels and thresholds (on the development set).

Setting Subset Acc. Recall Precision micro-F
full version 74.73 81.17 80.20 80.68
no author 73.65 79.94 78.65 79.29
no POS 75.20 81.57 80.74 81.16
no author/POS 74.97 81.59 80.55 81.07
no author/POS/title 74.22 80.70 80.01 80.40
no author/POS/title; one instance 73.88 79.96 79.70 79.83
no author/POS/title; one instance/label 76.86 77.31 82.92 80.02

Table 3: Results of the ablation study (on the development set).

labels: When we use only one label, we reach an
F-score of 79.65, the best result using two labels
reaches 79.90, thus giving us a minor boost in per-
formance. Surprisingly, subset accuracy is also
highest when allowing only one label. Allowing
a third label results in an optimal F-Score (for this
setting) of 79.80, i.e., it does not reach the highest
F-score when using two labels.

However, when we look at the precision and re-
call scores, we see a different picture: Using one
label gives a high precision but rather low recall,
which is understandable since all books that have
more than one label in the gold standard will at
best be classified only partially. However, this
setting also reaches the highest subset accuracy.
Adding a second label with a high threshold of
1.0 reverses this picture, i.e., we gain in recall
by adding more labels, but precision suffers. The
more we lower the threshold the more we lose in
recall but gain in precision. Thus, we need to find
a good balance for the threshold.

4.2.2 Ablation Study

Table 3 shows the results of our ablation exper-
iments. We start with the full system that also
served as the basis for the official submission. We
see that leaving out the number of authors results
in a minor deterioration, but leaving out the POS
information results in a boost in F of about 0.4,
equally distributed across precision and recall. We
had originally decided to use POS unigrams since
they improved results in the single-label setting.
This shows that the ideal settings do not transport
across single-label and multi-label experiments.

Leaving out both author and POS information
results in a minimal loss, leaving out the title in-
formation and using only one instance per book
with the first label result in a smaller loss. Re-
stricting the system to a single-label task results in
a minimal improvement in F, based on high preci-
sion, but low recall. Surprisingly, this setting also
provides the highest score for subset accuracy.
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5 Conclusion and Future Work

This project was mostly carried out in the setting
of a 6-day compact course. Given the time con-
straint, we have shown that we can put together a
fairly robust system for multi-class classification
of books into categories. Our system ranked about
6 points below the best performing system.

Future work should investigate using additional
features, such as looking into sentence length, the
syntactic complexity of sentences, or the occur-
rence of named entities. We also need to investi-
gate the issue of variation in the SVM results when
we use more than one instance per book while
there is no variation at all when we only use one
instance. Another point is to investigate ensembles
as suggested by El Kafrawy et al. (2015).
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Abstract

In this paper, we (Team Raghavan) describe
the system of our submission for GermEval
2019 Task 1 - Subtask (a) and Subtask (b),
which are multi-label multi-class classifica-
tion tasks. The goal is to classify short texts
describing German books into one or mul-
tiple classes, 8 generic categories for Sub-
task (a) and 343 specific categories for Sub-
task (b). Our system comprises of three
stages. (a) Transform multi-label multi-class
problem into single-label multi-class prob-
lem. Build a category model. (b) Build a
class count model to predict the number of
classes a given input belongs to. (c) Transform
single-label problem into multi-label prob-
lem back again by selecting the top-k predic-
tions from the category model, with the op-
timal k value predicted from the class count
model. Our approach utilizes a Support Vec-
tor Classification model on the extracted vec-
torized tf-idf features by leveraging the Byte-
Pair Token Encoding (BPE), and reaches f1-
micro scores of 0.857 in the test evalua-
tion phase and 0.878 in post evaluation phase
for Subtask (a), while 0.395 in post evalu-
ation phase for Subtask (b) of the competi-
tion. We have provided our solution code
in the following link: https://github.
com/oneraghavan/germeval-2019.

1 Introduction

Multi-label Multi-class Hierarchical Classification
tasks typically encompass multiple possible (one
or more) labels for each instance (not mutually
exclusive) across multiple possible classes (two
or more) with many levels of hierarchies, and
are widely used in domains like text classifica-
tion (Rousu et al., 2006), image classification
(Hsu et al., 2009) and bioinformatics (Barutcuoglu
et al., 2006), (Feng et al., 2017). In this paper, we
present our submission approach for Subtask (a)

and Subtask (b) in GermEval 2019 Task 1 (Remus
et al., 2019). Here, we convert our task into two
sub-problems: first, to predict the category; sec-
ond, to predict the class frequency corresponding
to the multi-label setting. Our approach can be
broadly split into three stages.

• Transform the multi-label multi-class prob-
lem into a single-label multi-class problem,
and build a category model.

• Build a class count predictor model to predict
the number of classes that a given input could
be categorized.

• Transform single-label problem back into a
multi-label problem by selecting the top k
predictions from the category model, with
the optimal k value predicted from the class
count model.

Conventionally, Natural Language Processing
(NLP), particularly text classification tasks have
been modeled using variants of Support Vec-
tor Machines (Joachims, 1998) and Naive Bayes
Classifiers (McCallum et al., 1998). With the
widespread adoption of deep learning models,
there has been considerable increase in efficien-
cies for such tasks, however they are still consid-
ered black box models, and it is extremely hard
to interpret them, in contrast to conventional Ma-
chine Learning algorithms. Moreover, the time
and computational resources required for training
deep neural networks are extremely higher than
conventional Machine Learning models.

Hence, in our approach, we utilize the tra-
ditional Support Vector Classification modeled
using tf-idf (term frequency - inverse document
frequency) feature vectors combined with class
count predictor, and we leverage the Byte-Pair
Encoding (BPE) compression tokenization mech-
anism. Experimental results from exploiting
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such simple model fusion approaches show that
in the post-evaluation phase, f1-micro scores of
0.878 on Subtask (a) and 0.395 on textitSubtask
(b) could be achieved. The overall modeling
pipeline/architecture of our approach can be found
in Figure 1.

Figure 1: Modeling Pipeline/Architecture for both Sub-
task (a) and Subtask (b)

The rest of the paper is organized as follows.
The characteristics of the dataset are described
in Section 2. In Section 3, the data extraction
and pre-processing techniques to obtain our fea-
ture vectors are discussed. Section 4 presents our
model architecture along with training and aggre-
gation phases. This is followed by systematic eval-
uation of our model’s results and submission in
Sections 5 and 6, and we finally conclude the pa-
per.

2 Data Description

The GermEval 2019 Task 1 dataset (Remus et al.,
2019) consists of German books crawled from
randomhouse.de, with the following attributes
– title, description, author name, ISBN and book
release date. Apart from date, most of the other
features available are in the form of text, where
title and description are very short texts. A total
of 343 categories are present across three levels of
hierarchy with 8, 93 and 242 categories in each
level, and multiple labels can be assigned to each
book.

The corpus has a very imbalanced label distri-
bution. Figure 2 shows the top-level label distri-
butions, while Figure 3 shows the top 30 label dis-
tributions, and it can be vividly inferred that the
label categories are highly skewed.

3 Data Extraction and Prepossessing

The corpus was presented as an XML file, with
XML tags for each feature. The XML files were
parsed using the Python library - BeautifulSoup,

Figure 2: Top-level Label Distribution

Figure 3: Label Distribution for top 30 classes with hi-
erarchies

and the columns given in the corpus such as ti-
tle, description, list of authors, date of publication,
ISBN were extracted from the XML format into
a CSV format. The corpus has hierarchy infor-
mation in the hierarchy.txt file, which was used to
validate and prepare the corpus for modelling.

From the extracted data, we initially filter out
the stop words and numbers from title and descrip-
tion for every book using the Natural Language
Toolkit (NLTK) library available in Python. We
then utilize Byte-Pair Encoding (BPE) (Heinzer-
ling and Strube, 2018) based tokenization to create
tokens from the titles and descriptions for various
texts. BPE tokenization, in this context, identifies
the most common consecutive bytes of German
words and replaces with a byte that does not occur
within the data. For instance, ’Ein Blick hinter die’
might be converted into ’ ein blick hinter

die’ after BPE with a vocabulary size of 25,000.
We utilize the BPEmb library for the same, which
utilizes pre-trained byte-pair embeddings, and re-
quire no tokenization, also being much shorter.

The German words are split into multiple
smaller sub-words, which would inherently en-
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able better representations for each book’s Ti-
tle and Description, and provide more context
for the feature vectors which are learned. Sub-
words in BPEmb also enable effective guess-
ing of unknown/out-of-vocabulary words’ mean-
ing based on context. For instance, the suffix -
shire in Melfordshire indicates a location.

After tokenizing each title and description of
books using BPE, we create term frequency - in-
verse document frequency (tf-idf) vectors from
the tokens. tf-idf is a widely used statistical mea-
sure in domains of NLP, text mining and informa-
tion retrieval, which signifies the importance of a
word to a document in the whole corpus (Ramos,
2003).

We experimented with various contiguous se-
quences of n-grams – unigrams, bigrams and tri-
grams for creating tf-idf vectors, and observed that
bigram models yielded better results than the rest.
Each book can have multiple authors, so we treat
the authors’ data as a binomial attribute (creating
a Label Binarizer which returns 1 if the book was
authored by that author, else 0) across all authors.
We extract the year from the publication date, and
utilized it as a categorical feature. We also ex-
tracted the Group ID and Publisher ID from the
13-digit ISBN and represented them as categorical
features again.

We created two sets of target variables from the
extracted data – one with the categories as tar-
get labels, and other with the count of categories.
Hence, we also created and pipelined two differ-
ent models – class count model and category score
predictor model. For instance, for a given book
instance, if there are k categories, then that train-
ing sample has been duplicated k times with each
sample having one category. Adding all features,
a sparse feature matrix was created. The final fea-
ture matrix is of size (17783 x 594931) for both
class count model and category score predictor
model.

Labels Counts
Label 1 15549
Label 2 1004
Label 3 70
Label 4 4

Table 1: Class Count Frequencies

The class count model is a classification prob-
lem with labels 1, 2, 3 as class frequencies. While

there are book instances up-to 4 top-level observed
class frequencies, there are only 4 training samples
for category 4 which is extremely less (negligible),
hence we consider only 3 categories. The class
count distribution can observed in Table 1. The
categories are predicted based on an 8-class classi-
fication approach for top-level categories (Subtask
(a)), and a 343-class classification mechanism for
multi-level (Subtask (b)) categories.

4 Model Pipeline

Given the corpus has a heavy class imbalance
across all levels, we choose a Support Vector Ma-
chine (SVM) based model for the task. SVMs are
known to exhibit robustness and perform effec-
tively under class imbalance (Tang et al., 2009).

The Linear Support Vector Classifier (Lin-
earSVC) in a multi-class classification problem
utilizes a one vs rest scheme, wherein the objec-
tive is to return the best-fit hyperplane that cate-
gorizes the data in an n-dimensional space. Iden-
tifying the right hyperplane is primarily depen-
dent on the margin (maximized distance between
hyperplane and nearest data point), and the loss
function governing the margin. We utilize the
squared-hinge loss for the same, as it is widely
used for maximum-margin classification in SVMs
that penalizes the violated margins more strongly
(quadratically). The squared-hinge loss, l for Lin-
ear SVM is given by,

l(y) = max(0, 1− t · y)2

where y is the classifier score y = w.x + b, w, b
are the parameters of the hyperplane, x is the input
variable(s) and the intended output t = ±1.

We created two Linear SVC models, one for
predicting the count of classes a book could be-
long to, and the other for category score predic-
tor. Linear SVC was chosen as it uses the liblin-
ear framework and scales well with the increase
in the number of features (Fan et al., 2008). More-
over, it is computationally faster than most other
Linear SVM implementations, and utilizes many
other advanced optimization techniques. We uti-
lize the scikit-learn Python framework (Pedregosa
et al., 2011) to train and test the LinearSVC model,
which uses liblinear as its default implementation.
Also, this implementation offers flexibility in the
choice of penalties and loss function parameters,
and would inherently scale well to larger samples
of data.
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In our case, use of tf-idf vectors to represent
words created a large number of feature vectors.
The tf-idf vector representation were very sparse
owing to the short text representations for each
book. Compressed sparse representation (CSR) of
the feature matrix was further utilized reduce the
size of the training set.

4.1 Model Parameters
After extensive parametric optimization for both
models – count classifier and category classifica-
tion using grid search, we arrived the following set
of final parameters to yield best efficiencies. The
optimal parameters for the LinearSVC model are
elucidated in Table 2.

Parameter Optimal Value
C 1.0

Tolerance for stopping 0.0001
Loss Squared Hinge Loss

Penalty L2
Optimization algorithm Dual

Max Iterations 3000

Table 2: Optimal Parameters for LinearSVC

For the top-level classifier, the following class
weights are also used to handle class imbalance.
We utilized grid search to fine tune the class
weights again, which can be observed in Table 3.

Category Class Weight
Kinderbuch & Jugendbuch 1.8

Ratgeber 3
Sachbuch 2

Glaube & Ethik 2
Künste 6

Architektur & Garten 6
Literatur & Unterhaltung 1

Ganzheitliches Bewusstsein 1

Table 3: Class Weights for Top-level Categories to han-
dle Class Imbalance in LinearSVC

The class weights might be conventionally per-
ceived that the categories with lower cardinality
might have higher class weights. However, the
model prioritizes and takes into account the con-
fusion between various classes than the imbalance
in classes alone. For instance, we could observe
that a lot of Sachbuch and Glaube get classified
as Literatur & Unterhaltung, hence giving more
weightage to the latter aids in higher efficiencies.

4.2 Model Fusion

We pipeline the class score predictor and class
count predictor models together for effective clas-
sification of categories. Since the input features
for both models remain the same, we train our
model with categories as target variables for the
class score predictor model, and with class counts
as target variables for class count predictor model.

In the class count model, we also add the scores
of output class predictions to the input feature
space. This is motivated by the inherent fact that
there is a high correlation between the number of
categories a book belongs to, and its correspond-
ing class with the highest score. While predicting
a book’s category, we first get the class scores for
all categories from the class score predictor model,
and then append those predictions with input data
to the class count classifier model. Once the class
count predicts number of possible categories k, we
find the top k category predictions from the class
category predictor (likelihood) model.

In this way, the class imbalanced multi-label
problem is split into two simple prediction prob-
lems. Also, by splitting the problem into smaller
chunks, we are able to train multiple models in
parallel, thus reducing the total training time of the
system. With the above setup, retraining the entire
set of models takes just under 2 minutes.

5 Evaluation

For building an end-to-end classifier system, we
build a Classifier Class extending the scikit-learn
Base estimator API, with the respective fit and pre-
dict functions. The constructor parameters passed,
are the hyperparameters for the class count predic-
tor and class likelihood predictor models. Inside
the constructor, we create two LinearSVC mod-
els. In the fit (training) phase, both the predic-
tors are trained with their respective target vari-
ables. We utilize a K-Fold Cross-validation strat-
egy (K = 4) and get the class scores to be used
in training for class count predictor. Once we have
the class scores, we retrain the class predictor with
the whole training data again. The class count pre-
dictor is then utilized for training along with the
class scores appended.

Similarly, in the predict phase, the class predic-
tion model is first used to obtain class prediction
scores, and further utilized by class count predic-
tor to get the class count distribution. We select
take k highest category predictions from the class
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scores.
The micro-f1 scores for Subtask (a) and Subtask

(b) with CV=4 folds can be found in Table 4.

CV Fold Subtask (a) Subtask (b)
Fold 1 0.833 0.384
Fold 2 0.943 0.471
Fold 3 0.950 0.484
Fold 4 0.900 0.397

Table 4: k-fold Cross-Validation (k=4) on Subtask a
and Subtask b

The experimental setup (HW/SW configura-
tions) utilized for our solution are as follows:

(1) Intel R© Xeon R© Processor E5-2650 v4 30M
Cache, 2.20 GHz, 12 Cores, 24 Threads (2) 250
GB RAM (3) CentOS 7.

6 Submission and Results

With the above setup, the model was able to
achieve the results showcased in Table 5 in the test
phase.

Phase Subtask (a) Subtask (b)
Validation Phase 0.851 0.4098

Test Phase 0.857 -
Post Evaluation Phase 0.878 0.3947

Table 5: Evaluation Metrics (f1-micro scores) for Test
Data on Subtask a and Subtask b

Team Raghavan achieves rank 4 in Subtask (a)
during the test phase (f1-score of ∼0.86). How-
ever, in the post-evaluation phase, we achieve an
f1-score of 0.878, which secures us the first po-
sition in Subtask (a). The additional 0.02 gain
in micro-f1 score during post-evaluation phase fi-
nally was achieved by adding ISBN based features
– Group ID and Publisher ID.

7 Conclusion

In this paper, we have successfully demonstrated
that traditional approaches like Linear Support
Vector Machine Classifier, with a class count pre-
dictor model can effectively model Multi-label
Multi-class Hierarchical Text Classification of
German blurbs – GermEval Task 1. The model
designed by us was aimed for top-level categories,
i.e., Subtask (a), which implements flat classifica-
tion and doesn’t make use of much hierarchical

dependencies. That is one primary reason for Sub-
task (b) achieving relatively less efficiencies.

The authors would like to emphasize that con-
ventional machine learning solutions would help
in better interpretability, and when pipelined/fused
with the right set of techniques, can effectively
save a lot computational resources and time.
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Abstract

This paper describes an entry of two systems
for Task 1 of GermEval 2019. Task 1 con-
sists of classifying labels of genres for Ger-
man books based on short advertisement text
blurbs. It is split into Subtask A, a multi-label
classification task with 8 classes and Subtask
B a hierarchical multi-label classification task
with 343 different classes. The submitted sys-
tems were used for both subtasks and com-
bined Logistic Regression and Naive Bayes to
build a classifier. To reach the final systems,
different models and combinations of hyperpa-
rameters were explored empirically. The best
submitted system reached micro-averaged F1-
scores of 0.82 and 0.62 for the two subtasks
respectively.

1 Introduction

Hierarchical multi-label classification (HMC) of
blurbs is the task of classifying multiple labels
for a short descriptive text, where each label is
part of an underlying hierarchy of categories. The
increasing amount of available digital documents
and the need for more and finer grained categories
calls for new, more robust and sophisticated text
classification methods. Large datasets often incor-
porate a hierarchy which can be used to catego-
rize information of documents on different levels
of specificity. The traditional multi-class text clas-
sifcation approach is thoroughly researched, how-
ever, with the increase of available data and the ne-
cessity of more specific hierarchies and since tra-
ditional approaches fail to generalize adequately,
the need for more robust and sophisticated classi-
fication methods increases (Remus et al., 2019).

To advance the state of the art in HMC, Task 1
of GermEval 2019 was launched. Task 1 consists
of classifying labels of genres for German books
based on short advertisement text blurbs. It is split
into Subtask A, a multi-label classification task

with 8 classes and Subtask B a hierarchical multi-
label classification task with 343 different classes.
For Subtask B, each label is part of an underlying
hierarchy of categories. This subtask is thus a Hi-
erarchical multi-label classification (HMC) prob-
lem.

HMC problems exist in a variety of domains
from text classification tasks to the prediction of
gene functions. The text classification research is
mostly focused on problems in English. Typically,
(deep) neural models are applied (Liu et al., 2017;
Gargiulo et al., 2019; Shimura et al., 2018; Cerri
et al., 2014). But there are also other approaches
like decision trees (Vens et al., 2008) or genetic
algorithms (Cerri et al., 2012; Gonçalves et al.,
2018). An overview of multi-label classification
algorithms can be found in (Sharma and Mehro-
tra, 2018).

To compete in GermEval 2019 and to contribute
to the state of the art in German HMC, two sys-
tems, that only vary in the n-grams that they used,
were submitted:

• HSHL LogisticRegression NaiveBayes1
(from here on out referred to as System 1)

• HSHL LogisticRegression NaiveBayes2
(from here on out referred to as System 2)

Apart from participating in GermEval 2019, the
intended use case for the submitted systems is to
serve as an introductory tool for machine learn-
ing in short talks or lectures and as a baseline for
more complex systems. As such, some additional
constraints were imposed on the systems that go
beyond the scope of the GermEval task:

• End-to-end runtime for Subtask A around 10
minutes.

• End-to-end runtime for Subtask B around 45
minutes.
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• No use of additional data.

• One system, no ensemble.

2 Data

The dataset (BGC-DE) was crawled from Random
House and provided by the organizers. It was split
into 70% training data, 10% validation data and
20% test data. The labels for the test data were not
given to the participants because this data served
as the means to judge the submissions. The dataset
contains information on German books in XML-
format.

Apart from the advertisement text blurbs and
genres, some additional metadata (title, author,
URL, date of publication) and the ISBN of the
book were provided. Some quantitative character-
istics of the dataset are summarized in table 1.

Number of samples 20,784
Average length of blurb 94.67
Total number of classes 343 (8, 93, 242)

Table 1: Characteristics of the BGC-DE dataset. The
343 classes form a hierarchy of 8 classes at the first
level, 93 classes at the second level and 242 classes at
the third level.

After an initial preparation phase in which a tiny
sample of data was provided to check the file for-
mat, the data was released in two phases. In phase
one, a validation set was released which consisted
of labeled training data and corresponding unla-
beled test data. After phase one ended, the labels
for the training data of the validation set were re-
leased and the validation set essentially became
the new training set for phase two with new un-
labeled training data provided for this phase.

3 Experimental Setup

To produce a submission for the task, the provided
data was first loaded, sanitized and converted to a
format that is suitable for the use in machine learn-
ing, namely a pands DataFrame (ETL). Because
some entries had no blurb, the book title was used
as a filler value. Additionally the genre names
were sanitized by lowercasing them and remov-
ing special characters and spaces so they could be
used as labels for the DataFrame. No additional
outside data was used.

To find a model and suitable hyperparame-
ters, the provided training data from phase one of

the competition was split into 80% training data
and 20% development data. Afterwards, differ-
ent models and hyperparameters were trained and
evaluated for Subtask A on this new split (Model
Search). This train-evaluate cycle was repeated it-
eratively until no further improvements could be
made (Model Freeze). The chosen model was used
to make the final predictions for both Subtask A
and Subtask B. The overall process is show in fig-
ure 1.

Figure 1: Overall process for the competition.

3.1 Technical Resources
All experiments were conducted in Jupyter Note-
books, version 4.0.2 (Kluyver et al., 2016) run-
ning a Python 3.5.0 (Python Software Foundation,
2019) kernel with the following libraries:

• pandas 0.23.4 (McKinney, 2010)

• NumPy 1.11.3 (Oliphant, 2006)

• scikit-learn 0.20 (Pedregosa et al., 2011)

• spaCy 2.0.12 (Honnibal and Montani, 2019)

A fixed seed was used for the random number
generators. All models were trained on an end of
2013 MacBook Pro with a 2 GHz Intel Core i7, 8
GB 1600 MHz DDR3 and an Intel Iris Pro 1536
MB GPU1.

4 Model Search

In order to find a model and suitable hyperparam-
eters, seven different models from the scikit-learn

1With this setup, the entire end-to-end training on the pro-
vided development set took 8:24 minutes for Subtask A and
46:55 minutes for Subtask B.
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library were trained and evaluated on Subtask A.
The selected models were Decision Tree, Ran-
dom Forest, Multinomial Naive Bayes, K-nearest
Neighbors (KNN), SVC, Linear SVC and Logis-
tic Regression. To get a baseline for each model,
the default values of the library were used. Af-
terwards, each model was optimized until no fur-
ther improvements could be made. All parameters
were found empirically by trying different com-
binations2. The chosen hyperparameters of the
optimized models are summarized in the follow-
ing chapters with a list of the used parameters in
Python Code for each model.

4.1 Decision Tree

For the decision tree, a random splitter was used
and the minimum number of samples was set to
15. The default ”Gini-criterion” yielded better re-
sults than the ”Entropy-criterion”. Balanced class
weights or changing the number of features for the
split to anything other than the total number of fea-
tures did not improve the results.

• splitter=’random’

• min samples split=15

4.2 Random Forest

For the random forest, 200 estimators were used
and the minimum number of samples required to
split an internal node was set to 5. Additionally, no
bootstrapping was used and balanced subsamples
were used for the class weights.

• n estimators=200

• min samples split=5

• bootstrap=False

• class weight=’balanced subsample’

4.3 Multinomial Naive Bayes

For Multinomial Naive Bayes, only the alpha
value for smoothing was tuned. An alpha value
of 0.08 yielded the best results. The default of
learning the class prior probabilities outperformed
using uniform priors.

• alpha=0.08
2The exact experiments that were conducted can be

found in the lab notes that accompany the code at
https://github.com/rother/germeval2019

4.4 K-nearest Neighbors

For KNN, a total of 9 neighbors were used.
Weighting points by the inverse of their distance
instead of weighting them equally (uniform) pro-
vided the best results.

• weights=’distance’

• n neighbors=9

4.5 Support Vector Machine - SVC

For the SVC, tuning the C value for regulariza-
tion proved most useful. Ultimately, it was set
to 15,900. Furthermore, balanced class weights
were used. No other experiments yielded improve-
ments.

• C=15900.0

• class weight=’balanced’

4.6 Support Vector Machine - Linear SVC

Due to technical problems3 the Linear SVC had
to be constructed by passing kernel=’linear’ and
probability=True to SVC instead of using Lin-
earSVC directly. The only optimization that
was performed was using balanced class weights,
which improved the overall results.

• kernel=’linear’

• probability=True

• class weight=’balanced’

4.7 Logistic Regression

For the logistic regression, a liblinear solver with
a maximum number of 1000 iterations, automatic
multiclass fitting and balanced class weights was
used. L2 regularization with C=40.0 was applied.
No dual formulation was used as the number of
samples was bigger than the number of features.

• C=40.0

• dual=False

• multi class=’auto’

• max iter=1000

• class weight=’balanced’
3Namely, that LinearSVC does not provide a pre-

dict probab() method.
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5 Results of the Model Search
experiments

The micro-averaged F1-scores for all optimized
models when evaluated on Subtask A are summa-
rized in table 2. The table is ordered in ascend-
ing order of F1-scores. The Logistic Regression
model performed best and was thus picked for the
competition.

# Model Default Optimized
1 Decision Tree 0.6049 0.6125
2 Random Forest 0.6125 0.6667
3 Naive Bayes 0.6253 0.7703
4 KNN 0.7164 0.7377
5 SVC 0.5127 0.7878
6 Linear SVC 0.7731 0.7882
7 Logistic Regression 0.6919 0.7883

Table 2: Overview of micro-averaged F1-scores for
the default configuration of models and optimized ver-
sions. Bold indicates the best model.

Additionally, one mixed soft-voting ensemble
that combined all models and ensembles that com-
bined the two or three best models were created4.
The ensembles that used the top models improved
upon the best F-score as summarized in table 3.
However, they were not used for the submission
as explained in the introduction.

# Ensemble Name Models F-score
1 All 1, 2, 3, 4, 7 0.7710
2 Top 2b 3, 7 0.7967
3 Top 3 3, 4, 7 0.7950
4 Top 2a 4, 7 0.8001

Table 3: Overview of ensembles with micro-averaged
F1-scores. Bold indicates improvements over the best
single model.

6 Model Freeze

Because the Logistic Regression model yielded
the best results during Model Search, it was used
for the submissions. Both submissions combined
this Logistic Regression model with a Naive Bayes
approach similar to (Wang and Manning, 2012)5

to classify the genres of German books from ad-

4Linear SVC and SVC were not included in these ensem-
bles due to technical problems.

5See also https://www.kaggle.com/jhoward/nb-svm-
strong-linear-baseline

vertisement text blurbs. spaCy was used as the to-
kenizer and unicode accents were stripped but the
casing was kept for both submissions. Both lem-
matiziation and stopwords lowered the results and
thus were not used. Empty blurbs were replaced
with the title of the book. The tokenization pa-
rameters are summarized in table 4.

Parameter Value
Tokenizer spaCy (German)
Accent Stripping Unicode
Lowercase No
Lemmatization No
Stopwords No
Replace-Empty Blurbs with Title

Table 4: Tokenization parameters.

For the term-frequency matrices, only words
that appeared in at least 4 documents were used
and words that appeared in more than 40% of
documents were ignored. Inverse document-
frequency-reweighting, sublinear term frequency
scaling and smoothing were applied. The parame-
ters are summarized in table 5. System 1 and Sys-
tem 2 only differ in the n-grams that were used to
construct the term-frequency matrices. For Sys-
tem 1, only unigrams were used and for System 2,
bigrams were used.

Parameter Value
Minimum Number of Documents 4
Maximum Frequency of Documents 40%
Inverse document-frequency-reweighting Yes
Sublinear Term Frequency Scaling Yes
Smoothing Yes

Table 5: Parameters for the term-frequency matrices.

For the logistic regression, the model from the
Model Search stage was used. The hyperparame-
ters are summarized in table 6.

Parameter Value
Solver liblinear
Maximum Iterations 1000
Multiclass Automatic
Class Weights Balanced
Dual Formulation No
Regularization L2
C 40.0

Table 6: Parameters for the logistic regression.
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7 Classification procedure

For Subtask A up to two labels were classified per
blurb, because using more than two labels lead to
worse results. For the second label a limit of 0.08
was found to be optimal. This limit means that
a second label is only classified, if the difference
between the probabilities of the top two predicted
labels is less than this value. This is depicted in
figure 2.

For Subtask B, the system started with the clas-
sified level 1 labels from Subtask A. Based on
these labels it moved up one level on the hierar-
chy and added exactly one additional level 2 label
per level 1 label if a cutoff value was met. Af-
terwards, the system once again moved up a level
on the hierarchy and added level 3 classifications.
This process is depicted as Algorithm 1. The exact
procedure is explained in more detail below.

Figure 2: Subtask A classification process.

On the second level, a list of all level 2 labels
that follow the classified level 1 labels on the hi-
erarchy was generated. The level 2 label with the
highest probability was picked and added as a clas-
sification if the probability was higher than a pro-
vided cutoff value. Note that on level 2, only upto
one label per level 1 label was picked.

For the third level, the level 2 classifications
were used as a basis. If there was a classified level
2 label, a list of all level 3 labels that follow the
classified level 2 label on the hierarchy was gen-
erated. If there was only one level 2 label (and
thus also only one level 1 label) the system added
as many level 3 labels as met the provided multi-
cutoff for level 3. If there was a second level 2
label (and thus also a second level 1 label) a single
level 3 label was added, if it met the provided cut-

Algorithm 1 Subtask B classification process.

Level1Labels← SubtaskA
for all Level1Labels do
Level2Probabilities← get from l1()
max l2← Level2Probabilities(0)
if max l2 > 0.09 then
Level2Labels← get label l2()

end if
end for
if len(Level2Labels) 6= empty then
ProbA← get from l2(Level2Labels(0))
ProbB ← get from l2(Level2Labels(1))
for all ProbA do

if probability > 0.15 then
Level3Labels.append(get label l3())

end if
end for
if ProbB 6= null then
max l3← ProbB(0)
if max l3 > 0.7 then
Level3Labels.append(get label l3())

end if
end if

end if

off value. This ensured that the lower confidence
prediction from the earlier level can get at most
one additional level 3 label.

The cutoff values were found empirically and
are summarized in table 7. On the third level, a
multi-cutoff value of 0.15 was used for the first
level 2 label and a cutoff of 0.7 was used if there
was a second level 2 label.

Level Cutoff Value Number of Labels
2 0.09 0 to 1 per level 1 label
3 0.15 / 0.7 0 to n per level 2 label

Table 7: Cutoff values and maximum number of labels
for the classification procedure.

8 Results

Unigrams (System 1) performed slightly better
than bigrams (System 2). Both systems partici-
pated in Subtask A and Subtask B of the compe-
tition. The final results are summarized in table 8
with the best results highlighted in bold.
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System F1-score A F1-score B
System 1 0.8201 0.6161
System 2 0.8163 0.6063

Table 8: Final results. F1-scores are micro-averaged.

9 Conclusion

This paper presented two submission (System 1
and System 2) that were entered for Task 1 at Ger-
mEval 2019.

Both submissions use a combined Logistic Re-
gression/Naive Bayes approach to classify genres
of German books from advertisement text blurbs.
spaCy was used as the tokenizer and unicode ac-
cents were stripped but the casing was kept for
both submissions. The first submission uses un-
igrams and the second submission uses bigrams.
The other hyperparameters are the same.

For the term-frequency matrices, only words
that appeared in at least 4 documents were used
and words that appeared in more than 40% of
documents were ignored. Inverse document-
frequency-reweighting, sublinear term frequency
scaling and smoothing were applied.

For the logistic regression, a liblinear solver
with a maximum number of 1000 iterations, auto-
matic multiclass fitting and balanced class weights
was used. L2 regularization with C=40.0 was ap-
plied. No dual formulation was used as the num-
ber of samples was bigger than the number of fea-
tures.

The cutoff values for the classification proce-
dure are summarized in table 7.

To facilitate the reproduction of the results, all
code is made available as a Jupyter Notebook at
one of the authors Github repositories6. Addi-
tional lab notes on the conducted experiments will
also be made available at the same repository.

The end-to-end execution time on a consumer
grade laptop was 8:24 minutes for Subtask A and
46:55 minutes for Subtask B and can be reduced
further by storing and reloading intermediate re-
sults.

The unigram version (System 1) performed best
and reached micro-averaged F1-scores of 0.82 and
0.62 for the two subtasks respectively. When
only the best entry for each teams is counted, this
means compared to the other participants rank 7 of
9 was reached for Subtask A and rank 5 of 6 was

6https://github.com/rother/germeval2019

reached for Subtask B. The winning scores were
0.87 and 0.68 for the two tasks respectively which
means that the submission was 5.75% worse than
the winning entry for Subtask A and 5.88% worse
than the winning entry for Subtask B.

As one of the intended use cases for the sub-
mitted systems was to serve as a baseline system
in the future it is worth noting that they outper-
formed the provided baseline by the organizers (a
linear SVN that scored 0.80 and 0.53 on the tasks)
for both tasks.
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Abstract

We present the second edition of the
GermEval Shared Task on the Identifica-
tion of Offensive Language. This shared
task deals with the classification of German
tweets from Twitter. Two subtasks were
continued from the first edition, namely
a coarse-grained binary classification task
and a fine-grained multi-class classification
task. As a novel subtask, we introduce the
classification of offensive tweets as explicit
or implicit.

The shared task had 13 participating groups
submitting 28 runs for the coarse-grained
task, another 28 runs for the fine-grained
task, and 17 runs for the implicit-explicit
task.

We evaluate the results of the systems sub-
mitted to the shared task. The shared
task homepage can be found at https://
projects.fzai.h-da.de/iggsa/

1 Introduction

The idea of social media was originally to enable
an open exchange of information and opinions be-
tween people and thus to support communication.
This idea of social participation is massively dis-
turbed by current trends: Where an open exchange
of views on political issues was possible, forums
are increasingly inundated by offensive language.
In many cases it is no longer possible to moderate
forums without technical support.

The second GermEval Shared Task on the Iden-
tification of Offensive Language is intended to ini-
tiate and foster research on the identification of
offensive content in German language microposts.
Offensive comments are to be detected from a set of
German tweets. We focus on Twitter, since tweets
can be regarded as a prototypical type of micropost.

GermEval is a series of shared task evaluation
campaigns that focus on natural language process-
ing for the German language. Since 2014, there
were shared tasks on named entity recognition, lex-
ical substitution, sentiment analysis, hierarchical
classification of blurbs, and identification of offen-
sive language. These shared tasks have been run
informally by self-organized groups of interested
researchers and were endorsed by special interest
groups within the German Society for Computa-
tional Linguistics (GSCL).

This paper will give a short overview on related
work in §2. We will then describe the task in §3 and
the data in §4. 13 teams participated in the shared
task. We give an overview of their approaches and
results in §5, and offer our conclusions in §6.

2 Related Work

For a recent overview of related work on the de-
tection of abusive language, we refer the reader
to Schmidt and Wiegand (2017) and Mishra et al.
(2019). In what follows, we will briefly discuss
related shared tasks as well as datasets for German.

• GermEval 2018 - To our knowledge this was
the first shared task on the detection of offen-
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sive language that included German language
data. (Wiegand et al., 2018b)

• SemEval 2019 - Task 5 (HatEval) concerned
multilingual (English and Spanish) detection
of hate speech against immigrants and women
in Twitter. The two subtasks addressed binary
classification (hateful or not) and the classifi-
cation of the target harassed as individual or
generic. (Basile et al., 2019)

• SemEval 2019 - Task 6 (OffensEval 2019)
was a shared task on identification and classi-
fication of offensive language in social media.
The dataset contains 14,000 English tweets.
The subtasks were to identify offensive tweets,
to categorize them, and to identify the targets
of the offensive posts. (Zampieri et al., 2019)

• Kaggle’s 2018 Toxic Comment Classification
Challenge1 was a shared task in which com-
ments from the English Wikipedia are to be
classified. There were 6 different categories of
toxity to be identified (i.e. toxic, severe toxic,
obscene, insult, identity hate and threat). The
categories were not mutually exclusive.

• The TRAC shared task on aggression identi-
fication (Kumar et al., 2018) included both
English and Hindi Facebook comments. Par-
ticipants had to detect abusive comments and
to distinguish between overtly aggressive com-
ments and covertly aggressive comments.

• The shared task on Automatic Misogyny Iden-
tification (AMI) (Fersini et al., 2018) is jointly
run by IberEval2 and EVALITA3. It exclu-
sively focused on the detection of misogy-
nist tweets on Twitter. There were two sub-
tasks. Task A addressed the identification of
misogynist tweets, while Task B focused on
the categorization of misogynist tweets (i.e.
Discredit, Derailing, Dominance, Sexual Ha-
rassment & Threats of Violence, Stereotype
& Objectification, Active and Passive). Both
IberEval and EVALITA included a task on En-
glish tweets. IberEval also included a task on
Spanish tweets while EVALITA also featured
a subtask on Italian tweets.

1https://www.kaggle.com/c/jigsaw-
toxic-comment-classification-challenge

2https://sites.google.com/view/
ibereval-2018

3http://www.evalita.it/2018

Most existing datasets of offensive language con-
tain English data, such as the dataset described by
Waseem and Hovy (2016). With regard to publicly-
available German datasets for this task, we only
know of Ross et al. (2016) who present a dataset
of about 500 tweets which has been annotated
regarding hate speech. The authors employed a
binary categorization scheme. The dataset from
Ross et al. (2016) may be too small for some data-
hungry learning-based approaches. Being consid-
erably larger, the German dataset produced for the
GermEval shared tasks 2018 and 2019 with about
12,000 tweets in total should be a better alternative
for such approaches.

3 Task Description

Participants were allowed to participate in one, two
or all three subtasks and to submit at most three
runs per task.

3.1 Subtask 1: Coarse-grained Binary
Classification

Subtask 1 was to decide whether a tweet includes
some form of offensive language or not. The tweets
had to be classified into the two classes OFFENSE
and OTHER. The OFFENSE category covered abu-
sive language, insults, as well as merely profane
statements.

3.2 Subtask 2: Fine-grained 4-way
Classification

The second subtask involved four categories, a non-
offensive OTHER class and three sub-categories
of what is OFFENSE in subtask 1. In the case of
PROFANITY, profane words are used, however,
the tweet does not want to insult anyone. This typi-
cally concerns the usage of swearwords (Scheiße,
Fuck etc.) and cursing (Zur Hölle! Verdammt! etc.).
This can be often found in youth language. Swear-
words and cursing may, but need not, co-occur with
insults or abusive speech. Profane language may
in fact be used in tweets with positive sentiment
to express emphasis. Whenever profane words are
not directed towards a specific person or group of
persons and there are no separate cues of INSULT
or ABUSE, then tweets are labeled as simple cases
of PROFANITY.

In the case of INSULT, unlike PROFANITY, the
tweet clearly wants to offend someone. INSULT is
the ascription of negatively evaluated qualities or
deficiencies or the labeling of persons as unworthy
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(in some sense) or unvalued. Insults convey dis-
respect and contempt. Whether an utterance is an
insult usually depends on the community in which
it is made, on the social context (ongoing activity
etc.) in which it is made, and on the linguistic
means that are used (which have to be found to be
conventional means whose assessment as insulting
are intersubjectively reasonably stable).

And finally, in the case of ABUSE, the tweet
does not just insult a person but represents the
stronger form of abusive language. By abuse we
define a special type of degradation. This type of
degrading consists in ascribing a social identity to
a person that is judged negatively by a (perceived)
majority of society. The identity in question is seen
as a shameful, unworthy, morally objectionable or
marginal identity. In contrast to insults, instances
of abusive language require that the target of judg-
ment is seen as a representative of a group and it
is ascribed negative qualities that are taken to be
universal, omnipresent and unchangeable charac-
teristics of the group. (This part of the definition
largely co-incides with what is referred to as abu-
sive speech in other research.) Aside from the cases
where people are degraded based on their member-
ship in some group, we also classify it as abusive
language when dehumanization is employed even
just towards an individual (i.e. describing a person
as scum or vermin etc.).

3.3 Subtask 3: Implicit vs. Explicit
Classification

Implicit offensive language is a form of offensive
language where the expression of hate, condemna-
tion, inferiority etc. as directed toward an explicitly
or implicitly given target has to be inferred from the
ascription of (hypothesised) target properties that
are insulting, degrading, offending, humiliating etc.
Rather than explicitly expressing their aversion,
the writers hint at something degrading, i.e. their
tweets imply that the target is unworthy etc.

Offensive tweets that use figurative language
such as irony or sarcasm, or a play of words also
count as implicit. Implicit offensive statements
sometimes are only interpretable in their context.
Also, inappropriate casual language while address-
ing a serious topic is subsumed under implicit of-
fensive language.

The following examples4 illustrate our notion of

4These are examples from the GermEval 2018 corpus. We
left misspellings untouched.

implicitness:

1. Dem Kommentar entnehme ich das auch ihre
Schaukel als Kind zu nahe an der Wand ges-
tanden hat. (From the commentary I can see
that your swing was too close to the wall as a
child.)

2. Flüchtlinge fliehen nach Deutschland parallel
dazu lassen sie ihre Familien in der Heimat
sterben sehr ehrenhaft .... . (Refugees flee to
Germany at the same time they let their fam-
ilies die in their homeland very honourable
...)

3. Der arme ... Trauma jeden Tag , Sehnsucht
nach Familiennachzug , kein eigenes Haus ...
nachvollziehbar ... ! (The poor ... Trauma
every day, longing for family reunion, no own
house)

4. Es gibt nur ein Maas das ist ein Mittelmass
und heisst auch so @HeikoMaas (There is
only one Maas that is a mediocrity and is also
called so @HeikoMaas)

5. Also ich habe bei dem Herrn eine deutliche
Alters Demenz gesehen. (Well I’ve seen that
this man has an obvious age dementia)

In example 1, it is the potential negative effect
of a hypothesised situation that makes the reader
understand the ascription of stupidity. Examples 2
and 3 are cases of sarcasm and irony, respectively.
Neither is it honourable to leave someone in a dan-
gerous situation (example 2) as the tweet states
nor does a refugee suffer trauma just because they
do not possess a house in their new host country
(example 3). In example 4, a phonetic similarity
between a name (Maas, the name of a German min-
ister) and a negative concept (Mittelmaß, eng. medi-
ocrity) suggests inferiority of the target (Maas). In
example 5, the modal particle (also, eng. well) and
a social distance indicating phrase (dem Herrn, eng.
this man) are inappropriate in a discussion on such
a topic (Demenz, eng. dementia). An honest diag-
nosis of a disease does not use such casual markers.

If the target is implicit, this might be an indicator
of implicitness, but it is neither a necessary nor
a sufficient condition. If a tweet comprises both
implicit and explicit offensive language, we choose
EXPLICIT as a label.

356



3.4 Evaluation Metrics

We evaluate the classification performance by the
common evaluation measures precision, recall, and
F-score. These measures are computed for each
of the individual classes in the three subtasks. For
each task, we also compute the macro-average pre-
cision, recall and F-score as well as the accuracy.
We rank systems by their macro-average scores.
We do not use accuracy for the ranking since in
all three subtasks the class distribution is fairly
imbalanced. Accuracy typically rewards correct
classification of the majority class.

An evaluation tool computing all of the above
mentioned evaluation measures on the three sub-
tasks of the shared task was provided by the orga-
nizers prior to the release of the training data. It is
publicly available and can be downloaded via the
webpage of the shared task.

4 Data Set

As for last year’s task, Twitter was the source for
our data collection. The reasons why we chose
Twitter are a) that unlike other sources, Twitter
contains a much higher proportion of offensive
language (Wiegand et al., 2018a) and b) that, given
the Twitter terms of service, we are able to make
our collection publicly available.

4.1 Data Collection

The bulk of the available training data consisted
of the training and test data from the first iteration
of the shared task in 2018. We newly collected
and annotated this year’s test data but also some
further training data. To do so, we used the same
approach to data collection that we had developed
for the first iteration. That is, we sampled tweets
from the timeline of various users rather than sam-
pling randomly or on the basis of query term-based
sampling. The latter two alternatives prove to be
either too sparse in yielding offensive instances or
too biased and lacking in variety.

We started by heuristically identifying users that
regularly post offensive tweets. By sampling from
the user’s timeline, we obtained offensive tweets
that exhibited a more varied vocabulary than we
would have obtained by sampling by pre-defined
query terms. It also enabled us to extract a substan-
tial amount of non-offensive tweets since only very
few users post offensive content exclusively.

Since the majority of last year’s data came from
the extreme right-wing spectrum and the dominant

topic concerned migration, we explicitly added
timelines of users from the extreme left-wing spec-
trum to the 2019 data. Additionally we identified
timelines discussing antisemitism in order to in-
crease the topic variance in the data. Most of the
user timelines considered for this topic can be as-
signed to the right-wing spectrum, but we also in-
cluded timelines of users from other political direc-
tions, however we could not identify any timelines
that can be assigned to the extreme left-wing spec-
trum concentrating on the topic. An overview of
the data distribution with respect to the political
orientation is given in Table 1.

Although this extraction process prevents the
data set from becoming biased towards specific
topics trending at the point in time when the ex-
traction is run (a problem one typically faces when
extracting data from the Twitter stream), we still
found certain topics dominating our extracted data.
However, this was not as extreme in the 2019 data
as it was in the 2018 data, probably due to delib-
erately incorporating timelines of users from dif-
ferent political extremes. Most of the extracted
offensive tweets in 2018 concerned the situation of
migrants or the German government. The tweets
not considered offensive, however, often addressed
different topics. In the 2019 data we still found a
stronger representation of certain political parties
and some of their representatives, the government
and the German state as well as some minorities
in the offensive categories. For example, the politi-
cian names Stegner and Maas and the abbreviation
BRD standing for ‘Federal Republic of Germany’
were much more often observed in offensive tweets.
Since these high-frequency words undoubtedly do
not represent offensive terms, we decided to de-
bias our data collection by adding further tweets
from the already collected timelines, belonging to
the class OTHER and containing these terms. If
this was not sufficient we added timelines from
different political orientations to balance the topic
over the classes (see Table 1). Because it was not
always possible during the debiasing process to
identify user timelines focusing on relevant topics
from a different political spectrum, we also sam-
pled further arbitrary tweets containing the terms
in question. We specifically sought tweets from
across the entire political spectrum. We also delib-
erately included tweets from users that regularly
post highly-critical but inoffensive tweets with re-
spect to the above topics. Otherwise, our data col-
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topic/political orientation ABUSE INSULT PROFANITY OTHER total
extreme left-wing 64 180 61 1802 2107
extreme right-wing 794 818 177 2137 3926
antisemitism 51 86 22 548 707
non-extreme (debiasing) 1 3 281 285
total 910 1084 263 4768 7025

Table 1: Distribution of topics/political orientation of the user timelines in the 2019 data

lection would allow classifiers to do well simply
by recognizing offensive content as the combina-
tion of negative polarity and particular topics (e.g.
Stegner, Maas or BRD).

When sampling tweets from Twitter, we also
imposed certain formal restrictions on the tweets to
be extracted (cf. Wiegand et al. (2018b)). They had
to be a) written in German, b) contain at least five
ordinary alphabetic tokens, c) contain no urls and
d) be no retweets. These restrictions are mainly
designed to speed up the annotation process (cf.
§4.2) by removing tweets that are not relevant to
the gold standard.

In splitting our data collection into training and
test set, we made sure that any given user’s com-
plete set of tweets was assigned to either the train-
ing set or the test set. This was done to avoid a
situation where classifiers could benefit from learn-
ing user-specific writing styles or topic biases.

The data collection was also divided up in such a
manner that the training and test sets have a similar
class distribution. This is one of the major pre-
requisites for supervised learning approaches to
work effectively.

The third subtask is based on the GermEval2018
data, namely those tweets from the 2018 shared
task that are classified as abuse or insult (profanity
was left out, because it is by definition explicit
offensive language).

4.2 Annotation

4.2.1 Subtasks 1 and 2
Overall, we collected 7,025 new tweets for the
2019 Shared Task. Each of them was manually
annotated by one of the organizers of the shared
task. All annotators are native speakers of German.

In order to measure inter-annotation agreement,
a sample of 300 tweets were annotated by all the
annotators independently. We removed all tweets
that were marked as HUNH or EXEMPT by at
least one annotator. HUNH was used for incom-
prehensible utterances. We do not require that a

sentence is perfectly grammatically well-formed
and correctly spelled to be included in our data.
However, if a sentence is so erroneous that the an-
notator does not understand its content, then this
sentence was labeled as HUNH and removed. This
label also applies if the sentence is formally correct
but the annotator still does not understand what is
meant by this utterance. Tweets that were marked
EXEMPT were ones that only contain abuse or
insults representing the view of somebody other
than the tweeter; utterances which depend on non-
textual information; utterances that are just a series
of hashtags and/or usernames, even if they indicate
abusive speech (e.g. #crimigrants or #rapefugees);
or utterances that are incomplete.

On the remaining 206 tweets, an agreement of
κ = 0.59 was measured between the four annota-
tors. It can be considered moderate (Landis and
Koch, 1977). All remaining tweets of the gold
standard were only annotated by one of the four
annotators.

Table 2 displays the class distribution among
the 2019 training and the test set. It comes as no
surprise that non-offensive tweets represent the ma-
jority class. The most frequent subtype of offensive
language are cases of (common) insult followed by
abuse. By far the smallest category are profane
tweets.

4.2.2 Subtask 3

After an initial phase, where we set up the guide-
lines, we chose 300 offensive tweets and four an-
notators classified each tweet as either implicit or
explicit offensive language.

Our intention in this first round was to raise a
common understanding of implicitness. After har-
monization, 247 of the 300 tweets were classified
as explicit offensive language (82.33%) while 52
(17.33%) were deemed to be implicit. See Table 3
for pairwise Kappa values.

As we expected, the annotation of implicitness
is not an easy task. Accordingly, the agreement is
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training set test set
categories freq % freq %
coarse-grained OFFENSE 1287 32.2 970 32.0

OTHER 2707 67.8 2061 68.0
fine-grained ABUSE 510 12.8 400 13.2

INSULT 625 15.6 459 15.1
PROFANITY 152 3.8 111 3.7
OTHER 2707 67.8 2061 68.0

total 3994 100.0 3031 100.0

Table 2: Class distribution on the 2019 training and test set

B C D
A 0.60 0.46 0.54
B 0.48 0.52
C 0.37

Table 3: Pairwise Kappa: 4 annotators, 300 tweets

moderate (most of the time). Two annotators, A and
B, almost reached a substantial agreement, while
annotators C and D only have a fair agreement. We
thus decided to let A and B carry out a substantial
part of the annotation.

The annotation of additional 1,800 examples re-
sulted in a Kappa value of 0.51. After harmoniza-
tion, the Kappa value of A and the gold standard
was 0.60, while those of B and the gold standard
was 0.82. The rest of the 2,890 tweets (600) were
annotated by C and D. The agreement there was
0.42.

freq %
training set IMPLICIT 259 13.20

EXPLICIT 1699 76.80
test set IMPLICIT 134 14.37

EXPLICIT 798 75.63

Table 4: Class distribution subtask 3

Table 4 shows the class distribution for the train-
ing and the test data. The whole corpus com-
prises 8,541 tweets, 2,888 are offensive (33.81%)
of which 393 (13.6%) were implicitly offensive.

4.3 Data Format

Our data is distributed in the form of tab-separated
value files. An example row representing one tweet
for subtasks 1 and 2 is shown in Table 5. As the task
is focused only on the linguistic aspect of offensive
language, each tweet is represented only by its text

in column 1. Meta-data contained in Twitter’s json
files was not used. The text column is followed by
the coarse-grained label in column 2 and the fine-
grained label in column 3. Note that we applied no
preprocessing to the tweet text with one exception:
as shown in Table 5, line breaks were replaced with
the special 5-character string |LBR| so that each
tweet could be stored on one line.

For subtask 3 the data from 2018 was used. In
order to provide for an additional layer distinguish-
ing explicit from implicit offensive language, we
added an additional column. Three labels are used:
IMPLICIT, EXPLICIT or OTHER, see Table 6.

4.4 Sanity checks

To make sure empirically for subtasks 1 and 2 that
the combination of last year’s data with this year’s
data was sensible and there were no crucial differ-
ences that would actually harm performance, we
performed an internal pre-test using last year’s win-
ning system by TU Vienna (Padilla Montani and
Schüller, 2018). We used all of last year’s data as
well as this year’s new training data as the training
set and tested on the new 2019 test set.

We performed a second sanity experiment after
the task’s evaluation phase because it was only then
noticed that there were erroneous labels on items
of the 2019 training set. Altogether about 2.9%
of the labels were affected: 15 cases of the class
ABUSE, 28 cases of the class INSULT and 74 cases
of the class OTHER. The PROFANITY class was
not affected. We repeated the sanity check on a
corrected version of the dataset to evaluate if the
errors might have substantially harmed results in
the competition.

The results for the initial sanity check on the
original, slightly erroneous data are denoted by the
rows coarsee and finee in Tables 7 and 8, while the
results for the run on the corrected data are denoted
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@Ralf Stegner Oman Ralle..dich mag ja immer noch keiner.
Du willst das die Hetze gegen dich aufhört? |LBR| Geh in
Rente und verzichte auf die 1/2deiner Pension

OFFENSE INSULT

Table 5: Data format for subtask 1 and 2 (2019 dataset)

Der einzige, der sich noch darüber freut, dass Merkel auf
ihrem Stuhl klebt |LBR| ist der beginnende Dekubitus.

OFFENSE INSULT IMPLICIT

Table 6: Data format for subtask 3 (2018 dataset)

by the rows rows coarsec and finec. Overall, the
results for these sanity checks are very similar to
the system’s results on last year’s tasks, regardless
of whether we the training set includes a slight
number of errors or not. (The corrected version of
the training set is also now publicly available from
the shared task homepage.)

For subtask 3, no sanity checks were needed.

5 Submissions and Results

The full set of results for all three subtasks is avail-
able at the shared task website.

Table 9 presents descriptive statistics for the
scores produced in this year’s and last year’s it-
erations of subtask 1 and 2. For subtask 1, coarse-
grained classification, we can see that this year
the participants’ scores are more tightly clustered,
yielding a lower standard deviation. For subtask 2,
the fine-grained task, there was no similar develop-
ment.

5.1 Coarse-grained Classification

We received 28 different runs from 12 teams for the
binary classification into OFFENSE vs. OTHER.
For lack of space, we only show the best 15 runs
in Table 10. Compared to the previous year, this
year’s winning F-score is higher, but very slightly
so (76.95 vs. 76.77). Of course, these number can-
not be compared directly as they involved different
training and test sets.

5.2 Fine-grained Classification

For the second subtask we received 28 different
runs from 12 teams for the fine-grained classifica-
tion. For lack of space, we only show the best 10
runs in Table 11. Compared to last year’s results,
the winning score is higher by about 0.9% F-score.
As in the case of the coarse grained subtask, this
cannot be readily interpreted without further inves-
tigation.

5.3 Implicit vs. Explicit Classification

Seven groups participated in subtask 3, which was
a difficult subtask. Although the best accuracy was
86.77% with a F-score of 73.11, the numbers for
the class IMPLICIT were low, the best F-score
being 53.93. The subtask is difficult due to the
skewed distribution of that class, just 13.9% of the
offensive tweets are labeled as implicit.

5.4 General Conclusions Drawn from the
Evaluation

5.4.1 System Design
Although in terms of absolute F-scores, the best
performing system on all 3 subtasks was a sys-
tem that employed some form of the latest trans-
former based language model BERT (Devlin et al.,
2019) (i.e. UPB on subtasks 1 and 2; hpiDEDIS
on subtask 3), at least on subtasks 1 and 2 there
were systems which did not incorporate BERT (i.e.
TUWienKBS on subtask 1 and FoSIL on subtask
2) but still performed very well (that is within 1%
point of the top performing system). Only on sub-
task 3 is there a larger difference between the best
performing system and the best system not employ-
ing BERT, i.e. FoSIL, with a gap of more than 3.5%
points.

BERT seems to be generally effective. All 3
teams that participated in the shared task and incor-
porated some form of BERT (UPB, hpiDEDIS and
bertZH) were among the top performing systems.
The variation of BERT that consistently outper-
formed the other ones is a model pre-trained on 6
million German tweets (UPB). The other two teams
just fine-tuned the existing pre-trained models.

Surprisingly, for all 3 subtasks there is no sys-
tem among the top 3 teams which employs stan-
dard deep-learning architectures, such as LSTMs
or CNN. Instead, with FoSIL we still find systems
that are based on traditional classifiers, such as
SVMs. This year’s results are also mostly consis-
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OFFENSE OTHER average
P R F P R F P R F

coarsee 67.23 69.18 68.19 85.29 84.13 84.71 76.26 76.65 76.46
coarsec 68.20 68.76 68.48 85.24 84.91 85.08 76.72 76.84 76.78

Table 7: Results of sanity checks on error-containing and clean test data in coarse setting

P R F

fin
e e

ABUSE 47.29 41.50 44.21
INSULT 44.71 36.82 40.38
OTHER 83.33 88.26 85.72
PROFANITY 42.02 45.05 43.48
average 54.34 52.91 53.61

fin
e c

ABUSE 47.41 41.25 44.12
INSULT 45.76 38.78 41.98
OTHER 83.65 88.40 85.96
PROFANITY 43.10 45.05 44.05
average 54.98 53.37 54.16

Table 8: Results of sanity checks on error-
containing and clean test data in fine-grained set-
ting

tent with last year’s results: the best performing
systems incorporated some form of word embed-
dings and some information on the subword level
(e.g. character n-grams). Ensemble methods may
be effective (TUWienKBS) but they seem not to be a
crucial ingredient for high scores. The same holds
for task-specific lexicons. Of the 3 top-performing
systems on the 3 subtasks, only FoSIL employed
that type of information.

In subtask 3, the best performing systems (hpi-
DEDIS, UPB, rank 1-5 with various runs) were
using BERT as a resource (fine-tuned it). Of the 7
participants, 5 used neural approaches (including
BERT), i.e. RNN (inriaFBK), CNN (fkie, HAU)
and LSTM (fkie). Two worked with German Fast-
Text (RGCL, FoSIL), one also considered a Random
Forest approach and one also submitted a SVM
based run.

5.4.2 Task and Data
With regard to subtask 1, if we compare the differ-
ence between the F-score of the best performing
system to the median between this year (median:
72.95; best system: 76.95) and last year (median:
69.15; best system: 76.77), we find that the median
has risen appreciably (by more than 3% points)
while the best score has maintained its level of per-
formance. From that we may conclude that the

average system that took part in this year’s edition
of the shared task is notably stronger than last year.

In terms of the best overall scores that have been
achieved in subtasks 1 and 2 in this year’s edition
of the shared task, there is hardly any improvement.
We re-trained last year’s winning system on this
year’s training data and compared the classifica-
tion on this year’s test data (cf. Tables 7 and 8)
with the best performing system in this year’s com-
petition (cf. Tables 10 and 11). Surprisingly, we
obtained only marginally worse results with last
year’s system (subtask 1: 76.46 vs. 76.95; subtask
2: 53.61 vs. 53.95). Given that this year’s training
set was larger, this could mean one of two things.
First, the additional data might not have helped
even though test and training data were otherwise
similar because the system was not able to make
use of relevant features. Alternatively, the increase
in data this year might have been offset by the new
data being more difficult so that overall the system
reached only the same level of performance as last
year. These questions can best be addressed by
running the same system on various combinations
of this and last year’s data, which unfortunately is
outside the scope of this overview paper.

All in all, these results underline that the problem
of offensive language detection is far from solved.
It also suggests that a thorough error analysis is
required. Only thus can we learn which systematic
errors even the best performing systems make and,
hopefully, get ideas how to devise new methods
which even solve these types of phenomena.

6 Conclusion

In this paper, we described the second edition of the
GermEval Shared on the Identification of Offensive
Language. The shared task comprised three tasks,
a coarse-grained binary classification task, a fine-
grained multi-class classification task and a novel
classification task in which explicit tweets had to
be separated from implicit ones. In total, 13 groups
participated in the shared task submitting 28 runs
for each of the first two subtasks and 17 runs for
the last subtask.
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year subtask # teams # runs min max median mean sd
2019 coarse 12 28 54.87 76.95 72.95 71.51 5.67

fine 12 28 36.83 53.59 46.55 46.63 5.18
implicit/explicit 7 17 55.37 73.11 68.87 67.19 5.26

2018 coarse 20 51 49.03 76.77 69.15 66.35 8.45
fine 11 25 32.07 52.71 38.75 39.71 5.00

Table 9: Summary statistics for overall macro F1-scores in the three subtasks and as a reference the figures
of last year’s edition

While for the third subtask, the data of the pre-
vious edition were augmented by the classification
scheme of this new task, for the first and second
subtask, completely new tweets were added to the
collection. For these two subtasks, we added about
4,000 manually labeled training tweets. Similar to
last year, much care was taken in order to provide
a relatively unbiased dataset. Unlike the data from
the previous edition, the new data also contain of-
fensive language originating from other areas than
the extreme right.

Approaches that were effective in last year’s
edition, such as supervised classifiers using word
embeddings, subword information and ensemble
methods, also proved effective in this year’s edi-
tion. However, similar effectiveness without less
task-specific design could be achieved by classi-
fiers based on the recent BERT model.

Surprisingly, the best system of this year’s sys-
tem on the coarse-grained task is on a par of last
year’s winning system. This result again underlines
the difficulty of this task. Further error analyses
should be carried in order to determine which types
of errors even the best performing systems incur.
This would hopefully provide fruitful research di-
rections for future work.
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Abstract

In this paper we describe the system de-
veloped by InriaFBK team and submitted
to the Germeval2019 task on offensive lan-
guage detection and classification. With
the same architecture we participate to all
subtasks: binary classification of offensive
and not offensive tweets, 4-class message
categorisation based on offense type (Pro-
fanity, Insult, Abuse and Other), and clas-
sification of explicit and implicit offensive
language. The two runs submitted for each
subtask are obtained with and without at-
tention mechanism. After evaluating our
system performance on Germeval2018 test
set, we observe that attention is remarkably
beneficial in the more challenging tasks of
implicit offense detection and offense cate-
gorisation.

1 Introduction

Detecting hurtful, derogatory and obscene com-
ments online has become of paramount impor-
tance for the well-being of users, who access so-
cial networks to exchange ideas and build a sense
of community, as well as for social media plat-
forms, which have been accused of fostering the
widespread of hurtful content. Recent initiatives at
institutional level have been undertaken to limit the
phenomenon of online hate speech, see for example
the 2018 Code of Conduct signed between EU rep-
resentatives and four major social media players1.
The monitoring process following the adoption of
this code of conduct has shown that, when users
report offensive content, 88.9% of them get a reply
from the social media platform within 24 hours.
However, if we compare Facebook, YouTube, In-
stagram and Twitter, statistics show that the latter

1https://eur-lex.europa.eu/legal-cont
ent/EN/TXT/HTML/?uri=CELEX:32008F0913&f
rom=EN

tends to remove remarkable less content than the
others, i.e. only 43.5% of reported messages com-
pared to 71.7% by the other three platforms on av-
erage.2 The EU report highlights how most of the
feedback from Twitter is on trusted reports rather
than on general users reports, making reasonable to
think that Twitter policies are less restrictive and do
not aim to comply with every user. This makes the
issue of automatic hate speech detection on Twitter
even more urgent, especially when developed sys-
tems are able to identify different types of offense
and cope with implicit hate messages.

In this paper, we present our system submitted to
the Germeval 2019 task for offensive language de-
tection, and detail the two runs for each of the three
subtasks (with and without attention mechanism).
The general framework is an improved version of
the InriaFBK system developed for Italian hate
speech detection (Corazza et al., 2018a) and for
German at Germeval 2018 (Corazza et al., 2018b),
with a more careful choice of external embeddings
and of neural network parameters. Furthermore, we
evaluate the contribution of attention mechanism
to each of the subtasks.

2 Related work

Many solutions and resources are available to per-
form hate speech detection and classification on
English data. For example, in Waseem and Hovy
(2016) the authors not only present their work
on the classification of racist and sexist tweets
adopting a logistic regression model based on
one-to-four-character n-grams, but also release
an annotated dataset for the task. Other classifi-
cation approaches have been tested on the same
dataset, see for example (Kshirsagar et al., 2018)
proposing a neural classifier using pre-trained word
embeddings and max/mean pooling from fully-

2https://ec.europa.eu/commission/news
/countering-illegal-hate-speech-online-2
019-feb-04_en

Proceedings of the 15th Conference on Natural Language Processing (KONVENS 2019)
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connected transformations of these embeddings.
The approach is tested also on the the HATE
dataset (Davidson et al., 2017) and on the Harass-
ing dataset (Golbeck et al., 2017) showing that it
is able to learn associations among words typically
used in hateful communication.

Other approaches targeting languages different
from English have been proposed mainly in the con-
text of shared tasks, such as the first Hate Speech
Detection (HaSpeeDe) task for Italian (Bosco et al.,
2018) and Aggressiveness Detection (Carmona et
al., 2018) for Mexican Spanish at IberEval 2018.

As for German, the first shared task was pro-
posed in 2018 on the Identification of Offen-
sive Language (Wiegand et al., 2018). The
task covers the detection of offensive comments
from a set of German tweets, that had to be
further classified into abusive language, insults
and profane statements. The systems presented
by the participants introduce a number of dif-
ferent approaches, ranging from feature-based
supervised learning (i.e., SVMs for the top-
performing system TUWienKBS (Padilla Mon-
tani and Schüller, 2018)) to deep learning. Most
top performing systems in both subtasks are
based on deep learning, such as spMMMP (von
Grunigen et al., 2018), uhhLT (Wiedeman et al.,
2018), SaarOffDe (Stammbach et al., 2018), Inri-
aFBK (Corazza et al., 2018b).

Looking at the systems participating in the above
tasks, we observe a number of features shared by
many deep learning approaches, such as domain-
specific word embeddings, the use of emotion or
sentiment lexica, features related to the message
(e.g. length, punctuation marks, etc.) as well as
specific pre-processing steps.

3 Data and Tasks

At the Germeval evaluation, three different sub-
tasks were proposed: one for the detection of offen-
sive messages, one for a fine-grained classification
in four classes, namely Profanity, Insult, Abuse and
Other, and one for the identification of explicit and
implicit hate. Since subtask I and II had already
been proposed at Germeval2018, the organisers al-
lowed participants to use as training data the data
released both in 2018 and 2019 as training data. For
the third subtask, instead, the dataset was novel.

For the submissions of subtask I and II, we use
the concatenated Germeval 2018 and 2019 training
sets for training and the Germeval2018 test data as

validation set. For subtask III we isolate 20% of
the training set for validation (see details in Section
4). Below we summarise the number of instances
used as training for each subtask:

Subtask I - Binary classification: The two la-
bels are ‘offensive’ and ‘other’. The latter was
reserved for tweets which were not offensive. The
binary classification subtask involved 2,975 mes-
sages with ‘offensive’ label and 6,029 messages
with the ‘other’ label.

Subtask II - Fine-grained classification: The
four classes annotated are ‘profanity’, ‘insult’,
‘abuse’ and ‘other’. In the corpus, there are 1,220
messages for ‘insult’, 223 for ‘profanity’, 1,532 for
‘abuse’, and 6,029 messages for ‘other’.

Subtask III - Implicit and Explicit offense clas-
sification: All messages in this dataset are offen-
sive, but they are labeled either as ‘implicit’ or
‘explicit’. In particular, there are 1,699 explicitly
offensive message, and 259 implicit ones.

To compute the preliminary evaluation results
reported in this paper, instead, we change the splits
by using 20% of the 2018 and 2019 training sets
for subtasks I and II for validation, and compute
the performance reported in the following tables
on the Germeval 2018 test set. For subtask III, we
use 20% of the training set for validation and 20%
as test set.

4 System Description

In order to perform an analysis of the activations of
an attention mechanism, we use a recurrent neural
network with attention applied to the outputs of
the recurrent GRU layer, and compare its perfor-
mance to the same network with no attention ap-
plied. Since the domain of the task is interactions
on a social media platform, we apply some ad-hoc
preprocessing steps, which are detailed in the next
subsection, in order to improve the performance of
the classifier on Twitter-specific language.

To isolate the validation set from the training
data, we use train test split from scikit-
learn (Pedregosa et al., 2011).

4.1 Preprocessing
Since the language of social media interactions
presents unique challenges for standard NLP tasks,
we normalise the tweet content by replacing user
mentions and URLs with the strings “username”
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Figure 1: The recurrent neural architecture

and “URL” respectively. We do not apply hashtag
splitting, since it proved not effective on German in
a comparative evaluation for hate speech detection
(Corazza et al., 2019).

4.2 Word embeddings
Word embeddings (Mikolov et al., 2013; Penning-
ton et al., 2014) are a widely used approach to
represent word meaning in natural language pro-
cessing tasks, as they allow to acquire some in-
formation about words through an unsupervised
process. However, word embedding resources have
a major drawback when it comes to processing
German data, since they may not contain all com-
pounds or all the declinations of a single word,
resulting in many out-of-vocabulary terms. This
issue can be alleviated by using subword informa-
tion to represent a term as the sum of the vectors
representing its character n-grams. This is the main
reason why we chose to use FastText embeddings
(Bojanowski et al., 2016), pretrained on Common
Crawl and Wikipedia 3.

4.3 Recurrent model
We develop a simple recurrent neural network
model and use it for all subtasks. We use the word
embeddings from the words of each tweet as input
for a GRU (Cho et al., 2014) of size 100. Recurrent
dropout of 0.2 is applied to the GRU. The output
at the last timestep from the GRU is then fed to
a single, fully-connected layer with 200 neurons,
followed by one or more output neurons, depend-
ing on the subtask. For subtasks 1 and 3 a single,
sigmoid activated neuron is used, while for subask
2 we use four outputs with a softmax activation.
The binary subtasks use binary crossentropy as
the loss function, while subtask 2 uses categorical
crossentropy. The optimizer used is Adam and the
models were implemented in Keras (Chollet and
others, 2015). In addition to classifying offensive

3https://fasttext.cc/docs/en/crawl-ve
ctors.html

Category Precision Recall F1 Score
No Attention

Offensive 0.677 0.630 0.653
Other 0.831 0.859 0.845

Macro AVG 0.754 0.744 0.749
+ Attention
Offensive 0.692 0.595 0.640

Other 0.821 0.875 0.847
Macro AVG 0.757 0.735 0.746

Table 1: Subtask 1 without attention (above) and
with attention (below)

language, our goal was also to examine how an
attention mechanism could improve performance,
and whether the activations could be used to un-
derstand the classifier behavior. In particular, we
consider the output of the GRU layer g:

GRU(x) = (e1,e2, . . . ,en) ei ∈ R100 (1)

We then apply a perceptron layer to each of the out-
puts of the GRU and use softmax to obtain weights
that sum to 1:

A(e) = so f tmax(F(e)) (2)

Where:

F(e) = ( f (e1), . . . , f (en))

f (ei) = (Wei +b) (3)

W ∈ R1×100 b ∈ R1

After applying a perceptron layer to each output of
the GRU, we use a softmax layer so that the sum
of all timesteps is one (padding is ignored). The
weights obtained are then multiplied elementwise
with the outputs of the GRU:

a(x) = A(GRU(x))�GRU(x) (4)

We then sum over the vectors obtained by applying
attention to the outputs of the GRU, and use the
resulting vector to classify offensive language, by
feeding it to a single, fully connected hidden layer
followed by the outputs.

5 Evaluation

For subtasks I and II, we report below the results
obtained on the Germeval 2019 test set, comparing
the system performance with and without attention
mechanism.

With respect to subtask I (see Table 1), the two
models perform similarly well. In particular, while
the model without attention is the better perform-
ing one with respect to the offensive class, the F1
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Category Precision Recall F1 Score
No Attention

Abuse 0.371 0.455 0.409
Insult 0.375 0.397 0.385

Profanity 0.355 0.099 0.155
Other 0.832 0.817 0.825

Macro AVG 0.483 0.442 0.462
+ Attention

Abuse 0.443 0.503 0.470
Insult 0.425 0.325 0.367

Profanity 0.475 0.171 0.252
Other 0.824 0.874 0.849

Macro AVG 0.542 0.468 0.502

Table 2: Subtask II without attention(above) and
with attention mechanism (below)

metric on the ”other” class is remarkably similar,
with a slight advantage for the model with attention.
This results in a slight advantage in terms of macro
average F1 for the model without attention.

For Subtask II (see Table 2), focusing on fine-
grained classification, the observed behaviour of
the two models is still similar, but this time the
attention-based model outperforms the attention-
less one across all categories except for the ”in-
sult” one, showing that attending over single words
can be useful when classifying different types of
offensive language. The largest improvement is
achieved on the Profanity class, showing that atten-
tion mechanism in this case can better learn from
few examples (only 223 for this class), while it is
less evident on the Other class, which is the major-
ity one (6,029 training instances).

Category Precision Recall F1 Score
No Attention

Explicit 0.891 0.964 0.926
Implicit 0.580 0.299 0.394

Macro AVG 0.735 0.631 0.679
+ Attention

Explicit 0.910 0.918 0.914
Implicit 0.488 0.463 0.475

Macro AVG 0.699 0.690 0.695

Table 3: Subtask III without attention (above) and
with attention mechanism (below)

With respect to subtask III (see Table 3), we
observe a more significant difference between the
two models on the Implicit class, while the Explicit
one is equivalent. This may confirm the model
behavior observed in subtask II, where classes with
less examples had improved performance when
using attention. Also in this case, the model using
attention has a higher F1 score value for the implicit
class, for which only 259 training instances are
available.

6 Attention activations

In order to understand how attention affects the
classification outcome and whether the outputs of
the attention layer can help explain the classifica-
tion performed by our model, we examined the
attention for each word in the test set of Germeval
2018 (the outputs of Equation 2), using a model
trained on the first subtask. Looking at the lemmas
ranked by average weights learned by the atten-
tion mechanism, we observe that the top ones are
mostly emotionally loaded with a negative con-
notation. For example, we find among the lem-
mas with highest weights words such as klatsch,
Opportunistin, Elektrojude, and verpisst. Look-
ing at attention weights of the words composing a
tweet, we observe the same trend: in the messages
correctly classified as ‘Offensive’ the words with
highest attention weights are those with negative
polarity, that mostly contribute to correct classi-
fication. For example, in Von mir aus könnt ihr
jämmerlich verrecken the last two words have the
highest attention. In a similar way, the last word of
the following tweet is the one with highest atten-
tion weight: Ich persönlich scheisse auf die grüne
Kinderfickerpartei. These findings suggest that the
attention mechanism is effectively capturing the
words whose meaning and polarity most contribute
to the classifier choice. Furthermore, examining
activation weights can lead to precious insight into
the inner criteria used by models to detect offensive
language.

7 Conclusions

In this work we detailed the system runs submitted
by the InriaFBK team to Germeval 2019. With
the same architecture we participated in all three
subtasks, performing both binary and multi-class
classification. In a comparative evaluation, our re-
sults show that the attention mechanism has a posi-
tive impact on classes with few training instances,
while it has no remarkable effect on classes that are
well represented in the training set.
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boer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio.
2014. Learning phrase representations using RNN
encoder-decoder for statistical machine translation.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2014, October 25-29, 2014, Doha, Qatar, A meet-
ing of SIGDAT, a Special Interest Group of the ACL,
pages 1724–1734.

[Chollet and others2015] François Chollet et al. 2015.
Keras. https://keras.io.

[Corazza et al.2018a] Michele Corazza, Stefano
Menini, Pinar Arslan, Rachele Sprugnoli, Elena
Cabrio, Sara Tonelli, and Serena Villata. 2018a.
Comparing different supervised approaches to
hate speech detection. In Proceedings of the Sixth
Evaluation Campaign of Natural Language Process-
ing and Speech Tools for Italian. Final Workshop
(EVALITA 2018) co-located with the Fifth Italian
Conference on Computational Linguistics (CLiC-it
2018), Turin, Italy.

[Corazza et al.2018b] Michele Corazza, Stefano
Menini, Arslan Pinar, Rachele Sprugnoli, Cabrio
Elena, Sara Tonelli, and Villata Serena. 2018b. Inri-
afbk at germeval 2018: Identifying offensive tweets
using recurrent neural networks. In Proceedings of
GermEval 2018, pages 80–84.

[Corazza et al.2019] Michele Corazza, Stefano Menini,
Elena Cabrio, Sara Tonelli, and Serena Villata. 2019.

Robust hate speech detection: A cross-language
evaluation. Under review.

[Davidson et al.2017] Thomas Davidson, Dana Warms-
ley, Michael W. Macy, and Ingmar Weber. 2017.
Automated hate speech detection and the problem of
offensive language. In Proceedings of the Eleventh
International Conference on Web and Social Media,
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Abstract

This paper describes the entries
hshl coarse 1 and hshl fine 1 for Subtask
I (Binary Classification) and Subtask II
(Fine-grained classification) of Task 2 of
the the GermEval 2019 competition. For
this task, German tweets were classified as
either OFFENSE or OTHER (Subtask I) or
into the four subcategories PROFANITY,
INSULT, ABUSE or OTHER (Subtask II).
The entries employ a mixture of character
level Logistic Regression and Naive Bayes.
The classifiers were trained on the labeled
tweets that were provided by the organizers
of the shared task. The optimization of
the system is outlined in this paper. The
system reached an F1-score of 0.7458 and
0.4793 for the two subtasks on the test-set.

1 Introduction

Hate speech is on the rise in online communica-
tion and can come in different forms but usually
follows certain patterns (Mondal et al., 2017). Ad-
ditionally social media serves as a breeding ground
for deviant behavior following real world incidents
(Williams and Burnap, 2015).

Hate speech has psychological consequences for
the victims such as fear, anger and vulnerability
(Awan and Zempi, 2015) as well as the worry that
online threats may become a reality (Awan and
Zempi, 2016). Additionally, hate speech can be
the harbinger of actual violence. Hate speech to-
wards a group can serve as a predictor of violence
towards that group (Müller and Schwarz, 2018a)
and Twitter use can fuel hate-crimes (Müller and
Schwarz, 2018b).

Institutions and legislators have reacted to this
trend towards hate speech. The European Commis-
sion and multiple social media companies agreed to
a code of conduct on countering illegal hate speech

online (European Commission, 2016). Germany
passed the Network Enforcement Act on September
1st 2017 to enforce fines of up to 50 million Euros
against social media companies that fail to delete
illegal content (German Bundestag, 2017). The law
specifically includes hate speech (§§130, 166 and
185-187 of the Criminal Code).

Due to the negative impact of hate speech and
the amount of social media data that is generated
every day, automated detection and classification
of hate speech has been studied widely. Recent
overviews can be found in (Schmidt and Wiegand,
2017) and (Fortuna and Nunes, 2018). However,
with some exceptions such as (Ross et al., 2017)
and (Van Hee et al., 2015), the scope of the studies
is often limited to the English language.

As a result, the GermEval competition was
launched in 2018 (Wiegand et al., 2018). By and
large, (deep) neural models performed best in 2018,
which is why this entry for the 2019 version of the
competition focuses on a simpler, classical machine
learning approach to provide a contrast to the ex-
pected neural models. Therefore, this paper tries
to contribute to the improvement of the state of the
art in German hate speech detection by describing
the entries hshl coarse 1 and hshl coarse 2 which
participated in Taks 2 at GermEval 2019.

2 Experimental Setup

The following section describes the experimental
setup, namely all used technical resources, the used
data and the chosen architecture.

2.1 Technical Resources
All experiments were conducted in Jupyter Note-
books, version 4.0.2 (Kluyver et al., 2016) running
a Python 3.5.0 (Python Software Foundation, 2018)
kernel with the following libraries:

• pandas 0.23.4 (McKinney, 2010)

• NumPy 1.11.3 (Oliphant, 2006)

Proceedings of the 15th Conference on Natural Language Processing (KONVENS 2019)
Distributed under a CC BY-NC-SA 4.0 license.

372

https://creativecommons.org/licenses/by-nc-sa/4.0/


• scikit-learn 0.20 (Pedregosa et al., 2011)

• spaCy 2.0.12 (Honnibal and Montani, 2018)

A fixed seed was used for the random number
generators. All models were trained on an end of
2013 MacBook Pro with a 2 GHz Intel Core i7, 8
GB 1600 MHz DDR3 and an Intel Iris Pro 1536
MB GPU1.

2.2 Data

To train and tune the model, the data from the 2018
competition was used. This data consists of 5009
labeled tweets for the training-set and 3532 labeled
tweets for the dev-set2. The distribution of the
classes for Subtask II is depicted in figure 1. Note
that for Subtask I, the classes ABUSE, INSULT
and PROFANITY are simply summarized as one
class, named OFFENSE and thus this class consists
of 33.70% of all tweets. The data is imbalanced.
Specifically, the class OTHER makes up two thirds
of the data while the class PROFANITY only rep-
resents 0.014 percent of all tweets.

Figure 1: Class distribution 2018 training-set.
OTHER

66.30%

ABUSE

20.40% INSULT

11.88%
PROFANITY

0.014%

For the final submission, the system was trained
on all available labeled tweets. These consist of
the 2018 training- and test-set as well as the 2019
training-set for a total of 12.401 labeled tweets3.
The class distributions for the 2019 training-set are
described in figure 2. No additional outside data
was used.

1With this setup, the entire end-to-end training on the
provided development set from 2018 took 14 seconds for
Subtask A and 55 seconds for Subtask B.

2This dev-set used to be the test-set in the 2018 competition
but the organizers released the labels after the competiton was
over.

3Some tweets were removed because they could not be
parsed correctly.

Figure 2: Class distribution 2019 training-set.
OTHER

66.74%

ABUSE

18.30% INSULT

12.81% PROFANITY
0.022%

2.3 Architecture
A simple bag-of-words approach that relies on the
frequency of words to classify the data was used
for the competition. Thus, the tweets were vector-
ized before they were used in the algorithms. For
the vectorization, a term-frequency times inverse
document-frequency matrix was used. The chosen
Logistic Regression model combined with a Naive
Bayes approach.

3 Experiments

The following section describes the experiments
that were conducted. Because experiments could
improve results for one subtask but lead to worse
results on the other subtask, it was decided to use
Subtask I results to pick the parameters to keep. For
all experiments, spaCy was used as the tokenizer
with no lemmatization and no stopword list4. For
the term-frequency matrices, only words that ap-
peared in at least 4 documents were used and words
that appeared in more than 40% of documents were
ignored. Inverse document-frequency-reweighting
(IDFR) and sublinear term frequency scaling were
applied, but no smoothing was applied. The param-
eters are summarized in table 1.

Parameter Value
Minimum Number of Documents 4
Maximum Frequency of Documents 0.4
IDFR Yes
Sublinear Term Frequency Scaling Yes
Smoothing No

Table 1: Parameters for the term-frequency matri-
ces.

4As these didn’t improve results in some previous tests.

373



3.1 Accent Stripping, Casing and
Preprocessing

The first experiment was to test unicode accent
stripping and lowercasing combinations. These
tests were conducted for word-level unigrams. The
results are summarized in table 2. Note that the last
two cases are the same due to the order of lowercas-
ing and stripping. Notably, removing lowercasing
lead to worse results overall while accent stripping
provided slightly better results for both subtasks.

Strip 7 3 7 3

Lowercase 3 3 7 7

F1 Sub I 0.6655 0.6665 0.6467 0.6467
F1 Sub II 0.3970 0.3975 0.3917 0.3917

Table 2: Unicode accent stripping and lowercasing.
The F1 scores are micro-averaged on the dev-set.

3.2 N-grams

Different word-level n-grams were tried 5. Neither
bigrams nor trigrams outperformed the unigrams
for Subtask I. However, bigrams were best for Sub-
task II. The results are summarized in table 3.

In-word n-grams were also tried but didn’t show
any improvements.

N-gram F1 Sub I F1 Sub II
1,1 0.6665 0.3975
1,2 0.6496 0.4114
1,3 0.6490 0.4053
2,3 0.5874 0.3090

Table 3: Word-level n-grams. The F1 scores are
micro-averaged on the dev-set.

Finally, character-level n-grams with a min to
max difference of three were tried. The results are
summarized in table 4.

N-gram F1 Sub I F1 Sub II
1,4 0.6474 0.3736
2,5 0.6672 0.3807
3,6 0.6693 0.3855

Table 4: Character-level n-grams. The F1 scores
are micro-averaged on the dev-set.

5As a note for reproducability, it was discovered after the
submission, that this experiment was run with lowercasing set
to false eventhough the previous experiment would suggest to
use true. However the final results were not impacted by this.
And lowercasing was set to true for the following experiments.

The best character-level model outperformed the
best word-level model for Subtask I and was thus
kept for the next step.

3.3 Hyperparameters of the Logistic
Regression

The hyperparameter tuning for the character-level
model is summarized below. Automatically adjust-
ing weights inversely proportional to class frequen-
cies (balanced) provided big gains as summarized
in table 5.

Balanced 7 3

F1 Sub I 0.6693 0.7142
F1 Sub II 0.3855 0.4514

Table 5: Balanced class weights. The F1 scores are
micro-averaged on the dev-set.

Finally, different C-values for the L2 regulariza-
tion were tested. The results are summarized in
table 6. Because C=14 lead to the best score for
Subtask I, this value was picked.

C-value F1 Sub I F1 Sub II
1.0 0.7142 0.4514
16.0 0.7194 0.4646
14.0 0.7202 0.4639

Table 6: L2 Regularization. The F1 scores are
micro-averaged on the dev-set.

3.4 Task specific text preprocessing

As the last step, Twitter specific preprocessing was
applied. The strings RT and ’s and the symbols
: and # were removed. All urls were replaced
with xx url and all @usernames were replaced with
xx username. This increased the F1-score for Sub-
task I to 0.7228 (and lowered the score for Subtask
II to 0.4569).

3.5 Cutoff Value for Subtask I

Another parameter that can be varied is the cutoff
value for Subtask I. If the prediction is equal to or
more than this cutoff value, the label ’offense’ is
predicted and otherwise, ’other’ is predicted. The
logical value to use for the cutoff would be 0.5.
However, experiments showed that changing this
value also influences the overall result. The best
empirical value of 0.485 increased the F1-score for
Subtask I to 0.7258.
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4 Results

After the submission deadline for the predictions,
the organizers calculated various statistics on the
test-set. The results for Subtask I are summarized
in table 7 and the results for Subtask II are sum-
marized in table 8. The competition was scored
on the average F1-score for each task, which is
highlighted in bold in the tables.

Precision Recall F1-Score
OFFENSE 0.6800 0.6134 0.6450
OTHER 0.8261 0.8641 0.8447
Average 0.7530 0.7388 0.7458

Accuracy Correct Total
78.39 2376 3031

Table 7: Results for Subtask I on the 2019 test-set.
F1 scores are micro-averaged.

Precision Recall F1-Score
ABUSE 0.4312 0.4075 0.4190
INSULT 0.5567 0.2353 03308
OTHER 0.7874 0.9326 0.8538
PROFANITY 0.5000 0.0811 0.1395
Average 0.5688 0.4141 0.4793

Accuracy Correct Total
72.65 2202 3031

Table 8: Results for Subtask II on the 2019 test-set.
F1 scores are micro-averaged.

5 Conclusion

The paper presented the submissions hshl coarse 1
and hshl fine 1 that were entered for the binary
and fine-grained hate speech classification task of
GermEval 2019. A combination of Naive Bayes
and Logistic Regression was used to classify the
tweets.

To reach the final model, different experiments
on vectorization and preprocessing were run. Ad-
ditionally, the hyperparameters of the Logistic Re-
gression were tuned. The final model reached
micro-averaged F1 scores of 0.7458 and 0.4793
on the test-set for the two subtasks.

All relevant code will be made available at one
of the authors’ Github repositories6. Additionally,
lab notes of the different experiments will be added
to the repository.

6https://github.com/rother/germeval2019

6 Outlook

Further improvements could be made by using an
ensemble of different classifiers. Neither the vector-
ization nor the preprocessing or the hyperparameter
search were exhaustive and can be improved upon.
Using different tokenizers or other preprocessing
strategies could yield better results. Theoretically,
the chosen bag of words approach that only relies
on word frequencies is inferior to a model that
takes word order and more details into account. As
such, deep neural models, specifically RNNs, are
likely to provide better overall results. Lastly dif-
ferent sampling strategies as a measure against the
imbalanced class labels would likely improve the
results.
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Abstract

In this paper, we describe the Fraunhofer-
SIT submission for the “GermEval 2019
– Shared Task on the Identification of Of-
fensive Language”. We participated in two
subtasks: task 1 is a binary classification
of German tweets on the identification of
offensive language. Task 2 is a fine-grained
classification to distinguish between three
subcategories of offensive language. Our
best model is an SVM classifier based on tf-
idf character n-gram features. Our submit-
ted runs in the shared task are: Fraunhofer-
SIT coarse [1-3].txt for task 1 and Fraun-
hoferSIT fine [1-3].txt for task 2. Our fi-
nal system reaches 0.70 macro-average F1-
score for the binary classification and 0.46
F1-score for the fine-grained classification.
The achieved results show that the problem
of automatically distinguishing between of-
fensive language and “Hate Speech” is far
from being solved.

1 Introduction

In the pseudonymous environment of social me-
dia and due to the massive rise of user-generated
content on the internet, hate speech and offensive
language are easily produced and spread. As the
amount of harmful comments and posts is continu-
ously growing, it is not feasible to manually check
each text message for suspicious content. Addition-
ally, hate speech violates more than just feelings.
It can be extremely harmful to society, for example
by inciting mass violence. Governments and so-
cial network platforms can benefit from automatic
detection and prevention of malicious posts on the
net (Fortuna and Nunes, 2018).

But what constitutes hate speech and when does
it differ from offensive language? A unified def-
inition does not exist yet. The consensus is that

hate speech targets disadvantaged social groups in
a manner that is potentially harmful to them (Ja-
cobs and Potter, 2001). Many studies still tend to
conflate hate speech and offensive language. A key
challenge for automatic hate speech detection on
social media is the separation of hate speech from
other instances of offensive language (Davidson et
al., 2017).

As there is a pressing demand for methods to
automatically identify hate speech and other sus-
picious posts, we participate in this year’s “Ger-
mEval Task 2019 – Shared Task on the Identifi-
cation of Offensive Language”1. The task is fo-
cused on detecting offensive comments in a set
of German tweets in three subtasks. Task 1 is a
binary classification to distinguish offensive from
non-offensive tweets. Task 2 requires a more fine-
grained classification of offensive tweets which are
divided into three subcategories - profanity, insult
and abuse (Ruppenhofer et al., 2018). The first
category “PROFANITY” uses insults and swear
words, but not against a person or a group. Tweets
that are labeled as “INSULT” want to offend some-
one. We categorize “ABUSE” as hate speech as
it uses “language that is used to express hatred to-
wards a targeted group or is intended to be deroga-
tory, to humiliate, or to insult the members of the
group” and can be defined according to Davidson
et al. (2017) as hate speech. Subtask 3 focuses on
the classification of explicit and implicit offensive
language.

We participated in task 1 and 2 of the competi-
tion. In this paper, we report on the FraunhoferSIT
system to classify German tweets with respect to
their offensiveness. First, we give a short overview
of the work already conducted in the field of offen-
sive language detection. In Section 3, we describe
the competition tasks and the data provided by the
GermEval organizers. Section 4 is dedicated to the

1Germeval Task 2, 2019: https://projects.fzai.
h-da.de/iggsa/
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machine learning methodology used. We describe
the text preprocessing and the features we used to
train our SVM models. In Section 5, we evalu-
ate the performance of our approaches. Lastly, we
conclude our paper in Section 6.

2 Related Work

A wide range of machine learning and deep-
learning approaches have been implemented to au-
tomatically detect offensive language in text data.
Schmidt and Wiegand (2017) provide in their sur-
vey a short and comprehensive overview of auto-
matic hate speech detection with a focus on fea-
ture extraction. Using bag of words or embed-
dings can yield to reasonable classification perfor-
mance. In their survey, they outlined that character-
level-approaches perform better than token-level-
approaches because they reduce the spelling varia-
tion problem often faced when working with user-
generated content. Lexical resources, such as a list
of slurs, can also help to improve the performance
but only if they are combined with other types of
features.

Nobata et al. (2016) combine lexical features
such as n-grams, as well as syntactic features with
distributional semantics to detect abusive language
in English comments on “Yahoo! Finance and
News”. Badjatiya et al. (2017) and Davidson et
al. (2017) also confirm that word n-grams are well-
performing features for the detection of hate speech
and abusive language.

Supervised approaches like Logistic Regression
(Djuric et al., 2015; Del Vigna et al., 2017) or
Support Vector Machines (Del Vigna et al., 2017;
Davidson et al., 2017) have shown to obtain good
results in classifying abusive language. Del Vigna
et al. (2017) trained their SVM with word embed-
dings and Davidson et al. (2017) used bigram, un-
igram and trigram features, each weighted by its
tf-idf. LSTM (Del Vigna et al., 2017; Badjatiya
et al., 2017) and Convolutional Neural Network
classifiers employed on word embeddings or other
pretrained representations of words and tokens are
also highly effective for the task of classifying abu-
sive language (Badjatiya et al., 2017; Ho Park and
Fung, 2017).

Most of the research is focused on English
datasets. The identification of toxicity in German
language messages received less attention by the re-
searchers so far. Comparable cross-lingual research
is sparse.

3 GermEval Competition Task 2019

The organizers of GermEval 2019 provided train-
ing and test datasets2 for three offensive language
detection tasks. The provided datasets for training
consist of 12,536 tweets without any user meta-
data. Task 1 is a binary classification for deciding
whether a German tweet contains offensive lan-
guage (the category labels and the number of tweets
are “OFFENSE”: 4,177 and “OTHER”: 8,359).
Task 2 is a multi-class classification and distin-
guishes between three subcategories of offensive
language with the more fine-grained labels “PRO-
FANITY”: 271, “INSULT”: 1,601 and “ABUSE”:
2,305. While training data contains examples of
all categories, the class distribution is fairly imbal-
anced. The majority of tweets are neutral (67%).
Abusive tweets are also relatively often (18.4%),
while the class “PROFANITY’ is underrepresented
(2.2%). The three classes that contain offensive
language are defined as follows (Ruppenhofer et
al., 2018):

• Profanity: abusive words are used but the
tweet does not insult someone (e.g. “ich
scheiß auf deine Gedenkkultur sie geht mir
am Arsch vorbei”)

• Insult: profanity is directed at an individual
with the intention to insult the person or group
(e.g. “SPD ihr seit wirklich das Asozialste
Pack”)

• Abuse: the tweet is intended to demean and
attack another person or a group with cruel
and derogatory language which we categorize
as hate speech (e.g. “Der verdammte Dreck-
sack und Massenmörder Israel will mit allen
Mitteln ein Krieg gegen Russland”)

• Other: the tweet is neutral and does not
contain any assertive or offensive words (e.g.

“Ach so vergessen , einen schönen guten Mor-
gen”)

Subtask 3 focuses on the classification of explicit
and implicit offensive language. Explicit tweets
directly express hatred towards a particular target.
With implicit tweets, hatred of a target must be
derived from the context. In this paper, we focus
on the binary classification (task 1) as well as the
more challenging fine-grained classification task 2.

2GermEval 2019 Data and Tasks: https://projects.
fzai.h-da.de/iggsa/projekt/
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The competition results are evaluated with re-
gard to macro-average F1-score, which is the un-
weighted mean of the F1-scores of each individual
category.

4 Methodology

In the following, the same approach is applied to
both classification tasks. First, the Twitter data was
preprocessed to handle idiosyncrasies such as hash-
tags, Emojis or irrelevant characters. Afterwards,
character n-grams are extracted as features which
serve as tf-idf weighted input to train a Support
Vector Machine (SVM).

4.1 Preprocessing

Before extracting features and training the SVM
on the tweets, we perform different pre-processing
techniques according to the following procedure:

1. Removing unnecessary white spaces.

2. Lowercasing all characters.

3. Smileys and Emojis are replaced with CLDR
(Common Locale Data Repository) - short
character names and keywords.

4. Replacing question marks with the place-
holder <question> and numbers with the
placeholder <number>.

5. Deleting irrelevant symbols and characters,
e.g. “+,*,/,”.

6. Sequences of the same characters with a
length greater than three are removed.

7. Removing words with less than three charac-
ters.

8. Removing stopwords by using the NLTK (Nat-
ural Language Toolkit) list of stopwords for
the German language.

9. To tokenize the words we used the TwitterTok-
enizer from the NLTK library. The TwitterTo-
kenizer is adapted for Twitter and other forms
of casual speech used in social networks. It
contains some regularization and normaliza-
tion features (e.g. converting tweets to lower-
case and vice-versa, removing username men-
tions and reducing the length of words in the
tweet with repeated characters).

10. Hashtags (#) and the attached token were pro-
cessed in a special way since they are widely
used on Twitter and contain semantic content.
First, the hash sign was removed. Compound
words were separated in a sequence of mean-
ingful terms (e.g. “#NoAfD” - “No AfD”,
“#KölnerTreff” - “Kölner Treff”, “#ichwars”
- “ich wars”, “#OSZE-Beobachter” - “OSZE
Beobachter”, “#EU-Beitrittsgespräche” - “EU
Beitrittsgespräche”).

We also experimented with replacing all hashtags
and @-Mentions with placeholders (<HashTag>,
<AM>). Since this had no impact on the perfor-
mance of the classifier, we discarded this prepro-
cessing step from the final submission.

4.2 Features
After preprocessing, we used scikit-learn’s3 term
frequency-inverse document frequency (tf-idf)
weighting function (tfidfVectorizer) to convert the
tokens to a matrix of tf-idf features in order to build
a vector pipeline (Pedregosa et al., 2011). The fol-
lowing n-gram features have been tested for both
classifiers:

a) word n-grams with n ∈ {1,2,3}

b) character n-grams with n ∈ {1,2, ..,7}

c) Feature union of word and character n-grams

The best performance was achieved by training b).
When building the vocabulary, terms that have a
document frequency lower than 2 were ignored.

4.3 SVM Implementation
To train the two classifiers, we used scikit-learn’s
SVM with tf-idf character n-grams in the range 1
to 7 as features. Task 1 is a binary classification
with the classes “OTHER” and “OFFENSE”. Task
2 is a multi-class classification problem with the
four classes “OTHER”, “PROFANITY”, “INSULT”
and “ABUSE”. For both models OVR (“One-vs.-
Rest”) was used as a decision function. To solve a
multiclass classification task, OVR combines mul-
tiple binary SVM classifiers (Huang et al., 2005).
Each SVM classifies samples into the correspond-
ing class against all the other classes (Hong and
Cho, 2006).

When experimenting with the training set, we
split the data provided by the organizers into two

3http://scikit-learn.org
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parts. For training, we used 70% of the data. The
remaining 30% were used as test set. We experi-
mented with hyperparameter tuning, manually and
by employing scikit-learn’s grid search function.
The performance improved slightly by using Sig-
moid Function instead of the Radial Basis Function
(RBF) kernel.

For the fine-grained classification (task 2) we
initially trained two models. The first model is a bi-
nary classifier (the same approach as used for task
1) distinguishing between the two classes “OTHER”
and “OFFENSE” - the latter containing all three
of the abusive language classes described above.
The second model was trained to differentiate be-
tween the three classes of offensive language “PRO-
FANITY”, “INSULT” and “ABUSE”. In a second
approach to task 2, a multi-class SVM was used,
which was trained on all four classes simultane-
ously. Our second approach achieved slightly better
performance results.

Finally, each model was performed on the of-
ficial GermEval 2019 test set. For every task we
submitted three runs, each tested with different data
sets. The first run was trained on the entire dataset
provided by the GermEval organizers. The second
was trained only on this year’s dataset (2019), the
third on text data from 2018. The best classification
results in both tasks were achieved using the whole
data to train the model. The classification results
are provided in the following section.

5 Evaluation

In this chapter, we report on runs using our SVM
models trained on the data provided by the orga-
nizers. The outputs of the SVM classifiers were
submitted to the GermEval competition under the
submission name FraunhoferSIT (see Table 1).

Submitted runs (name) Dataset Task
FraunhoferSIT coarse 1.txt 2018/19 Task 1
FraunhoferSIT coarse 2.txt 2019 Task 1
FraunhoferSIT coarse 3.txt 2018 Task 1
FraunhoferSIT fine 1.txt 2018/19 Task 2
FraunhoferSIT fine 2.txt 2019 Task 2
FraunhoferSIT fine 3.txt 2018 Task 2

Table 1: Submitted runs by FraunhoferSIT

We participated in task 1, the binary classification
task distinguishing offensive from non-offensive
tweets and the more challenging fine-grained clas-

sification task 2. For each task, we submitted three
runs.

The GermEval task defines the macro-average
F1-score as its evaluation measure. The results of
Tasks 1 and 2 have shown that there are only minor
differences in performance. Our best model, an
SVM classifier, using tf-idf weighted character n-
gram features on the entire training data provided
by the organizers achieved the best performance
among the three runs submitted for the tasks. For
task 1 a macro F1-score of 0.70 could be achieved.
Our best performance for task 2 was a F1-score
of 0.46. In our experiments, character n-grams
outperformed token n-gram features. The best n-
grams at the character level range from 1 to 7. We
expect our model’s performance to improve further
with another set of features and more training data.
As shown in our submitted runs, this would be
particularly helpful for the second, fine-grained
task, where our classifiers performed really poorly.
The performance results for the best runs of task 1
and 2 are displayed in the following tables 2 and 3.

Task 1: SVM with tf-idf character n-grams
Category Performance Measure

P R F1

Other 81.24 78.62 80.42
Offense 58.46 60.93 59.67
Average 69.85 70.27 70.06

Table 2: Official evaluation results for each cate-
gory of task 1 with the metrics Precision (P), Recall
(R), and F1

Task 2: SVM with tf-idf character n-grams
Category Performance Measure

P R F1

Other 81.37 77.58 79.43
Profanity 50 9.01 15.27
Insult 34.74 39.43 36.94
Abuse 33.52 44 38.05
Average 49.91 42.51 45.91

Table 3: Official evaluation results for each cate-
gory of task 2 with the metrics Precision (P), Recall
(R), and F1

6 Conclusion

In this paper, we have described the system submit-
ted to the “Shared Task on Identification of Offen-
sive Language GermEval 2019” by FraunhoferSIT
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(Darmstadt). We participated in two tasks. The first
task is a binary classification of German tweets
on the identification of offensive language with
the two classes “OFFENSE” and “OTHER”. The
second task was a more challenging fine-grained
classification. In addition to detecting offensive
tweets, the task was to distinguish between the
three subcategories: “PROFANITY”, “INSULT”
and “ABUSE”. We trained an SVM as part of scikit-
learn’s library and used tf-idf character n-grams in
the range 1 to 7 as features. Our model achieves a
macro F1-score on task 1 of 0.70 and on task 2 of
0.46. The relatively poor results, especially for task
2, show that our system cannot reliably distinguish
between offensive language and hate speech and
that more research needs to be done to improve the
classification performance.
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Abstract

In this paper an approach for the automatic
detection of offensive language in German
twitter posts, so called tweets, based on a
data set provided by the organizers from the
GermEval2019 contest is presented. Two
different approaches were used. The first
one is based on a document-term-matrix
and the second one uses fastText to rep-
resent tweets as numerical vectors. Ad-
ditionally, some text based features, e.g.
sentiment analysis of the text and emojis
were added. Further, some statistic features
were calculated, e.g. the number of special
characters, hashtags and mentions. As a
classifier a support vector machine with ra-
dial kernel function was utilized. The best
f1-macro values for subtask 1 of 0.7978,
subtask 2 of 0.5957 and for subtask 3 of
0.7055, validated by a ten-fold cross valida-
tion, were achieved by using a self-trained
unsupervised fastText model to vectorize
the tweets.

1 Introduction

Social media platforms like Twitter have become
increasingly popular in the past ten years (Twitter,
2019). People of nearly all generations, especially
teenagers and young adults, are using them to com-
municate with friends, connect with people around
the world or to state their opinion about current
topics (Faktenkontor, 2019). Unfortunately, the
increasing number of people using social media
platforms results in a growth of posts with offen-
sive content. Therefore, the automatic detection
of offensive language on these platforms is a very
important task to effectively fight e.g. hate speech,
hateful or insulting comments, cyber mobbing or
cyber bullying.

The detection of offensive language is a typical
task in sentiment analysis, which is in turn a sub-

task in text classification, that focuses on the con-
textual mining of texts related to some specific ob-
jects. Furthermore, sentiment analysis is especially
useful to find out the public opinion concerning
highly sensitive political topics, as was shown in
the study by Backfried et al. (2016), in which Twit-
ter texts were analysed in order to detect tendencies
that are inter-related to real world events in the Eu-
ropean refugee crisis. Usually, sentiment analysis
involves methods from different disciplines such as
natural language processing and machine learning
(Pang et al., 2002).

The challenge by the organizers of the GermEval
2019 Task 2 focuses on detecting offensive lan-
guage in tweets and is subdivided into three smaller
tasks: The first task is to detect texts containing of-
fensive language in Twitter messages. The second
task is the fine-grained categorization of tweets
into one of the categories neutral, profanity, insult
or abuse. Finally, the third task is to distinguish
offensive tweets to be explicit or implicit.

In this paper, for the first subtask two systems
were used and compared. The first system uses
SVM with a radial kernel function as classifier in-
corporating different lexical resources. This ap-
proach forms the baseline. The second system
extends the first one by vectorizing the data with
a self-trained fastText model based on nearly 30
million tweets. Due to better results being achieved
with the second system, it was used for the other
two subtasks.

The paper is organized as follows: in Section 2
an overview of the data is given. In Section 3 the
methods used are described and in Section 5 the
results are presented. Finally, in Section 6 a short
conclusion is given.

2 Data

The data for all subtasks consisted of tweets pro-
vided by the organizers of the GermEval 2019
Task 2. For the first two subtasks the dataset con-
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tained 12,536 manually labelled tweets. As can be
seen in Table 1, the dataset was highly imbalanced.
There is double the amount of tweets in the cate-
gory OTHER compared to the category OFFENSE
and even for the fine-grained classification task the
number of tweets in each category varies greatly.

For the third subtask an additional dataset was
provided, consisting of only 1958 tweets. Again,
the dataset was imbalanced (see Table 1), with
the category EXPLICIT having more than five
times as many tweets as the category IMPLICIT.
The tweet’s content was neither preprocessed nor
cleaned and therefore contained hashtags, user men-
tions, emoticons and other text patterns that are typ-
ical for social media platforms (GermEval, 2019).

subtask category # tweets

Subtask 1
OFFENSE 4177
OTHER 8359

Subtask 2

ABUSE 2305
INSULT 1601
PROFANITY 271
OTHER 8359

Subtask 3
EXPLICIT 1699
IMPLICIT 259

Table 1: Number of tweets in each category.

3 Methods

In this paper, two different systems are presented
for the classification, each based on a SVM with a
radial kernel function and the preprocessed tweets
as described in the following Section 3.1. For the
first system a document-term-matrix (DTM) built
on a pruned vocabulary was used that holds the
following condition: 1≤ t f (w)≤ 50, where t f (w)
is the term frequency of each single word from the
preprocessed tweets. Further statistical features,
sentiment scores and lexical resources were used
as additional features. In contrast, in the second
system the preprocessed tweets were vectorized
using a self-trained unsupervised fastText model.

Some more detailed information is given in the
following subsections.

3.1 Preprocessing

Before any further steps were taken to normalize
the tweets some statistical features were calculated.
An overview is given in Table 2. Afterwards, the

tweets were changed to lower case, all special Ger-
man characters were converted, the punctuation
marks removed and the words lemmatized using
TreeTagger (Schmid, 1995).

Feature values

tweets containing emojis 1011
tweets containing hashtags 2355
tweets containing mentions 12,536
average no. of words per tweet 18.22
average no. of punct. marks per tweet 6.44

Table 2: Statistical features for both datasets.

Because hashtags are potentially important to
capture the real message or sentiment of a tweet,
only the #-sign at the beginning of a hashtag was
removed, yet the hashtag itself was kept as part of
the tweet.

As no further information about users or groups
was given, the mentions in all tweets were removed
completely. Moreover, stop words were removed
using the list provided by Diaz (2016). However,
this list was modified, because some stop words
may give important information regarding the sen-
timent of a tweet. For instance, it makes a huge
difference whether an adjective is preceded by a
negation word or not. Furthermore, personal or pos-
sessive pronouns may indicate that someone is ad-
dressed personally. Consequently, negation words
as well as personal and possessive pronouns were
not removed. Finally, a document-term-matrix was
created.

3.2 Feature Modelling
Sentiment Analysis on Texts and Emojis
To get the sentiment of a tweet, a combined score
was calculated from the words and emojis in the
tweet. In order to get a sentiment score for the
words SentiWS (Remus et al., 2010) was used to
assign a positive or negative polarity value between
-1 and 1 to each word. Emojis were taken into ac-
count, because, usually, a large number of tweets
contain emojis (Gotzner, 2013) and because, in
some cases they can indicate the mood or clarify
the meaning of an expression. In order to calculate
a sentiment score for the them, the Emoji Senti-
ment Ranking (Kralj Novak et al., 2015) from the
Department of Knowledge in Slovenia was used.
First, the emojis were extracted, converted to their
unicode sequence (e.g. <U+263>) and then a score
between -1 and 1 was assigned.
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Finally, the single scores were summed up for
each tweet.

Lexical Lookup
Due to the young age of twitter users, colloquial
words or teenage-slang-words are often included in
tweets. Several teenage-slang-words are offending
either a single individual or groups of them. To
detect these words a lexicon of youth language was
used, which was created by Helmut Hehl (Hehl,
2006). However, some phrases were removed man-
ually because they were not relevant for detecting
offensive language.

Additionally, in order to detect swearwords in
tweets a comprehensive lexicon containing offen-
sive nouns, adjectives and also verbs was created.
The nouns were obtained from the “HyperHero
Schimpfwortliste”, a huge list with 11,300 swear-
words (HyperHero, nd). The adjectives with an
abusive connotation were manually extracted from
the website www.wortwuchs.net (Willing and
Goldschläger, nd). The verbs were added manually
because there was no suitable list available. Finally,
some words, which were significant for the data
were added manually in their lemmatized form and
all lists were combined to our comprehensive lexi-
con. For each tweet, a binary decision was made
whether the tweet contains offensive or slang words
from our lexicons or not.

Vectorization
The language used in social media is strongly re-
lated to currently discussed topics. Therefore, each
sample drawn from social media captures only a
limited amount of the vocabulary used. To over-
come this limitation, a huge amount of tweets were
collected to capture as much of the vocabulary as
possible incorporating different topics in order to
build a fastText model (Joulin et al., 2017).

FastText is able to capture the context of words
instead of simply checking if a word is in a tweet
or not. In order to train a suitable fastText model a
crawler was set up that automatically collects Ger-
man tweets from the twitter API. This way, an addi-
tional dataset was created consisting of finally 29.6
million unique German tweets each preprocessed
as described in Subsection 3.1. This slowly grow-
ing corpus formed the basis for training different
unsupervised fastText models to subsequently cre-
ate a vectorized text representation of the data pro-
vided by the organizers. At different points in time
models were created in order to analyse the per-
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Figure 1: The plot shows the overall performance
of system 2 with increasing numbers of tweets used
to train the fastText model.

formance depending on the number of tweets used
for the fastText model. As can be seen in Figure 1
with a growing number of tweets the results also
increase until the number of tweets reaches 24.9
million. Afterwards, the macro F1 measure slightly
decreases. For the two submitted runs the decision
was made to use the fastText model that achieved
the best result in the ten-fold cross-validation with
24.9 million unique German tweets and the fast-
Text model with the final amount of 29.6 million
tweets.

As parameters 50 epochs, 300 dimensions, a win-
dow size of 5, char N-grams with a length from 2
to 6 and a learning rate of 0.05 were used. The us-
age of char N-grams make the model more robust
against unseen words. The models were calcu-
lated using a continuous-bag-of-words and skip-
gram technique as well as a hierarchical softmax
function and negative sampling.

4 System Descriptions

In this paper, two different systems were used for
the classification. In the following the different
systems are described.

System 1 - DTM and SVM (radial kernel)
The first system is based on the preprocessed tweets
and a document-term-matrix (DTM) which was
built with the pruned vocabulary from the training
data set (min tf = 1 , max tf = 50). Additionally,
some statistical features, sentiment scores and lexi-
cal resources were added. As a classifier a support
vector machine with a radial kernel function was
used.
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System 2 - fastText and SVM (radial kernel)
The second system is based on the preprocessed
tweets which were vectorized by a self trained un-
supervised fastText model. As for the first system,
statistical features, sentiment scores and lexical
resources were added. Again, a support vector ma-
chine with a radial kernel function was used. For
the 1st run a fastText model built on 24.9 million
unique tweets was used, whereas for the 2nd run a
fastText model built on 29.6 million unique tweets
was used.

5 Results

The following tables show the results for each sub-
task and system. All results are based on the train-
ing data set and a ten-fold cross-validation to pre-
vent overfitting of our models.

The results in Table 3 show the best achieved
scores with system 1, which represent the start of
development. This system formed the baseline for
the further work and results were not submitted to
the contest.

Run Category P R F1

-
OFF. 0.5640 0.4096 0.4742
OTHER 0.7405 0.8415 0.7877

Mac. avg. 0.6522 0.6255 0.6386

Table 3: Results for subtask 1 with system 1 (not
submitted).

The following Tables 4 to 6 show the best scores
achieved with system 2 and the different runs as
described in Section 4. Both runs were submitted
to the contest.

Run Category P R F1

1st
OFF. 0.7193 0.7467 0.7326
OTHER 0.8710 0.8543 0.8625

Mac. avg. 0.7952 0.8005 0.7978

2nd
OFF. 0.7291 0.7302 0.7291
OTHER 0.8650 0.8637 0.8643

Mac. avg. 0.7967 0.9770 0.7968

Table 4: Results for subtask 1 with system 2.

With the first model, several problems occurred.
The large vocabulary of more than 22,000 unique
words led to a high sparsity of the DTM, which

Run Category P R F1

1st

ABUSE 0.5567 0.6130 0.5822
INSULT 0.4875 0.4866 0.4865
PROF. 0.6669 0.2839 0.3950
OTHER 0.8602 0.8526 0.8563

Mac. avg. 0.6428 0.5586 0.5975

2nd

ABUSE 0.5372 0.6239 0.5769
INSULT 0.4629 0.5391 0.4978
PROF. 0.5851 0.3134 0.4033
OTHER 0.8739 0.8200 0.8460

Mac. avg. 0.6148 0.5741 0.5935

Table 5: Results for subtask 2 with system 2.

Run Category P R F1

1st
IMPLIC. 0.3582 0.6678 0.4653
EXPLIC. 0.9418 0.8164 0.8744

Mac. avg. 0.6500 0.7421 0.6929

2nd
IMPLIC. 0.3660 0.7143 0.4825
EXPLIC. 0.9489 0.8081 0.8725

Mac. avg. 0.6575 0.7612 0.7055

Table 6: Results for subtask 3 with system 2.

in turn caused different computational problems.
Therefore, the vocabulary was pruned, as described
in the former section, in order to reduce its size to
around 1,100 words. However, pruning the vocabu-
lary also means that a lot of information from the
tweets gets lost. As the results in Table 3 clearly
show, with the first system it was not possible to de-
tect much of the offensive language in the dataset.
As can be seen in Table 4 the results for subtask
one clearly improved using the fastText model. As
might be expected, the results are worse for the
second subtask (see Table 5). The results clearly
show that it is really difficult to detect profanity in
the tweets, whereas for the category ABUSE the
best results were achieved. However, the results
also coincide with the number of tweets available.
For PROFANITY the number of tweets was the
lowest, while for ABUSE it was much higher. Fur-
thermore, the results in Table 6 indicate that it is
more difficult to detect implicit abusive language in
comparison to explicit abusive language. Yet again,
the bad results can be partly explained with the
available number of tweets. Interestingly, a greater
number of tweets for the training of the fastText
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model does not improve the results for the first two
subtasks. However, the difference between the two
runs is minimal for all three subtasks.

6 Conclusion

As pointed out in the discussion section, it can be
clearly seen how modern techniques for word rep-
resentations like fastText can help achieve better
results in natural language processing tasks. Using
a radial SVM and a fastText vectorization as a fea-
ture, for the first subtask an F1-measure of 0.7978
was achieved, whereas for the second and third
subtask the F1-measure was 0.5975 and 0.7055,
respectively.

The deep learning technology used for fastText
enables the transformation of most of the context
into numerical vectors with a moderate number of
dimensions. This led to an increase of the over-
all performance of our model in the second sys-
tem. Besides fastText there are many different im-
plementations for modern word embeddings like
word2vec, sent2vec or doc2vec. It might be inter-
esting to use different word embedding techniques
for the text vectorization as well as classifier chains.
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Abstract

This paper presents the models submitted
to the 2019 GermEval Shared Task on Of-
fensive Language Detection in Tweets. Our
system is based on a lexicon of swear word-
s and several rules. These rules were devel-
oped after a thorough data and error analy-
sis. This also revealed that the detection of
offensive language is far from trivial and
in a lot of cases requires more than just a
Tweet in isolation, but rather would require
more knowledge about the context and/or
the topic the Tweet is related to, which was
not available in this data set.

1 Introduction

“Offensive language is commonly defined as hurt-
ful, derogatory or obscene comments made by one
person to another person. This type of language
can be increasingly found on the web.” With these
words Wiegand et al. (2018) introduced the 2018
edition of the GermEval 2018 Shared Task on the
identfication of offensive language. While this in-
dicates an academic interest in the topic, the Ger-
man Netzdurchsetzungsgesetz (NetzDG) requires
social networks to remove illegal content (Smedt
and Jaki, 2018) which might overlap with offensive
language in general. Recent events surrounding
the murder of a German politician in June 2019,
police forces look into social media containing hate
speech (German “Hasskommentare”) related to this
event.1 Additionally, there is very little work on
German hate speech, as opposed to English hate
speech and/or offensive language.

This paper presents the description of the system
submitted by the University of Applied Sciences,
Darmstadt (h da) to the GermEval 2019 edition

1https://www.zeit.de/
gesellschaft/zeitgeschehen/2019-08/
walter-luebcke-hasskommentare-internet

of the shared task on detecting offensive language
in Tweets. While most systems in the 2018 edi-
tion used machine or deep learning, we created a
rule-based system after performing a thorough data
analysis.2 While a range of our observations could
be translated into features for machine learning,
this was not the main focus of this work. Similar
to (Klenner, 2018) we observe that the annotations
are not as clear, as the annotations suggest. Accord-
ingly, we feel (similar to (Smedt and Jaki, 2018))
that releasing AI without a proper verification is
ethically critical. Therefore, we suggest to use con-
fidence scores, rather than absolute annotations to
indicate the potential label and to also have a clos-
er look at the manual annotations, which are not
always as clear-cut as they might seem. Especially
in isolation not all annotations are comprehensible
and might need some further discussion.3

2 Data Analysis

Initially, we thoroughly looked at the 2018 and
2019 data sets in order to gain a better intu-
ition for the material we are dealing with. It be-
came obvious, that many offensive tweets have
one common ground: they use offensive lan-
guage to offend certain people, institutions, coun-
tries or companies. Our idea was, that a scrip-
t could classify tweets by looking for ”bad” lan-
guage inside the tweets and thus categorize them
as either OFFENSIVE or OTHER. The basis
for what we consider bad language, is a list of
words found at: http://www.insult.wiki/
wiki/Schimpfwort-Liste. Our error anal-
ysis revealed that the classification contained too
many mistakes. We therefore removed words such
as “Ameise” (ant), “Vielflieger” (frequent flyer) or
“Bär” (bear) which do not have negative connota-

2Details of our system are available at https://
github.com/mieskes/germEval2019

3We present examples taken from the data in German and
provide a rough translation into English.
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Figure 1: Architecture of the h da lexicon- and rule-based system.

tions.
In another step, we performed an error analysis,

looking in detail at the mis-classified Tweets. Er-
rors came in two forms: One set of errors is based
on the mis-classification of our method. Another
set of errors can be attributed to annotations that
are less clear-cut. For example, there was a tweet
in which one person stated, that he wishes the old
german anthem back and also the time (WW2-era),
too. This tweet has not been officially classified
as OFFENSIVE, while we came to the conclusion
that it was indeed, offensive. This naturally leads
to problems, as our script classified some tweet-
s as OFFENSIVE because it contained those of-
fensive words and insults, while the official file
marked them as OTHER. To increase the accuracy,
we looked up the tweets and gathered offensive
words that our own list did not contain at this time.

As the accuracy did not incease significantly, we
decided to add weights to the words in our lists. In
addition, we observed that Tweets contained words
which might not be offensive as such (i.e. “Hund”
(english: dog), but changes to being offensive if
combined with a pronoun and/or an (offensive) ad-
jective. A sentence such as “Ein hässlicher Hund”
(An ugly dog) becomes offensive in the case of
“Du hässlicher Hund” (You ugly dog). We there-
fore added weights based on a word being in the
word list, occurring with an pronoun and with an
adjective.

3 Experimental Setup

The first phase consisted of using a “badword list”
to identify tweets that are offensive. Our system
compares the words in a tweet to the words that
can be found in the ”badword list”, and if a tweet
has one of these badwords then is considered of-

fensive. This simple comparison provided mixed
results due to the “badword list” not being optimal,
due to words within the list that might or might
not be considered as bad or offensive words, de-
pending on context. The second phase (shown in
Figure 1 above) involved adding weights to identify
offensive tweets, by analyzing as many words of
the tweet as possible and using the end weight to i-
dentify if a tweet is offensive or not. The “badword
list” from the first phase is being used, and all of
the words that can be found in the list are weighted
as +0,5. Pronouns are also weighted due to the
fact that many hate speech tweets consist of, for
example, a person being attacked directly by using
the word “du” (you). Pronouns are currently in
this stage weighted at +0,1.4 In order to further en-
hance the analysis, we used SentiWS v2.0 (Remus
et al., 2010) lists to optimize the analysis by also
using positive words, along with SentiWS’ value
of these positive words to minimize the weights
of the tweets. Furthermore, we thought of using
the negative word list as well, but it misses swear
words. Our own “badword list” is also being fur-
ther developed. In version 2.0 the list will be newly
created by real people via Google Survey, which
has been sent to different people from all ages and
sexes. The overall weighting system will also be
fitted later on, as we proceed.

4 Results

Our system is primarily based on the list of insults
as described in Section 3 above. The model looks
for every bad word in the selected tweet and thus
makes an assumption about its polarity. Evaluating
the first runs, we notice that the classification was

4An experimental analysis of the weights was not possible
due to time constraints.
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Average Offense Other
system p r f p r f p r f

test 2018 weighted 50.12 50.13 50.12 34.16 43.34 38.21 66.07 56.91 61.15
test 2018 unweighted 48.22 48.45 48.33 31.42 24.54 27.56 65.02 72.36 68.49
train 2019 weighted 54.97 54.63 54.35 36.64 51.98 42.98 71.51 57.27 63.60

train 2019 unweighted 57.55 55.87 56.70 44.05 29.60 35.41 71.05 82.13 76.19
final 50.12 50.13 50.12 34.16 43.34 38.21 66.07 56.91 61.15

test 2019 (official; run 1) 59.60 58.24 58.91 46.42 36.08 40.60 72.77 80.40 76.39
test 2019 (official; run 2) 54.55 58.24 54.87 36.95 52.68 43.43 72.15 57.69 64.11

post-evaluation 58.09 56.39 57.23 44.81 30.85 36.54 71.37 81.94 76.29

Table 1: Results for various variants of our system.

prone to mistakes, as our badwordlist contained too
many insults and slurs that on the other hand were
used in non-offensive tweets and thus resulting in
false positives, with an accuracy under 50 %. We
therefore reduced the amount of bad words in our
list from about 2000 to 1520 to increase accuracy.

Based on our error anlysis (described in Sec-
tion 2) we add weights to the bad words and pro-
nouns. A bad word receives a weight of 0.5 and
selected pronouns a weight of 0.1. If the tweet has
a weight of at least 0.6 it is considered offensive.
The pronouns we include are ”ihr”, ”du”, ”sie”,
”dich”, ”euer”, ”ihrer”, ”deren” and ”dein”.

Table 1 shows the results of our systems on vari-
ous data sets including the official test evaluation
results. We observe that the weighted system con-
sistently has higher Recall results when labelling
a Tweet as OFFENSE, whereas it achieves high-
er Precision when labelling a Tweet as OTHER.
The unweighted model shows higher Precision for
OFFENSE and higher Recall for OTHER. As rec-
ognizing an offensive Tweet is a critical task, from
several points of view, it is desirable to achieve a
higher Recall in order to ensure that a Tweet la-
belled as offensive is actually offensive.

We also combined the two models during the
post-evaluation analysis, which increased the per-
formance on average and also in both categories.
The combined model takes the output of both mod-
els. In case the models agreed the decision was
used. For non-animous decisions the weighted
model decided for the OFFENSE category and the
unweighted model for the OTHER category.

5 Error Analysis

After the gold labels for the test data were released,
we performed a detailed round of error analysis on
the actual test data. The tweets themselves prove

to be a challenge. Many tweet labels are not clear,
and thus even though a tweet is labeled as offensive
or abusive, we do not consider every offensive la-
beled tweet to be offensive. We have found tweets
in which a simple figure of speech such as “Ich
glaub ich muss kotzen” (I think, I have to throw
up) is considered offensive. Our system also found
these tweets to not be offensive, and this is in our
opinion correct. Another example: a tweet has
been marked as OFFENSE INSULT with the con-
tent “Diese Studenten, die ihren Studienausweis
zücken, bevor der Kontrolleur kommt” (Those s-
tudents, who take out their student id before an
inspector shows up), which in our opinion does not
represent Hate-Speech at all. While for these cases
contexts can be imagined, where such an utterance
could be considered hate speech, others, such as
“Seit wann magst du Kartoffeln?” (Since when do
you like potatoes?) or “Bratkartoffeln aus rohen
Kartoffeln best, aber verdammt immer eine Riesen-
sauerei” (Hash Browns out of raw potatoes are the
best, but that sure means a big mess) it is harder to
imagine a context where these utterances could be
considered offensive.

Even more challenging is how labeling occurred
when looking closer at tweets that can be consid-
ered political statements, in which no person or
entity is directly harmed. Some tweets can even
be considered sarcastic with reference to the past.
These sarcastic comments are not positive but al-
so do not attack a person directly. Also, it is still
an open question whether sarcastic or ironic com-
ments are necessarily considered Hate Speech, as
in the context of political comedy these methods
are frequently used. But other tweets that are target-
ed towards specific groups, have not been labelled
as offensive, while we came to the conclusion that
they could probably be considered offensive, such
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as “Klar. Danach kannste dir direkt umsonst auch
noch Schläge abholen” (Sure. Afterwards you can
get a beating for free).

The context behind the tweet, which is missing
in the labeled data, is nonexistent for us, and for our
system. This leads to problems such as incorrect la-
beling by the system. A tweet that is labeled by the
annotators as offensive due to context, cannot al-
ways be labeled as offensive by the system. Since a
simple application cannot dive deeper into context,
many tweets could not be analyzed correctly.

During the manual inspection of our systems
results, we decided to add words such as “Jude”
(jude), “Moslem” (muslim), etc. to the first list,
due to our system missing offensive labeled tweets
which had these words. These words are regret-
tably misused for offensive purposes. Using these
words in our badword list does create false posi-
tives but improves results. Examples, where we
found that a tweet was not labelled as offensive,
but could be considered offensive towards muslims
is a tweet like: “Hey, das war ausschließlich gegen
Muslime gerichtet, halb so wild!” (Hej, this was
only targeted towards Muslims, no big deal!).

Using a badword list for comparison and iden-
tifying bad or offensive tweets has also proven to
be difficult. We have tested our system with two
different lists. The first list consists of 1.520 words.
The second list consists of 11.303 words that can be
used as offensive words. The overall results using
the first list were better than when using the second
list. The second list seemed to have falsely labeled
too many tweets as offensive. Overall, we consider
smaller lists that have good quality to be better than
extensive list, thus quality goes over quantity.

6 Discussion & Conclusions

While our system does not outperform the others,
we think that the analyses we carried out during the
project are quite valuable. Additionally, these anal-
yses indicate, that the classification of Tweets at
least in most cases requires contextual and/or meta
information. There are a range of cases, where
it is easy to imagine, that a context might exist,
which renders a Tweet harmless or harmful. With-
out information about previous Tweets, the topic,
the Tweet under consideration refers to, it is hard
to be absolutely sure.

Nevertheless, we see a range of options to im-
prove our system. One of the first steps is, rather
than relying on fixed sets of words, such as the list

of pronouns, some more linguistic preprocessing,
such as Part-of-Speech tagging might prove useful.
Additionaly, our findings could be incorporated in
a Machine Learning setup, which would benefit the
overall precision/recall values.

Also, the definition of hate speech was in some
cases quite strict. Several tweets have been of-
ficially classified as OFFENSE although no hate
speech or offensive language could be detected by
our group. We do not consider simple sarcasm or
irony as hate-speech, which also results in lower
accuracy rates.

On a more general note, the task of identify-
ing offensive language has to walk a very fine
line between targetting offensive language, which
might also be illegal, as in the case of the German
“Volksverhetzung” (incitement of the people) and
censorship. Thus, from ethical point of view, we
should be careful about how strict our definition of
offensive language is and what has to be accepted
under the freedom of speech.
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Abstract
This paper presents our contribution (HAU)
for the three subtasks of GermEval 2019
Task 2. To detect offensive microp-
osts, we have experimented with differ-
ent approaches and a combination thereof,
namely, a Convolutional Neural Network
(CNN), a Random Forest, and a lexicon-
based approach. In this paper, we report
our methodology, demonstrate how it in-
cludes insights from GermEval 2018, and
compare the different approaches for the
different subtasks in view of future direc-
tions in the detection of offensive language
and hate speech online.

1 Introduction

This year’s Terrorism Situation and Trend Report
from Europol (2019) again notes the increase of
far-right incidents in Germany, including attacks
against immigrants and mosques, the rioting in
Chemnitz, the fatal stabbing of a pro-migrant politi-
cian, and in particular mentions the instigators’
affinity with weapons. It is becoming difficult to
ignore the role of unmoderated social media plat-
forms like Gab, 4chan and 8chan in radicalization
processes and the proliferation of hatred. This in
itself justifies organizing a second GermEval task
on offensive language (or other shared tasks such
as OffensEval 2019 (Zampieri et al., 2019) and Hat-
Eval 2019 (Basile et al., 2019)), encouraging the
scientific community to investigate hateful online
discourse, for example to help develop better con-
tent moderation tools, or early warning systems for
illegal content.

HAU1 is our best submission: a CNN with ex-
tensive feature engineering. HAU2 is a lexicon

of offensive words and manually-annotated word
scores; our main interest here is to observe how
well it does compared to other techniques. HAU3
is a Random Forest trained on character trigrams
and word unigrams, which we used as a baseline
for the other two. The choice of the techniques is
based on last year’s GermEval, where CNNs and
Random Forests were among the best-performing
systems (see Wiegand et al., 2018), and where we
also demonstrated that competitive results can be
achieved with lexicons.

In the following sections, we present our three
approaches, with the main emphasis on the CNN
in Section 2. The Random Forest is discussed in
Section 3, and our new “POW” lexicon in Section
4, followed by a discussion of the systems’ perfor-
mance in the three subtasks in Section 5.

2 HAU1: CNN

In this section, we describe our neural network
model developed for the identification of offensive
language in microposts. The overall network struc-
ture is based on the approach described in detail in
Schäfer (2018) where text, metadata and linguistic
features are handled by parallel sub-networks. We
use a variant that yielded the best results in pre-
vious experiments, and which considers only text-
based and metadata features. We elaborate on a few
choices for the structure and hyperparametrization
in Section 2.3, based on early experiments on the
given GermEval 2019 training dataset.

2.1 Model Description

In the following, we list the differences of our
model in comparison to the approach described
in Schäfer (2018), firstly, the changes to the model

Proceedings of the 15th Conference on Natural Language Processing (KONVENS 2019)
Distributed under a CC BY-NC-SA 4.0 license.

391

https://creativecommons.org/licenses/by-nc-sa/4.0/


architecture, and, subsequently, the changes to the
training procedure.

Model architecture: The original system used
a recurrent neural network (RNN) with long short-
term memory (LSTM) units for encoding the text-
based features. However, during experiments we
observed an improved performance when replac-
ing this encoder by a CNN. Our new CNN model
is based on the architecture given in Schäfer and
Burtenshaw (2019), where multiple sequences of
convolution, dropout and max pooling are com-
bined in parallel in a text encoder. This encoder
operates on a word embedding of the input text
sequence (both in GermEval 2018 and 2019). The
parallel structure was specifically designed for the
detection of offensive language. Each branch in
the CNN is trained to identify those n-grams (with
n from 1 to 6) from the text which are significant
for the classification task. Based on that, different
types of offensive expressions can be captured and
also mentions of targets (proper names) or other
multi-word features.

The sub-network with metadata features
has remained unchanged in comparison to
Schäfer (2018). It considers a variety of numerical
features calculated on the input text, by using
rule-based formulas and partially counting matches
in pre-defined word lists. The list of 27 basic
metadata features1 is given in the referenced paper.

Model training procedure: We briefly men-
tion two commonly used methods for training a
neural network, which were not considered in
Schäfer (2018) but included in the system at hand.
First, the label ratio in the given dataset is imbal-
anced: about 1:2 in the binary classification task,
or 1 offensive comment per 2 non-offensive. When
trying to optimize all labels equally (which is con-
sidered by the macro-average F1-score evaluation
metric of the shared task), it is beneficial to use
class weights during the training process. By doing
so, we can, for example, boost the importance of
the more infrequent label OFFENSE in the binary
classification task. We give our exact class weights
used for the submitted system runs for the differ-
ent tasks computed on the entire training dataset in
Section 2.3.

Second, as we train the model by iterating over
the training data multiple times, a stopping point
has to be determined, early enough to avoid over-
fitting to the given training data. To automatically

1Text length, number of proper names, hashtags, etc.

determine a suitable number of training epochs, we
use early stopping as follows. About 5% of the
training data is retained as a validation set. Then,
after each epoch over the training data, the perfor-
mance of the resulting model is evaluated on this
validation set. If the performance did not improve
in the last few epochs, the weights of the model
that resulted in the best score on the validation set
are loaded, and this model is then finally returned.
Since we optimize on fewer training data instances
during cross-validation - in comparison to the en-
tire training dataset for the final prediction of the
shared task test dataset - it is crucial to automate
this process by adjusting the number of training
epochs depending on a validation set performance.
In our experiments, early stopping was usually exe-
cuted after 7 to 15 epochs on the training dataset.

2.2 Model Features

In this section we discuss the integration of fea-
tures from our new POW lexicon (Section 4) into
the neural network. We expected the lexicon to
provide additional guiding features for offensive
language detection, and we experimented with dif-
ferent ways of considering those features as input
for the neural network. Computing additional fea-
tures on the tweet as well as on the word level
proved to be beneficial. Furthermore, in our overall
network architecture, features based on the lexicon
led to performance improvements when including
them directly in the text-based sub-network, as well
as in the parallel metadata sub-network. We imple-
mented this as follows:

Tweet-level features: For each tweet, we check
for each word from the lexicon if it is contained in
the tweet (untokenized string). If we find a match,
we add 10 feature values to the tweet: one for the
word’s manually annotated intensity score (0-4) in
the lexicon, and nine more for each fine-grained
category in the lexicon (0 or 1). If multiple words
from the lexicon are matched in a tweet, the val-
ues are summed up. For example, a tweet with
features [6, 0, 1, 2, 0, 0, 0, 0, 0, 0] might con-
tain 2 words from the lexicon, where each of these
has an intensity score of 3, both of them have the
RIDICULE label (forth position in the vector), and
one has the DEHUMANIZATION label (third posi-
tion in the vector). Note that it could also be ben-
eficial to only use the score of the matched word
with the highest values (instead of the sum); a con-
figuration which we did not test. Since the task
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of offensive language detection is formulated as a
classification task where we need to identify text
that “contains” offensive language, one highly of-
fensive word should be enough to lead to a high
prediction score. In our model, we include these
10 features for each tweet as additional metadata
features in the parallel sub-network, which then
considers a total of 37 features.

Word-level features: In a similar way to the
tweet-level features we calculate additional fea-
tures on word-level. We also apply the above-
mentioned procedure on words in a loop on the
tokenized tweet, thus resulting in 10 additional
features for each word in a tweet. We add these
features into the text encoder by stacking them
directly on top of the word embeddings. Subse-
quently, these augmented word embeddings (which
are hybrid features containing the distributional se-
mantics of words as well as direct lexicon-based
features) are fed into the CNN. The special prop-
erty of this method is that any generic pre-trained
word embeddings can be used, while a task-specific
augmentation is included.

Integration into the CNN: Figure 1 displays
the architecture of the overall network. The addi-
tional tweet-level features are included in the input
layer for metadata features on the top right (see
Input Metawith dimension 37 for the in total 27
+ 10 features). The additional word-level features
are given as input in the layer Input POW-meta
next to the text input layer (see on top in the mid-
dle; last dimension 10 for the 10 features for each
word). The 10 dimensions of the additional word-
level features are added to the (here: 200) dimen-
sions of the word embedding layer, resulting in
augmented word embeddings (see the output of the
Concatenate layer, last dimension 210).

2.3 Hyperparametrization & Test Results

In this section we give explanations for our choice
of parameters and the structure of our final neu-
ral network architecture, which was optimized in
a 3-fold cross-validation on the GermEval 2019
training dataset. The given numbers are averages
over the 3 folds of macro-average F1-scores for of-
fensive language detection (i.e., Subtask 1, binary
classification). The performance of the basic CNN
model without any additional metadata features in
the configuration of Schäfer (2018) was 71.98%.
Including the basic 27 metadata features in an ad-
ditional sub-network then resulted in 72.84%. To

measure the effect of using our POW lexicon fea-
tures, we evaluated different configurations:

• CCN (augmented embeddings) + meta (27
basic features): 73.56%,

• CCN (basic embeddings) + meta (27 basic
features + 10 POW): 75.17%,

• CCN (augmented embeddings) + meta (27
basic features + 10 POW): 75.46%.

We can see that both additions seem to be bene-
ficial when activating individual feature categories,
while the best results are achieved when we in-
clude the lexicon features both on word level as
well as on tweet level. A clear improvement can
be observed when adding the features on the tweet
level, perhaps because the separate sub-network
has the capability of learning to identify different
types of offensive language than the text encoder
sub-network, which could possibly be captured by
the lexicon.

We mostly followed the text preprocessing steps
described in Schäfer (2018), but we had to make
changes to the normalization technique as we ran
into a considerable amount of out-of-vocabulary
words with the GermEval 2019 dataset. It is impor-
tant when using word embeddings to have a low
number of unknown words, as all such words get
assigned a dummy embedding and are basically
ignored. We defined our vocabulary as words from
the training dataset with a frequency of occurrence
greater than 1. This method can be problematic
when applied to social media data, due to the high
amount of spelling errors, variants or neologisms.
Thus, an extensive normalization technique is re-
quired.

We attempted to use compound splitting, rule-
based/statistical lemmatization, and using the fur-
ther training data to enrich the vocabulary. How-
ever, the best performance was achieved by using
a fallback based on Levenshtein-similarity for un-
known words. When a word is not in the vocab-
ulary, we select the word with the most similar
string (i.e., lowest Levenshtein distance) instead.
This approach is questionable, and in a real-world
application we would not suggest it, since it ba-
sically guesses unknown words. Nevertheless, it
seemed to work here, as it leads to a 1% perfor-
mance improvement in the given dataset. A proper
solution would be to use more training data, which
did not work in our evaluation, probably because
the training and test sets are too similar. For a
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Figure 1: Neural network model structure for binary classification. The blocks correspond to layers,
and those marked with * consist of sub-networks (for the exact structures refer to Schäfer and Burten-
shaw (2019) for the CNN and to Schäfer (2018) for the Meta Encoder). Each block contains the
name and type of the layer with the dimensions of its input and output. The first value of the dimensions
corresponds to the batch size and is given as None in the figure (64 in our experiments).

real-world application it might also be advisable to
evaluate on multiple datasets from different sources
when developing a system.

For hyperparametrization in general, we found
that setting the number of filters of each convolu-
tional layer to 8 leads to the best results. In our
final model, we mainly optimized the values for
the class weights specifically for each classifica-
tion task. First, we automatically calculated class
weights based on the distribution of the different
labels in the training dataset and then optimized
these using a smoothing factor.

Class weights: To predict binary labels for
offensive language in Subtask 1, we used full
weights with the values for OTHER: 1.24, and
OFFENSE: 2.05. With 3-fold cross-validation on
the training dataset, this leads to a macro-average
F1-score of 76.37%. For Subtask 2 (fine grained
classification) we found a smoothing factor of 5 ap-
plied to the class weights to be optimal. This leads
to the weights for OTHER: 1.10, ABUSE: 2.37,
INSULT: 2.08, and PROFANITY: 6.06. This
means that we try to boost the scores for the in-
frequent classes, but not as much as their inverse
frequency would suggest, since having too many
different classes might be detrimental to the over-
all performance. We achieve a macro-average F1-
score of 58.06% using 3-fold cross-validation. For
Subtask 3, we found it most optimal to use a

smoothing factor 0.5, increasing the values sug-
gested by the inverse frequency of the labels in
the dataset, which might be justified by the highly
skewed distribution of the two labels. The re-
sulting class weights are EXPLICIT: 1.30, and
IMPLICIT: 14.12. With 3-fold cross-validation,
this leads to a macro-average F1-score of 64.79%.

Final neural network: Our final neural network
(variant for Subtask 1) is shown in Figure 1. The
network takes three inputs: Input Text is the
tokenized/normalized tweet, Input POW-meta
are the additional word-level features from our
POW lexicon, and Input Meta are the tweet-
level metadata features (37 in total: 27 basic + 10
from the lexicon).

To explain the sequence input of the tokenized
data into the network, it should be noted that these
sequences are all set to a fixed length (49 here, see
the 2nd dimension size of the first 2 input layers
in the figure). We calculated a suited maximum se-
quence length of the normalized input tweets to be
49 based on the given training dataset. This value
is set so that a maximum of 5% of the tweets has
to be cut off, i.e., 95% of the tweets have less than
than or equal to 49 words after our normalization
(such shorter sequences are (pre-)padded). The in-
put sequence (tokenized and normalized tweet) is
then transformed into numerical values using the
augmented word embeddings (as described above)
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and further encoded using a CNN with 6 parallel
branches. The (flat) output of the text encoder (see
output of the layer CNN; 384 dimensions) is then
concatenated with the output of the metadata sub-
network (see output of the Meta Encoder; 128
dimensions) resulting in 512 encoded feature val-
ues, on which the final layer produces a value that
we can interpret as a binary prediction. We under-
stand the decision-making process of this neural
network to be based on two main criteria:

• n-grams of words that hint at the use of offen-
sive language, which the CNN is constructed
to identify,

• predefined metadata features based on rules
and lexicons (metadata sub-network).

3 HAU3: Random Forest

This model was only trained on this year’s training
data, where each message was mapped to a vec-
tor of (lowercase) character trigrams features, e.g.,
scheiß = {sch, che, hei, eiß}, and word unigram
features. All features are binary (i.e., weight 1 if
present in message, weight 0 if not). We used the
Random Forest algorithm with the following hy-
perparameters: a 100 trees, each with a random
subset of no more than 750 features, and a mini-
mum leaf node size of 3. The algorithm was writ-
ten from scratch; an additional incentive was to
test its performance in a real-world task and check
whether it is eligible for inclusion in our new open
source NLP & ML toolkit for the Python program-
ming language, Grasp.py.2 This is a smaller, faster
and easier-to-use version of our Pattern toolkit (De
Smedt and Daelemans, 2012).

In general, the performance of the model is un-
remarkable: an average F1-score of 69.75% for
Subtask 1, with a poor recall for OFFENSE tweets
(43.71%) and a good recall for OTHER tweets
(90.34%). To freshen up, recall and precision can
be understood intuitively as follows: suppose we
create a dashboard of today’s offensive messages
on Twitter. The dashboard shows a 100 messages,
which are all offensive, so precision (cf. quality)
is 100%. If the list also shows irrelevant messages
(false positives) then precision will be lower. Now
suppose that in reality there were a 1,000 offensive
messages today. This means that the dashboard
missed out on 900 (false negatives) and has a low
recall (cf. quantity) of only 10%.

2https://github.com/textgain/grasp

In this light, in our approach a lot of offensive
messages slip through undetected, but few non-
offensive messages are misclassified. Arguably,
this could still make the classifier useful in real-life,
since, from a user experience standpoint, under-
blocking (more offensive content slips through) is
better than over-blocking (more users are falsely
accused of being offensive). A human moderator
equipped with a dashboard built on top of our clas-
sifier would see about half of the daily offensive
content, in a list where he or she would have to
ignore about 1/3 of irrelevant results (68.06% pre-
cision).

4 HAU2: POW lexicon

This system is based on a lexicon of 2,850 Ger-
man words that express profanity and offense, with
manually-annotated intensity scores. The Profan-
ity & Offensive Word list (POW) originates from
our work in last year’s GermEval (see De Smedt
and Jaki, 2018), where we used 50 handpicked,
high-precision “seed” words to automatically ex-
tract 1,250 similar words from the German Twit-
ter Embeddings (Ruppenhofer, 2018). During the
past year, the list was further expanded and anno-
tated for intensity (0-4, e.g., radikal ‘radical’ = 1,
schwein ‘pig’ = 3, abschaum ‘scum’ = 4) by four
annotators at the University of Hildesheim. Each
entry in the list also has an English translation,
extracted from Google Translate and manually
reviewed, and up to 9 fine-grained tags such as
PROFANITY, DEHUMANIZATION, RIDICULE,
SEXISM, RACISM and/or EXTREMISM, added by
the annotators. The set of tags is an open and
growing collection. The current tags were chosen
intuitively based on prior studies in online German
right-wing extremism (Jaki and De Smedt, submit-
ted), misogyny (Jaki et al., 2019), and jihadism
(De Smedt et al., 2018). The advantage of such a
richly-annotated resource is that offensive words
can easily be highlighted (e.g., in a dashboard),
making it a useful and explainable support tool for
real-world applications where human moderators
have the final say.

The classification algorithm is a rule-based script
that takes a given message as input, scans which of
its words are also in the lexicon, and then returns
whether or not it is OFFENSE as output, based on
a weighting scheme tweaked by trial-and-error for
each variable (i.e., intensity scores + tags). As it
turns out, this heuristic approach achieves is not
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outperformed a lot by the Random Forest classi-
fier: an average F1-score of 68.13% for coarse-
grained Subtask 1. Its main weakness is a low re-
call for OFFENSE (37.11%), which in theory could
be overcome by expanding the lexicon with more
entries, which is a cost-effective solution when stu-
dent assistants are available. This is a task that we
have planned for future work. For example, our
Dutch counterpart lexicon currently has 10,000 en-
tries. Again, moderators of such tools will miss out
on half of the offensive content, but it is often more
desirable to review 1,000 messages of which 2/3
are really offensive than to wade through 10,000
without any prior warning system.

Interestingly, this approach has a better precision
(cf. quality) in the fine-grained task for predicting
INSULT (48.28%) than our best CNN (35.56%),
presumably because it can depend on handcrafted
insights from the PROFANITY + RIDICULE tags.
This begs the question what other tags can be useful
for future work, with THREAT and ILLEGAL on
top of our list.

In related research on political debate (Jaki et
al. 2019), we have also used the lexicon to detect
offensive content on the Facebook pages of the ma-
jor political parties in the German federal elections
2017 and their leading candidates. Employing the
POW list, we showed that the female candidate’s
pages displayed a higher proportion of offensive
content, for example.

5 Discussion

In this section, we sum up the HAU results for the
different subtasks and discuss their implications.

In GermEval 2018, we have focused primar-
ily on the coarse-grained classification task, with
first attempts in the fine-grained classification task
(Schäfer, 2018). This year, Subtask 1 (binary clas-
sification) was tackled by employing the three mod-
els described in Sections 2 to 4, and Subtask 2
(fine-grained classification) with the first and last
models (CNN and lexicon). We assumed that the
most difficult task to solve computationally might
be Subtask 3 (implicit vs. explicit offense) as un-
derstanding implicit offense often involves inferral
processes that involve a high amount of contextual
knowledge. As a consequence, implicit offense is
often hard to pin down on the text level.

As the best results were yielded for Subtask 1
in GermEval 2018 (Wiegand et al., 2018), it is lit-
tle surprising that the models achieved our best

results for the binary classification task in 2019: a
macro-average F1 score of 70.46% for the CNN,
69.75% for the Random Forest, and 68.13% for
the POW lexicon. Surprisingly however, the over-
all performance in Subtask 3 was higher than in
Subtask 2, which means that the identification of
different types of offense turned out more difficult
to solve (macro-average F1 score of 45.34% for
the CNN and 40.8% for the POW lexicon) than the
identification of implicit offense (macro-average
F1 score of 69.3% for the CNN).

The general conclusions we can draw from our
submission are the following: Firstly, it is very
difficult to outperform CNNs in the detection of
offensive language, especially if they have been
extensively enriched by a multitude of additional
features. Secondly, although even a very substan-
tial lexicon will not outperform more up-to-date
approaches, it can still achieve surprisingly good
results, in so far as word lists do not necessarily
entirely fall behind in comparison to CNNs and
Random Forests. This is particularly important
to know because there are many real-life scenar-
ios where lexicon-based approaches could be em-
ployed as a simple, but useful aid in the detection of
offensive speech, with the advantage of bringing a
maximum of transparency to the identification pro-
cess. Thirdly, the integration of lexicons like POW
into CNNs can help to trigger better overall results.
This shows that we should not exclusively rely on
statistical approaches for solving the problem in
future work, but recognize the value of thorough
qualitative preparation work (such as the result of
the annotation process).
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Abstract 

In this paper, we describe our participation to 

GermEval-2019 Task 2, which requires 

identifying and classifying offensive content 

in German tweets. For all three challenging 

subtasks, i.e. i) Subtask 1 – a binary 

classification between Offensive and Non-

Offensive tweets, ii) Subtask 2 – a fine-

grained classification into three different 

categories: Profanity, Insult, Abuse and iii) 

Subtask 3 – detecting whether the tweets 

contain Explicit or Implicit Offensive 

language, we used the Bidirectional Encoder 

Representations from Transformers (BERT) 

model with a pre-training phase based on 

German Wikipedia and German Twitter 

corpora and then performed fine-tuning on 

the competition dataset. Thus, our approach 

focuses on how to pre-train, fine-tune and 

deploy a BERT model to classify German 

tweets. Our best submission achieves on test 

data 76.95% average F1-score on Subtask 1, 

53.59% on Subtask 2 and 70.84% on Subtask 

3. 

1 Introduction 

Online social networks today are more popular 

than ever. However, the freedom of 

communication leads sometimes to abusive and 

undesired behavior. For example, hate speech, 

racism, abusive language, doxing or offensive 

speech has become a real problem for all major 

online social networks. Due to its short messages 

and very interactive nature, this behavior is 

mostly present in Twitter. The huge amount of 

user-generated content renders a manual review 

impossible. Bound by the law
1
 to remove hate 

speech from their websites, online media 

                                                           
1
https://www.bmjv.de/SharedDocs/Gesetzgebungsverfahren

/Dokumente/NetzDG_engl.pdf 

companies have invested a lot of effort and 

resources to detect and classify hate speech and 

abusive language automatically.  

The task of abusive and offensive language 

identification has been recently addressed in 

several papers and competitions (Kumar et al., 

2018) (Zampieri et al., 2019b), with a large focus 

on English language. The GermEval campaign 

(Wiegand et al., 2018) tries to overcome this 

shortage and proposed at the 2019 edition a 

second shared task on the identification of 

offensive language in German tweets. 

Waseem et al. (2017) identified the 

dimensionality for the typology of abusive 

language - the uttering can target a particular 

person, or it can be directed at a generalized 

group, for instance, an ethnic minority, 

immigrants, sexual minority. In the GermEval-

2019 Task 2 training set, we can find a higher 

number of directed abusive statements like “Das 

Weib hat wirklich einen Vogel”, and some 

generalized abuse (e.g., “Der Islam hat den 

Bundesgerichtshof gekauft”). This skewed 

distribution is consistent with the distribution in 

the dataset created by (Zampieri et al., 2019a) for 

English tweets. The other dimension proposed by 

Waseem et al. is the extent to which the hate 

speech is explicit or implicit and it is directly 

addressed by our Subtask 3. 

In our research, we deployed a deep learning 

system based on Bidirectional Encoder 

Representations from Transformers (BERT) 

(Devlin et al., 2018), a general language model 

that is by default pre-trained on two corpora, i.e., 

English Wikipedia and BooksCorpus (Zhu et al., 

2015), using a “masked language model” and 

“next sentence prediction”. In contrast to 

classical word embedding models like GloVe 

(Pennington et al., 2014) or Word2Vec (Mikolov 

et al., 2013), BERT uses a limited vocabulary 

Proceedings of the 15th Conference on Natural Language Processing (KONVENS 2019)
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(around 30,000 words, compared to 400,000 

words used by GloVe), since it relies not only on 

word embeddings but also on segment and 

positional embeddings. Our paper assesses the 

performance of a slightly modified BERT model, 

pre-trained from scratch on the German 

Wikipedia followed by German Twitter data. 

The remainder of this work is organized as 

follows. The next section briefly shows an 

overview of the current methods employed for 

detecting offensive language. Section 3 describes 

the GermEval-2019 Task 2 dataset and our runs 

for this task. Section 4 illustrates the 

performances of each run. Section 5 outlines the 

conclusions that can be drawn from our work and 

possible future improvements. 

2 Related Work 

In recent years, the issues of toxic comments and 

abusive language have come to the forefront of 

text classification research. Generally, most 

classification studies have focused on three main 

topics: 

 Identifying offensive texts (binary 

classification); 

 Distinguishing between explicit and 

implicit offensive language; 

 A fine-grained classification of offensive 

texts. 

One major problem for researchers is the 

difficulty to clearly define hate speech, and also 

the lack of large labeled datasets, and thus the 

lack of consensus among the annotators 

(Waseem, 2016). Moreover, in most large 

corpora, the percent of offensive speech is very 

low and labeling enough positive samples takes a 

lot of tedious work. Gilbert et al. (2018) narrows 

the search down by choosing a white supremacist 

forum to extract the samples and then to 

manually annotate them. Their work not only 

provides an insightful annotation procedure but 

also shows that, for an accurate labeling, a 

sentence needs extra context, for example, the 

whole conversation or the forum thread title.  

For German language, Ross et al. (2017) 

showed that reliability in the annotation work is 

relatively low and more guidelines and clear 

definitions can bring improvements. Notably, 

Köffer et al. (2018) has shown that methods 

developed for hate speech detection in English 

language can be successfully applied to similar 

tasks in German language. However, due to 

German language characteristics, the process can 

be more complex, and results might achieve 

lower scores than their English counterparts. 

Burnap and Williams (2015) used a feature-

based classification employing various machine 

learning algorithms - Bayesian     Logistic 

Regression, Random Forest Decision Trees, 

Support Vector Machines and an ensemble of all 

three models. They used different feature sets, 

such as n-grams, hateful terms and typed 

dependencies. 

Recently, deep learning models have been 

widely applied to handle natural language 

processing tasks. For example, Gao and Huang 

(2017) proposed the utilization of context 

information by employing BiLSTM 

(Bidirectional Long-Short Term Memory 

Networks) with attention layer (Bahdanau et al., 

2014) for hate speech detection. Founta et al. 

(2018) developed a deep neural network 

architecture that also takes various tweet 

metadata into account (e.g., number of followers, 

number of retweets, etc.) besides the content of 

the tweets. Schäfer (2018) is building upon this 

architecture and proposed a classification model 

aimed at German texts. 

Wu et al. (2019) used the BERT model to 

detect and classify offensive language in English 

tweets. They used the base, uncased version with 

768-dimensional embeddings and obtained good 

results in the binary classification task.  

3 Methodology 

3.1 Data analysis 

For both Subtasks 1 and 2 (i.e., binary and fine-

grained classification respectively), the training 

dataset supplied for the GermEval-2019 

competition Task 2 consists of 3,995 annotated 

German tweets. Additionally, for Subtask 3 (i.e., 

explicit or implicit offensive language 

classification) the training dataset contains 1,958 

annotated German tweets. 

Annotations for the Subtask 1 classification 

were OFFENSE for the positive class and 

OTHER for the negative class. For Subtask 2, the 

positive class was split into three categories, i.e., 

PROFANITY, INSULT, ABUSE. Subtask 3 

annotations were EXPLICIT and IMPLICIT, 

since all tweets in this case were marked as 

OFFENSE. 

3.2 Additional training set 

To increase the training data size, we also used 

the annotated data from the previous GermEval-

2018 edition (Wiegand et al., 2018), including 
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8,541 German tweets. This additional dataset 

was only suitable for Subtasks 1 and 2, since in 

this dataset there were no implicit/explicit labels. 

Table 1 shows the final distribution of classes in 

our training set for Subtasks 1 and 2 and Table 2 

presents the distribution for Subtask 3. 

 

Class Tweets % 

Other 8,359 66.70% 

Profanity 271 2.10% 

Insult 1,601 12.80% 

Abuse 2,305 18.40% 

Offensive 4,177 33.30% 

Total 12,536 100.00% 

Table 1: The final distribution of the tweets in 

the training dataset for both Subtasks 1 and 2 

 

Class Tweets % 

Explicit 1,699 86.80% 

Implicit 259 13.20% 

Total 1,958 100.00% 

Table 2: The distribution of the tweets in the 

training dataset for Subtask 3 

3.3 Data preprocessing 

All tweets were pre-processed before the 

classification step. Some basic replacements 

were performed: 

 Emojis encoded in strings like 

<U+0001F44D> were converted to their 

unicode representation; 

 Emoji characters were spelled out into 

words like <thumbs_up> or 

<rolling_on_the_floor_laughing>; 

 Usernames, weblinks and newline 

markers were converted to the standard 

tokens <user>, <url> and <nl>; 

 Numbers, dates and timestamps were 

converted to standard tokens <number> 

and <time> using the Ekphrasis text 

processing tool (Baziotis et al., 2017). 

Further, we tried to split each hashtag into 

atomic words, for instance, hashtags like 

#EheFürAlle into “Ehe für Alle”. Since not all 

hashtags are camel-cased, we tried to split all 

non-camel-cased hashtags by using unigrams and 

bigrams (Baroni et al., 2009). 

We checked for spelling errors and 

unresolved hashtags using the German GloVe 

vocabulary
2
 as reference. Abbreviations, 

                                                           
2
 https://deepset.ai/german-word-embeddings 

misspellings and spaced out words were 

manually replaced, for instance, “E N D L I C H” 

to Endlich, #noAfD to “no AfD”, “innenminist” 

to “Innenminister”, “soooooooo” to “so”, and 

“schonlängerhierlebende” to “schon länger hier 

lebende”. 

Due to the fact that German words can change 

their meaning for different capitalization, we 

tried to preserve or correct the upper/lower case 

of words.  

3.4 Model description 

We used the BERT-Base, cased, model pre-

trained from scratch using German Wikipedia, 

OpenLegalData corpus and news articles by 

deepset.ai
3
.  

Model   BERT (Devlin et al., 2018) is a 

bidirectional model and consists of 12 

transformer blocks, 12 attention heads and 110M 

parameters. There are two pre-training phases for 

BERT: “masked language modeling” and “next 

sentence prediction”. For masked language 

modeling, the model predicts the probabilities for 

a percentage of random “masked” words from a 

sentence. The next sentence prediction phase 

trains the language model to predict if one 

sentence might follow another sentence. 

Pre-training Since tweets have a specificity 

not captured by Wikipedia or news articles, we 

pre-trained the BERT model on the 6.2M tweets, 

consisting of three corpora of German tweets as 

follows:  

 A corpus of 1,212,220 tweets collected 

by Kratzke (2017) in the context of 

German Federal Elections of 2017; 

 A corpus of 5,964,889 tweets collected 

by Kratzke (2019) in the months of April 

and May 2019 around the European 

Elections 2019; 

 A collection of 70,745 tweets of well-

known trolling or aggressive Twitter 

accounts, namely SiffTwitter
4
, that were 

collected by us using Tweepy
5
. 

For the purposes of this step, we pre-

processed the above-mentioned Twitter corpora 

similar to the training data and experimented 

with the pre-training hyperparameters. The 

optimal results were achieved for 150,000 

training steps with 10,000 warmup steps and a 

learning rate of 0.0001. 

                                                           
3
 https://deepset.ai/german-bert 

4
https://medium.com/@trolltwitter/sifftwitter-infos-über-

die-schlimmste-hasscommunity-im-netz-dc1f943c0227 
5
https://www.tweepy.org/ 
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Unlike models based on GloVe or Word2Vec, 

BERT uses by default a WordPiece tokenization 

(Schuster and Nakajima, 2012), that helps to 

reduce the vocabulary file to ~31,000 words. 

Additionally, we extended the BERT vocabulary 

file with 181 frequent out-of-vocabulary words 

(e.g., “Rechtspopulismus”, “Migrationspakt”, 

“Ibizagate”, etc.) from our training data and pre-

training corpora. Using WordPiece, the model 

handles out-of-vocabulary words by breaking 

them in subwords. For example, words like 

“Versprechungen” that are not in the vocabulary 

are tokenized into “Versp”, “##rech”, 

“##ungen”, or “einlösen” into “ein”, “##lösen”. 

Classification   For the classification step, we 

modified the original BERT model. For Subtasks 

1 and 3, we removed the last nine layers from the 

model. Then, we added a LSTM layer and its 

output is fed into a fully connected layer with a 

two-dimensional output vector. In contrast, for 

Task 2, we removed the last six layers from the 

model and added a fully connected layer with a 

three-dimensional output vector, since we 

predicted only the labels for the entries that were 

detected as offensive in Task 1.  

Fine-tuning   The model-training stage was 

performed with all 12,536 tweets for Subtasks 1 

and 2 respectively and with 1,958 tweets for 

Subtask 3. 

Submissions We submitted three runs for 

evaluation on the test data. The first one was 

based on above mentioned steps. The second run  

 

Model Accuracy Precision Recall F1 

BiLSTM  76.94% 73.49 73.06 73.27 

TUWienKBS 75.32% 72.43 74.49 73.44 

BERT Run 1 79.38% 76.35 77.55 76.95 

BERT Run 2 79.64% 76.6 77.12 76.86 

BERT Run 3 79.38% 76.35 77.55 76.95 

BERT no pre-train 78.62% 75.51 76.64 76.07 

 

Table 3: Performance comparison of various models on test data for Subtask 1. 

Precision, Recall and F1-measure are average values over the two classes (OTHER, 

OFFENSE). The best result is shown in boldface.  

 

Model Accuracy Precision Recall F1 

BiLSTM  67.44% 50.53 39.97 44.64 

TUWienKBS 70.47% 53.21 49.42 51.24 

BERT Run 1 73.61% 58.53 49.42 53.59 

BERT Run 2 71.66% 54.4 50.7 52.48 

BERT Run 3 73.57% 55.63 49.02 52.11 

BERT no pre-train 70.01% 53.04 47.3 50.01 

 

Table 4: Performance comparison of various models on test data for Subtask 2. 

Precision, Recall and F1 are average values over the four classes (PROFANITY, 

INSULT, ABUSE and OTHER). The best result is shown in boldface. 

 

Model Accuracy Precision Recall F1 

BiLSTM  85.59% 42.80 50.00 46.12 

BERT Run 1 87.85% 77.44 65.28 70.84 

BERT Run 2 86.88% 73.88 63.48 68.29 

BERT Run 3 87.20% 74.39 66.77 70.37 

BERT no pre-train 86.13% 71.35 66.76 68.98 

 

Table 5: Performance comparison of various models on test data for Subtask 3. 

Precision, Recall and F1 are average values over the two classes (EXPLICIT and 

IMPLICIT OFFENSE). The best result is shown in boldface.
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had an additional pre-processing step compared 

to Run 1, i.e. the words that were not in the 

GloVe vocabulary were split if possible by using 

unigrams and bigrams (Baroni et al., 2009), in 

order to tackle the problem of German 

compound words. Run 3 was similar to that of 

Run 1, only instead of 2 epochs, we trained the 

model for 4 epochs.    

For baseline comparison, we used the best 

performing model at GermEval-2018, namely 

TUWienKBS, proposed by Montani and Schüller 

(2018) and also a BiLSTM-based model with 

German GloVe embeddings
6
 of 300 dimensions 

and a vocabulary of 20,000 words. 

4 Experiments 

The results for Subtask 1 of the three runs and 

the baseline models are given in Table 3.  As can 

be seen, the additional preprocessing step did not 

increase the score for Run 2, since it increased 

the precision but lowered the recall.  

Table 4 shows the results for the fine-grained 

classification. Thus, the additional training 

epochs did not improve the results, on the 

contrary, it seemed to overfit the model.  

Finally, as seen in Table 5, the model 

performed well on the explicit/implicit task and 

we can see that the additional preprocessing step 

decreased the score for Run 2. 

For Subtask 1, we can see in Figure 1 the 

learning curve of the average F1-score for one 

training epoch. After 90% of the training set, the 

score improvement is less significant and even 

with 50% of the training data, we can reach good 

scores. 

  
Fig1: Run 1 learning curve of average F1-score 

 

Confusion matrices for the run with the best 

score, namely BERT Run 1, can be viewed in 

Tables 6-8 for each subtask. As we can see in 

Table 6, the model has the tendency to 

                                                           
6
 https://deepset.ai/german-word-embeddings 

underpredict offensive content. Tweets as 

“@morgenpost Das ist eine Sie? h…” or “Jetzt 

daheim. Vielen Dank an den Hurentisch 30, der 

noch eineinhalb Stunden nach Ladenschluss 

fröhlich Caipirinas bestellt hat.” prove difficult 

to predict as OFFENSE.  

The model has also difficulty in telling 

INSULT and ABUSE apart (see Table 7). 

Tweets like “@SPIEGELONLINE Merkel eine 

Schande für Deutschland überall machen wir 

Deutsche uns zum Narren” or “Deutschland, die 

anderen 149 Länder wollen ihre Kriminelle 

Unterschicht loswerden. @WELT_Politik” were 

classified as ABUSE rather than INSULT.  

Finally, due to the imbalance in the classes for 

Subtask 3, the model has the tendency to over 

predict explicit offenses. Tweets like “Infotweet: 

Es gibt nur 2 Geschlechter #GenderDay” or 

“Immer wenn ich Deutsche Kinder sehe krieg ich 

wieder Hoffnung für mein Land” were wrongly 

classified as EXPLICIT. 

 

 

 Predicted Label 

 OTHER OFFENSE 

OTHER 1825 236 

OFFENSE 330 640 

 

Table 6: The confusion matrix of BERT Run 1 

model for Subtask 1 

 

  Predicted Label 

  OTH PROF INS ABU 

 

OTH 1825 6 89 141 

PROF 37 19 25 30 

INS 171 7 147 134 

ABU 122 2 36 240 

 

Table 7: The confusion matrix of BERT Run 1 

model for Subtask 2. 

 

 

 Predicted Label 

 IMPLICIT EXPLICIT 

IMPLICIT 45 89 

EXPLICIT 24 772 

 

Table 8: The confusion matrix of BERT Run 1 

model for Subtask 3. 

T
ru

e 
L

ab
el

 

T
ru

e 
L

ab
el

 

T
ru

e 
L

ab
el

 

402



 

 

5 Discussion and Conclusions 

In this study, we used the BERT-Base version in 

order to classify German tweets into different 

categories related to offensive language. Our 

results show that BERT is a powerful model, 

capable of detecting offensive language 

accurately. BERT outperforms a BiLSTM model 

with GloVe word embeddings for all three 

subtasks, and the TUWienKBS model in both 

Subtasks 1 and 2. However, a more subtle 

classification into nuances of offensive language 

can lead to lower scores.  This can also be a 

result of the highly unbalanced three 

subcategories, or due to an unclear delimitation 

between them. 

As for the detection of implicit versus explicit 

offensive language, it achieves a higher score if 

one takes into account the fact that the error from 

Subtask 1 will propagate into Subtask 3. As seen 

in the results, the pre-trained model with political 

targeted tweets leads to a slight increase in 

performance for the binary tasks, but a 

significant increase for the fine-grained 

classification.  

For future work, we noticed that the treatment 

of emoticons could be significantly improved, 

since the spelling out of certain emojis does not 

always improve the detection. Additionally, a 

larger set of tweets for pre-training would 

improve the language understanding of the 

model. Also, we will work to better distinguish 

between Insult and Abuse languages, which 

would allow us to improve the results for 

Subtask 2. 
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Abstract

Pre-training language representations on
large text corpora, for example, with BERT,
has recently shown to achieve impressive
performance at a variety of downstream
NLP tasks. So far, applying BERT to offen-
sive language identification for German-
language texts failed due to the lack of
pre-trained, German-language models. In
this paper, we fine-tune a BERT model that
was pre-trained on 12 GB of German texts
to the task of offensive language identifi-
cation. This model significantly outper-
forms our baselines and achieves a macro
F1 score of 76% on coarse-grained, 51% on
fine-grained, and 73% on implicit/explicit
classification. We analyze the strengths
and weaknesses of the model and derive
promising directions for future work.

1 Offensive Language in Online Media

Social media, micro-blogging, and comparable
participatory platforms can offer freely accessible
discussion spaces and the possibility of commu-
nicative integration of different social and interest
groups. For this reason, they represent an impor-
tant cornerstone of modern democracies. In reality,
however, online discussions are often the scene of
violence, abuse, and incivility (Coe et al., 2014).
Studies have shown that offensive and abusive com-
munication makes participants withdraw from on-
line discussions (Springer et al., 2015). Addition-
ally, offensive language can promote aggressive
cognitions and negative emotions (Rösner et al.,
2016), and reinforce negative prejudices against
social groups (Hsueh et al., 2015). The automated
detection of offensive language and related con-
cepts, such as incivility, hate speech, or toxicity
could help to counter such effects by supporting
moderators in effectively identifying and respond-
ing to offensive content in online discussions.

This paper presents an approach of detecting dif-
ferent forms of offensive language including pro-
fanity, insult, and abuse, and explicit and implicit
offensive language in German-language tweets us-
ing BERT (Bidirectional Encoder Representations
from Transformers). In the GermEval Shared Task
2 (2019), our best systems achieve macro F1 scores
of 76.4% on coarse-grained, 51.2% on fine-grained,
and 73.1% on implicit/explicit classification.

2 Related Work

Offensive language identification and related tasks,
such as the detection of toxicity and hate speech,
have recently gained popularity within the Natural
Language Processing (NLP) community. These
tasks are particularly challenging from an NLP per-
spective, since hate speech, toxicity, or offensive
language are often not explicitly communicated
through the use of unique offensive words. Fur-
ther, many words are used with different mean-
ings in different contexts. Traditional lexical and
bag-of-words (BoW) approaches often struggle in
identifying implicit and context-related forms of
offensive language. Davidson et al. (2017) found
that only five percent of tweets that contain words
of the hate speech lexicon Hatebase.org were
flagged as hate speech by human annotators. In
their study on anti-black racism on Twitter, Kwok
and Wang (2013) show that tweets are classified as
abusive based on words such as “black” or “white”,
which bear no racist undertones of their own.

Deep Learning (DL) methods marked a signifi-
cant step forward in the detection of several forms
of offensive or abusive language. They enable
the use of word vectors, e.g., Word2Vec (Mikolov
et al., 2013), Glove (Pennington et al., 2014), or
ELMo (Peters et al., 2018) instead of bag-of-words
representations. Further, DL models such as Long
Short Term Memory (LSTM) networks or Convolu-
tion Neural Networks (CNN) achieved significantly
better results in several NLP tasks than less com-
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plex classifiers, such as Support Vector Machines,
Logistic Regression or Decision Tree Models. Bad-
jatiya et al. (2017) experimented with multiple DL
architectures and text representations to detect hate
speech on a dataset of 16,000 annotated English-
language tweets. They demonstrated that DL ap-
proaches, in sum, outperform models based on char
and word n-gram representations.

However, such models need extensive amounts
of (manually labeled) training data and are often
bound to the training data structure and the spe-
cific task they are trained for. As a consequence,
it is problematic to apply these models to other
tasks, such as detecting the outcome of the model
in other languages. In our study, we applied BERT
language models (Devlin et al., 2018) to detect
different forms of offensive language in German
tweets. BERT is not developed to solve a specific
problem but constitutes a general language model.
That means, BERT does not learn, e.g., what words
occur in offensive tweets, but learns how words of
a language (e.g. English) are generally organized
and combined (Devlin et al., 2018). BERT uses an
approach called “masked language model” (MLM),
that allows bidirectional learning, meaning learning
context both to the right and to the left of words,
which previous models were not designed to do.
English-language BERT models have been used in
other shared tasks, such as SemEval-2019 Task 6:
“Identifying and Categorizing Offensive Language
in Social Media” (Zampieri et al., 2019). However,
to the best of our knowledge there are no publica-
tions about German-language BERT models.

3 Dataset and Tasks

We trained our models on a dataset of German-
language tweets provided in context of the Germ-
Eval Shared Task 2 (2019) on the identification
of offensive language. The tasks consists of three
classification subtasks: subtask I is a binary classifi-
cation whether a tweet contains offensive language
or not (coarse-grained); subtask II requires distin-
guishing between three subcategories of offensive
language (fine-grained); and the goal of subtask III
is to decide whether offensive tweets are implicit or
explicit offensive. Figure 1 shows example tweets
from the training data for each category.

3.1 Coarse-Grained Binary Classification

Subtask I is to decide whether a tweet includes
some form of offensive language or not. For this

@RoemeltA Du bist jetzt geblockt, denn
rassistische Kackscheisze höre ich mir nicht
an, ich lese sie nicht und noch viel weniger
diskutiere ich darüber. Punkt. OFFENSIVE

@MiKeyyy328 schon ok ich verstehe das
OTHER
(a) Training samples for coarse-grained classification.

@Sternenrot @ schwarzeKatze aber das ist
halt einfach kein topf wtf PROFANITY

@Dr Dicht Selber SCHULD, wenn Sie
hässliche NAPFSÜLZE auch damit aufhören!
INSULT

@Hallaschka HH Antisemitismus gehört zur
DNA von Luthers Kirche. ABUSE

(b) Training samples for fine-grained classification.

@krippmarie Ich kenne noch einige Namen
unter den SPDler die ebenfalls zu Grabe getra-
gen müssten-sollten-werden.... IMPLICIT

@diMGiulia1 Araber haben schon ekelhafte
Fressen....! EXPLICIT
(c) Training samples for implicit/explicit classification.

Figure 1: Example tweets and their class labels.

task, 1,282 tweets labeled as OFFENSIVE and
2,698 tweets labeled as OTHER were used. Fig-
ure 1a shows examples of both categories.1

3.2 Fine-Grained Multi-Class Classification

The goal of subtask II is to detect the subcategories
of offensive language, namely PROFANITY, IN-
SULT, and ABUSE. PROFANITY is simply the us-
age of profane words in non-insulting contexts. IN-
SULT, unlike profanity, requires an intention to
offend an individual or a group. A tweet is labeled
as ABUSE if it not only insults a person but also
includes the stronger form of abusive language. In
the dataset for subtask II, 152 tweets are labeled as
PROFANITY, 624 are labeled as INSULT and 506
as ABUSE. Figure 1b shows examples of all three
categories.

1Disclaimer: The examples may be considered profane,
vulgar, or offensive. They do not reflect the views of the
authors and exclusively serve to explain linguistic patterns.
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3.3 Implicit/Explicit Classification

Subtask III aims at classifying tweets as either im-
plicit or explicit offensive. 257 tweets are labeled
as implicit and 1,664 tweets are labeled as explicit
offensive language. Figure 1c shows examples of
both categories.

4 Fine-Tuning BERT for German Tweets

In this section, we describe our German-language
BERT model and we present our simple, yet effec-
tive, ensembling strategy. Further, we detail our
submitted runs.

4.1 BERT

The core of our approach is a case-sensitive
German-language BERT model. It is pre-trained
on 12 GB of raw text from the German-language
Wikipedia dump, OpenLegalData dump, and news
articles.2 The model is of the same size as the
English-language “BERT-Base” model (12-layers,
768-hidden, 12-heads) and comprises 110 million
parameters. We use the framework FARM3 and
make our implementation available online.4

Tweets are padded/clipped to a maximum length
of 150 tokens each. The average length in the train-
ing dataset is 41 words and less than 0.2 percent
of the tweets are clipped. For fine-tuning BERT,
we use a batch size of 32. Smaller training batches
would most likely not contain samples from all
classes. We use the Adam optimizer with an initial
learning rate of 2e-5 and warmup the learning rate
on 10 percent of the training data — compared to 1
percent of the data in the original BERT paper (De-
vlin et al., 2018). Other parameters, such as a 10
percent embedding dropout rate, are the same as in
the original paper. A weighted cross-entropy loss
takes into account the unbalanced class distribu-
tion in the training data. For example, regarding
the fine-grained classification subtask, the class
weights are 1.96 (ABUSE), 6.57 (PROFANITY),
1.56 (INSULT), and 0.37 (OTHER). The training
runs for one to four epochs, depending on the exact
submission described in Section 4.3.

We optionally apply two preprocessing meth-
ods. First, we replace all user mentions, such as
@Pe ter, with the token Name. This normaliza-
tion helps to reduce the variety of different user

2https://deepset.ai/german-bert
3https://github.com/deepset-ai/FARM
4https://hpi.de/naumann/projects/

repeatability/text-mining.html

names without losing information about the entity
type. Second, for the implicit/explicit classifica-
tion task, both training and test set provide the true
fine-grained class labels for each tweet. We append
these class labels as additional text tokens at the
end of each tweet to incorporate this information
into our model.

BERT uses tokenized parts of words instead of
tokenized words. We give two examples of this
tokenization.

text: @RobertHabeck Ihr verunglücktes
Videostatement hat doch rein gar nichts
mit Twitter zu tun. Sie hätten dies ja auch
in irgendeine Kamera eines TV-Teams
hineinsprechen können.

tokens: [’Name’, ’Ihr’, ’ver’,
’##unglück’, ’##tes’, ’Videos’, ’##tat’,
’##ement’, ’hat’, ’doch’, ’rein’, ’gar’,
’nichts’, ’mit’, ’Twitter’, ’zu’, ’tun’,
’.’, ’Sie’, ’hätten’, ’dies’, ’ja’, ’auch’,
’in’, ’irgend’, ’##eine’, ’Kamera’,
’eines’, ’TV’, ’-’, ’Teams’, ’hinein’,
’##sprechen’, ’können’, ’.’]

Note that the tokenization correctly separates
hineinsprechen into hinein and sprechen, irgen-
deine into irgend and eine, and verunglücktes into
ver, unglück and tes.

text: @Dr Dicht Selber SCHULD, wenn
Sie hässliche NAPFSÜLZE auch damit
aufhören!

tokens: [’Name’, ’Sel’, ’##ber’, ’SC’,
’##H’, ’##U’, ’##L’, ’##D’, ’,’, ’wenn’,
’Sie’, ’hä’, ’##ss’, ’##liche’, ’NA’,
’##P’, ’##FS’, ’##Ü’, ’##L’, ’##Z’,
’##E’, ’auch’, ’damit’, ’auf’, ’##hören’,
’[UNK]’]

Note that the exclamation mark at the end of the
tweet is treated as an unknown symbol because the
pre-trained language model discards all punctua-
tion marks as a preprocessing step. As a conse-
quence, our classifier does not distinguish question
marks and exclamation marks and treats both as un-
known symbols. Further, the tokenization does not
correctly deal with words written with all capitals,
such as SCHULD. In general, we find that upper-
case letters followed by another uppercase letter
are interpreted as a single token. Exceptions are
abbreviations that the tokenizer learned and that are
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written with all capitals, such as SC for Sportclub.
We assume that this abbreviation is learned because
it frequently occurs in the pre-training data for the
German BERT model, such as news articles.

4.2 Ensembling Strategy
Fine-tuning BERT is about tailoring the language
model to a particular downstream task, such as
sequence classification or question answering. An
additional output layer, called prediction head, is
appended to the model and trained on labeled data.
The predictions of our BERT model vary when
using different random weight initializations for the
prediction head. Therefore, we create an ensemble
of the predictions of multiple models. To this end,
we use soft majority voting:

ŷ = argmax
j

n

∑
i=1

pi, j

where pi, j is the probability for class label j pre-
dicted by the i-th classifier (out of n classifiers).
We ensemble five runs for the binary classification
tasks (coarse-grained and implicit/explicit) and ten
runs for the multi-class classification task (fine-
grained).

4.3 Submitted Runs
For each of the three tasks, we submitted three runs
as described here. For the coarse-grained classifi-
cation:

• hpiDEDIS coarse 1 one training epoch

• hpiDEDIS coarse 2 two training epochs

• hpiDEDIS coarse 3 four training epochs

For the fine-grained classification:

• hpiDEDIS fine 1 one training epoch

• hpiDEDIS fine 2 two training epochs

• hpiDEDIS fine 3 four training epochs

For the implicit/explicit classification:

• hpiDEDIS implicit 1
two training epochs, normalized user names

• hpiDEDIS implicit 2
four training epochs

• hpiDEDIS implicit 3
four training epochs, normalized user names

Table 1: Macro-average F1 scores on test data.

Ensemble Single Model
Run Coarse Fine Imp. Coarse Fine Imp.

1 75.3 42.0 70.8 74.4 41.0 70.5
2 76.4 47.1 73.1 75.5 45.7 72.1
3 76.1 51.2 73.1 75.4 49.1 72.4

Base - - - 50.0 34.3 62.0

5 Results

We present the results for the identification of of-
fensive language using BERT German-language
models. We further describe our baseline approach
to compare the results for each of the subtasks.
Table 1 lists the macro-average F1 scores of the
BERT models and the baseline approach on the
test dataset for each of the three tasks. It further
compares the results of the ensemble models to
the single models. It can be seen that the ensem-
ble models always outperform the corresponding
single models. For example, for the fine-grained
classification task, the best single model achieves
a score of 49.1 compared to a score of 51.2 with
the best ensemble model (4 percent improvement).
All BERT based models clearly outperform the
baseline models by up to 26 percentage points.

5.1 Baseline Approach
As a baseline approach, we applied a Logistic Re-
gression model on a tf-idf weighted bag-of-words
(BoW) feature representation of unigrams, bigrams
and trigrams (Risch et al., 2018). For preprocess-
ing, the tweets have been tokenized applying the
NLTK TweetTokenizer 5, which we also used to re-
move Twitter handles and to normalize word tokens
such as duuuummmm and duuuuuuummmmmm to a
common word token duuumm. We further removed
stopwords, using the Stopwords ISO 6 word list for
German. For subtask III (implicit/explicit offensive
language classification) we added the information
if a tweet was abusive, profane, or insulting as a
feature, which shows whether one of these forms is
more likely to be expressed implicitly or explicitly.

5.2 Coarse-Grained
The coarse-grained classification task is the sim-
plest of the three subtasks and our ensemble BERT

5https://www.nltk.org/api/nltk.
tokenize.html

6https://github.com/stopwords-iso
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Figure 2: Normalized confusion matrix for the
coarse-grained classification subtask.

model achieves a macro-average F1 score of 76.40
percent after two training epochs. Training for one
epoch (75.26 percent) or four epochs (76.06 per-
cent) yields similar performances. Figure 2 shows
the normalized confusion matrix for the task. The
row-based normalization discards the influence of
the imbalanced class distribution so that all classes
are considered to be equally important. It shows
that the model is more reliable when identifying
the OTHER class than the OFFENSE class. 81
percent of the non-offensive and 73 percent of the
offensive tweets have been retrieved by the model.
The baseline model, on the other hand, retrieved
60 percent of the offensive and 46 percent of the
non-offensive tweets.

5.3 Fine-Grained

Figure 3 shows two confusion matrices for the fine-
grained classification task. The upper subfigure
uses the absolute number of samples, while the
lower subfigure uses normalized numbers. The con-
fusion matrix reveals that OTHER is identified most
reliably by far. INSULT and ABUSE are equally
well identified (recall 0.49 and 0.48). However, in
percentage terms, INSULT is more frequently mis-
takenly confused with OTHER than with ABUSE.
PROFANITY is most challenging to identify and is
most frequently confused with OTHER and least
frequently confused with ABUSE. This confusion
matches the similarity of the classes. The base-
line model struggles with the distinction of the four
subcategories of offensive language and receives
only 16 percent recall for PROFANITY, which was
highly underrepresented in the training data. Re-
call for INSULT is 0.28, for ABUSE 0.26 and for
OTHER 0.67.
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Figure 3: Confusion matrices for the fine-grained
classification subtask.

5.4 Implicit/Explicit

Figure 4 shows the normalized confusion matrix
for subtask III on implicit and explicit offensive lan-
guage classification. Implicit offensive language
is way harder to identify than explicit offensive
language. Most of the explicit offensive tweets are
identified by the model (recall 0.92), but only about
half of the implicit offensive tweets. The model
makes most of the mistakes by misclassifying im-
plicit tweets as explicit (recall 0.54). The baseline
BoW-classifier for this task makes similar mistakes
but performs worse on the detection of implicit
offensive language. Its recall for explicit is 0.91
and 0.31 for implicit offensive language. Again,
the implicit offensive language category was highly
underrepresented, which probably made the model
choose the explicit class when in doubt.

6 Conclusions and Future Work

We studied the problem of offensive language iden-
tification in the context of the GermEval task 2019.
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Figure 4: Normalized confusion matrix for the im-
plicit/explicit classification subtask.

Our approach builds on a BERT model pre-trained
on a large German-language corpus. To this end,
we fine-tuned the model on the labeled task-specific
training datasets and refrained from any feature en-
gineering or sophisticated pre-processing. The eval-
uation results on the test data match the results on
our validation data and the achieved macro-average
F1 score beats the baseline by up to 26 percentage
points. We showed that language models, such as
BERT, can be successfully fine-tuned for offensive
language detection for the German language.

One direction for future work on German BERT
models is to find a better way for tokenization of
words written in capitals. While capitalization
certainly needs to be dealt with in German lan-
guage models, our current model fails in recogniz-
ing words written in capitals. Another direction is
the ensembling of multiple BERT models. We find
that the predictions of models with differently ini-
tialized weights but trained on the same data varies.
While ensembling these different models increases
overall classification performance, it is unclear how
this method can be leveraged best and where its
limits are.

References
Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,

and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In Proceedings of the In-
ternational Conference on World Wide Web (WWW),
pages 759–760. International World Wide Web Con-
ferences Steering Committee.

Kevin Coe, Kate Kenski, and Stephen A Rains. 2014.
Online and uncivil? patterns and determinants of in-
civility in newspaper website comments. Journal of
Communication, 64(4):658–679.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language. In
Proceedings of the AAAI Conference on Web and So-
cial Media.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805, pages
1–16.

Mark Hsueh, Kumar Yogeeswaran, and Sanna Mali-
nen. 2015. leave your comment below: Can biased
online comments influence our own prejudicial atti-
tudes and behaviors? Human Communication Re-
search, 41(4):557–576.

Irene Kwok and Yuzhou Wang. 2013. Locate the hate:
Detecting tweets against blacks. In Proceedings of
the AAAI Conference on Artificial Intelligence.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems (NIPS), pages 3111–3119.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the Conference of
the North American Chapter of the Association for
Computational Linguistics (NAACL), pages 2227–
2237. ACL.

Julian Risch, Eva Krebs, Alexander Lser, Alexander
Riese, and Ralf Krestel. 2018. Fine-grained clas-
sification of offensive language. In Proceedings of
GermEval (co-located with KONVENS), pages 38–
44, September.

Leonie Rösner, Stephan Winter, and Nicole C Krämer.
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Abstract

In this paper, we present the HUIU system
(a collaboration of University of Hamburg
and Indiana University) for the GermEval
2019 shared task 2, subtask 1 – the coarse-
grained classification of tweets into the
classes OFFENSE or OTHER. Our system
uses linear SVMs with character n-grams
(5 ≤ n ≤ 10), POS n-grams (3 ≤ n ≤ 9)
and the tweet’s length in number of tokens
as features. We obtain a macro-averaged
F-score of 65.32 on the test data.

1 Introduction

In this paper, we report on the HUIU team’s sub-
mission to the GermEval Task 2, 2019 - Shared
Task on the Identification of Offensive Language.
Three subtasks were offered. Subtask I was a bi-
nary classification task and required discriminat-
ing offensive from non-offensive tweets. Subtask
II consisted of a more fine-grained classification:
Each of the offensive tweets had to be marked with
one of the following labels: PROFANITY, INSULT,
ABUSE. Subtask III required labeling the offensive
tweets as explicitly or implicitly offensive. We par-
ticipated in Subtask I, i.e., the detection of offensive
language in binary classified twitter data.

Our contribution is the result of a class project
conducted at the University of Hamburg. The au-
thors participated in a 6-day compact class that
provided an introduction to machine learning for
linguistics and digital humanities, under the su-
pervision of Kübler and Zinsmeister. Most of the
participants had basic knowledge in programming,
but no experience with machine learning. The class
was structured to provide a practical introduction
to machine learning. Therefore, the Shared Task
offered a good opportunity to familiarize the partic-
ipants with every step in the process of translating

a problem into a machine learning problem, decid-
ing on a machine learning algorithm, specifying
feature sets, extracting features, and training the
machine learning algorithm. In addition to this task,
the group also participated in GermEval 2019 Task
1 on hierarchical classification of blurbs (Andresen
et al., 2019).

Using the python library scikit-learn (Pedregosa
et al., 2011), we tested different models and fea-
tures for the binary classification task of identifying
offensive tweets. A bag-of-words approach which
employs a linear SVM classifier using character
n-grams combined with additional features yielded
the best results.

The rest of the paper is structured as follows: We
will briefly present the best systems of last year’s
GermEval Shared Task as well as this year’s Se-
mEval Shared Task in the section 2. In section 3,
we will describe the experimental setup, i.e., the
data of our Shared Task, how we preprocessed the
tweets, which features we extracted, which clas-
sifier algorithm, implementation, and evaluation
we used for our experiments. The best scores that
we achieved during development are presented to-
gether with the final test scores in section 4. For
our overall ranking in the Shared Task we have to
refer to the summary published at the Workshop in
Erlangen 2019. At the time of submitting this paper
we did not have this information. In section 5, we
will conclude our paper with a short summary and
outlook on additional features and methods that we
have not taken into account.

2 Related Work

The GermEval 2019 task on the Identification of
Offensive Language is the second edition of the
original task from 2018 (Wiegand et al., 2018).
This year’s task is based on a different data set than
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last year’s.1 But parallel to 2018, Subtask I requires
a binary classification system that discriminates be-
tween offensive and non-offensive tweets. In 2018
the team that reached the highest results (Montani
and Schüller, 2018) extracted as features charac-
ter n-grams, stemmed token n-grams, the TF/IDF
scores of both feature classes, and word embedding
vectors as features. The TF/IDF scores of the to-
ken n-grams proved to be their most important fea-
tures, i.e., removing those from the model caused a
large drop of the F1-score. Their classification sys-
tem was an ensemble of supervised learning meth-
ods (Logistic Regression and Random Forests) im-
plemented in scikit-learn (Pedregosa et al., 2011).
Montani and Schüller (2018) reported worse re-
sults using deep learning models (LSTM, CNN,
Convolution+GRU).

The GermEval shared tasks are the German
equivalent of the SemEval-2019 Task 6 (Offens-
Eval) Subtask A (Zampieri et al., 2019), which
uses a data set consisting of English tweets. The
data set is also remarkably larger than the one used
in the GermEval 2018 task: It comprises more than
14,000 tweets (Zampieri et al., 2019), as compared
to the approximately 5,000 tweets in the 2018 Ger-
mEval task. In contrast to the results reported by
Montani and Schüller (2018), the best performing
team at OffensEval Subtask A used a deep learn-
ing model – BERT (Devlin et al., 2018), based on
bidirectional training of the attention model Trans-
former (Liu et al., 2019).

As discussed in the introduction, our goal of par-
ticipating in the Shared Task was to acquire a basic
understanding of machine learning in the setting
of a compact introductory course. Therefore, we
chose a common and easy to adapt SVM algorithm
with a number of features, as described in the fol-
lowing section, and did not take into consideration
prior more elaborated attempts at approaching this
specific machine learning problem.

3 Experimental Setup

3.1 Data Set

We used the training and test data sets provided
by the Shared Task, which consisted of 3,995 man-
ually annotated tweets2. Each tweet was labeled
either as OFFENSE or as OTHER. On the second

1The data set from 2018 was also available though.
2As mentioned above, the data set from 2018 was also

available. We decided against using this additional set since
we did not know if the data were different in distribution.

OFFENSE OTHER sum
train 1,141 2,455 3,596
dev 146 253 399
sum 1,287 2,708 3,995

Table 1: Distribution of OFFENSE and OTHER in
our training and development splits.

annotation level, each of the tweets of the category
OFFENSE was marked with one of the following
more fine-grained labels: ABUSE, PROFANITY, IN-
SULT. Subtask I, in which we participated, did only
take the binary coarse-grained labels into account.
Examples (1) to (3) show example tweets from the
annotated data set provided by the Shared Task.
The annotation guidelines can be found online in
the repository of the Shared Task 20183.

(1) @DrDavidBerger Die wirklichen Rassisten
sitzen in der GroKo und bei den Grünen
(‘@DrDavidBerger The real racists are sitting
in the GroKo and in the Green Party’)
OFFENSE ABUSE

(2) Sein Charakter war ihm wichtiger anstatt als
billige Nute für Korrupte Regierungen zu ar-
beiten .Er hat das Leben begriffen
(‘His character was more important to him in-
stead of working as cheap whore for corrupt
governments .He understands life’)
OFFENSE PROFANITY

(3) @de sputnik Eine Weltherrschaft führt zum
Krieg bis zum bitteren Ende
(‘@de sputnik World domination leads to war
to the bitter end’)
OTHER OTHER

In order to optimize our system, we split the pro-
vided training set into 90% for our actual train(ing)
set and 10% for our dev(elopment) set by taking ev-
ery tenth instance for development. Table 1 shows
the distribution of tweets and coarse-grained labels
in the train and dev set respectively. For the final
submission, we trained the system on the complete
training set.

3.2 Extracted Features
For preprocessing, we tokenized and part-of-
speech (POS) tagged the data. We used the python

3https://github.com/uds-lsv/
GermEval-2018-Data/blob/master/
guidelines-iggsa-shared.pdf
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Figure 1: Boxplots of the distributions of tweet and (average) hashtag lengths per tweet in the 2019
training data (all tweets: n=3,995, tweets w/ hashtags: n=1,024; medians are marked by bold lines and
notches).

implementation4 of twokenizer, a tokenizer espe-
cially designed for twitter data (Owoputi et al.,
2013). For POS tagging, we employed TnT (Brants,
1998), trained on the Tübingen Treebank of Writ-
ten Language (Tüba-D/Z) (Telljohann et al., 2006),
version 10, assigning STTS labels (Schiller et al.,
1999).

As basic features, we extracted token and POS
n-grams for bag-of-words approaches of various
classifiers, see Section 3.3 for the description of the
classifiers.

We found that for our final system the bag-of-
words approach was most effective when using
character n-grams of the tokens (crossing word
boundaries) combined with POS n-grams. For the
tokens, the best results were achieved with a range
of 5-10 characters; for the POS tags, a range of 3-9
words led to the best results.

In order to identify additional features that help
to improve our model, we extracted further tex-
tual features per tweet. First, we counted the num-
ber of tokens per tweet as well as the number of
@’s and #’s. Our hypothesis was that the emo-
tional language of offensive tweets differed from
other tweets in length and in the number of ad-
dressing terms and hashtags. In addition, we tested
the length of hashtags because we assumed that
in emotional tweets writers tend to use hashtags
consisting of longer phrases or even full sentences.

4https://github.com/myleott/
ark-twokenize-py

Therefore, we also determined the mean length of
hashtags. Since we assumed that offensive tweets
might be characterized by a specific use of punctua-
tion marks and their combinations, we counted the
occurrences of the following stand-alone punctua-
tion marks . , ! ? as well as sequences of more than
one of the same or different of these punctuation
marks. We added an n-gram analysis of the (uni-
codes of) emojis extracted from the data, which we
tested on character as well as on word basis.

Figures 1 and 2 illustrate the distribution of most
of these features in the 2019 training data. In Fig-
ure 1, the boxplot on the left-hand side shows that
offensive tweets are in fact significantly longer on
average than other tweets.5 This does not hold true
for the average lengths of the strings starting with
#, see the boxplot on the right-hand side.6 Also the
number of hashtags per tweet is on average slightly
higher in other tweets than in offensive ones con-
trary to our expectations—if there are any hashtags
at all, see the barplot for hashtag frequency in Fig-
ure 2.

With respect to addressing expressions, Figure 2
shows that offensive tweets tend to have in fact
slightly more such elements than other tweets.7

5Tweet length: OFFENSIVE: median=24.00, mean=26.58;
OTHER: median=22.00, mean=25.67; Wilcoxon rank sum test:
W=1827400, p<0.05.

6Hashtag length: OFFENSIVE: median=8.58, mean=8.88;
OTHER: median=9.00, mean=8.85; Wilcoxon rank sum test:
W=80980, p=0.9021.

7Addressing expressions: OFFENSIVE: median=1,
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Figure 2: Additional feature distributions in the 2019 training data (n=3,995, cf. Table 1). X-axes: relative
frequency of tweets. *) Numbers per tweet are cut off for better display: y<8 .

The same holds for sequences of punctuation marks
(see bottom right of Figure 2). In contrast to ad-
dressing expressions, punctuation sequences are
sparse in the data: About 73% of the offensive
tweets and 84% of the other tweets do not contain
any sequence of punctuation. The other barplots in
Figure 2 show that data sparseness also holds for
the distributions of exclamation marks and question
marks, slightly less for periods which are on aver-
age more frequent in other tweets than in offensive
ones.8

Among all these additional features, only the
hashtag-related features did not improve our orig-
inal results based on character and POS n-grams.
We will present detailed results in Section 4.

mean=1.69; OTHER: median=1, mean=1.52; Wilcoxon rank
sum test: W=1889000, p<0.001.

8Period frequency: OFFENSIVE: median=0, mean=0.94;
OTHER: median=1, mean=1.08; Wilcoxon rank sum test:
W=1574100, p<0.001.

3.3 Methodology

We used the machine learning library scikit-learn
(v0.20.1) (Pedregosa et al., 2011) for Python
(v3.7.1) and selected the Support Vector Classi-
fier as our model. We achieved best results on our
development data with a linear model default set-
tings.9 Additional experiments with the Random
Forest Classifier, including grid search for parame-
ter tuning, did not yield better results.

3.4 Evaluation

For evaluation, we used the scorer provided by the
shared task.10 It reports accuracy as percent cor-
rect, precision and recall for each subset (OFFENSE,
OTHER), and the macro-averaged F1-score which is
the harmonic mean of the results of the two subsets.

9Tests with the constructor option ‘probability =True’
yielded identical results with slower performance. For
details see https://scikit-learn.org/stable/
modules/svm.html#svm-kernels.

10https://projects.fzai.h-da.de/iggsa/
evaluation-tool/
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Accuracy OFFENSE OTHER Average
Perc. corr. total P R F P R F P R F

dev 76.94 307 399 84.62 45.21 58.93 75.08 95.26 83.97 79.85 70.23 71.45
test 72.58 2,200 3,031 64.76 31.44 42.33 74.02 91.95 82.02 69.39 61.69 65.32

Table 2: Results on the development set and on the final test set (Average= macro-averaged score, Perc.=
percent correct, corr.= number of correct tweets, total= number of all tweets, P=precision, R=recall, F=
F1-score).

System Accuracy OFFENSE OTHER Average
Perc. corr. P R F P R F P R F

char (= baseline) 76.19 304 84.00 43.15 57.01 74.38 95.26 83.54 79.19 69.20 70.27
char #/tw 75.94 303 82.89 43.15 56.76 74.30 94.86 83.33 78.60 69.21 70.05
char #-length 76.19 304 84.00 43.15 57.01 74.38 95.26 83.54 79.19 69.20 70.27
char POS 76.44 305 84.21 43.84 57.66 74.61 95.26 83.68 79.41 69.55 70.67
char . /tw 76.44 305 84.21 43.84 57.66 74.61 95.26 83.68 79.41 69.55 70.67
char !/tw 76.44 305 83.33 44.52 58.04 74.77 94.86 83.62 79.05 69.69 70.83
char pu-seq/tw 76.44 305 83.33 44.52 58.04 74.77 94.86 83.62 79.05 69.69 70.83
char @/tw 76.44 305 83.33 44.52 58.04 74.77 94.86 83.62 79.05 69.69 70.83
char , /tw 76.69 306 84.42 44.52 58.30 74.84 95.26 83.83 79.63 69.89 71.06
char ? /tw 76.69 306 84.42 44.52 58.30 74.84 95.26 83.83 79.63 69.89 71.06
char w/tw 76.94 307 84.62 45.21 58.93 75.08 95.26 83.97 79.85 70.23 71.45
char w/tw , /tw 76.94 307 84.62 45.21 58.93 75.08 95.26 83.97 79.85 70.23 71.45
char POS w/tw 76.94 307 84.62 45.21 58.93 75.08 95.26 83.97 79.85 70.23 71.45
char , /tw ? /tw 76.69 306 84.42 44.52 58.30 74.84 95.26 83.83 79.63 69.89 71.06
char w/tw @/tw 76.69 306 83.54 45.21 58.67 75.00 94.86 83.77 79.27 70.03 71.22
char POS w/tw . /tw 75.94 303 82.05 43.84 57.14 74.45 94.47 83.28 78.25 69.15 70.21
char POS w/tw @/tw 76.44 305 83.33 44.52 58.04 74.77 94.86 83.62 79.05 69.69 70.83
all features 74.94 299 80.26 41.78 54.96 73.68 94.07 82.64 76.97 67.93 68.80

Table 3: Results of the ablation study and a model with all features (on the development set, n=399); best
results in bold face (char=character n-grams, pu-seq=punctuation sequence, w= tokens, /tw= per tweet,
Average= macro-averaged).

Averaging this way makes sure that in unbalanced
settings, in which one subset is much larger than
the other, the results on the larger subset do not
obliterate the results on the smaller one. In case
of the training and development data, the subset
OTHER was much larger than the subset OFFENSE,
cf. Table 1.

We optimized our system for the macro-averaged
F1-score on our development set, since this score
was the official ranking function in the shared task.

4 Results

We submitted one set of results (based on one run),
obtained by one of the systems that had the best
results on our development set: a linear SVM using
character n-grams, POS n-grams, and tweet length
as features (= system char POS w/tw in Table 3).

4.1 Official Shared Task Results

Our best system on the development set achieved
a macro-averaged F1-score of 65.32 on the shared
task’s test data, see Table 2.

Overall, the system did not generalize well to
the final test data. We observe a loss of about 6
points in macro-averaged F1-score from 71.45 on
the development data to 65.32 on the test data. The
main decrease is due to a loss of about 20 points in
precision on the OFFENSE class, followed by about
14 points in recall. The effect on the OTHER class
is much smaller with only about 3 points loss in the
F1-score from 83.97 to 82.02.

4.2 Ablation Study

We tested the best bag-of-words setting (charac-
ter n-grams of size 5-10 and POS n-grams of
size 3-9) with different additional feature com-
binations. Table 3 shows the results including
some identical performances for the sake of com-
pleteness. The version with all features includes
the following features in addition to the bag-of-
words features (all measured per tweet): number
of tokens (w/tw), number of @’s (@/tw), number
of #’s (#/tw), max length of hashtag (#-length),
mean length of hashtags, number of commas (, /tw),
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number of periods (. /tw), number of exclamation
marks (!/tw), number question marks (?/tw), punc-
tuation sequences longer than one (pu-seq/tw).

Using only character n-grams provides a solid
baseline (char). Adding the number of hashtags
per tweet decreased the results slightly (char #/tw).
Adding other individual features increased the over-
all result. POS n-grams improved precision in
both classes marginally (char POS). The three best
combinations used the number of words per tweet
(char w/tw) as a feature. However, they outper-
formed models with other feature combinations
only slightly. The difference was mostly due to
improved recall of offensive tweets (of about 1.4
points in comparison to the model based on char-
acters and POS n-grams only). We submitted only
the best system combining character information
with tweet length and POS information (char POS
w/tw), hoping that POS n-grams can capture some
generalizations. It differed in the annotation of the
dev set in two tweets from the other two best per-
forming systems (all three systems got these tweets
wrong). The other two best performing variants
(char w/tw and char w/tw , /tw) yielded the exact
same annotation results. The comma frequency
(, /tw) does not seem to add additional information
which is not also contained in tweet length.

The full version performed systematically worse
than systems with fewer features. This could be an
effect of overfitting.

We also tested adding unicode strings of emojis
as n-gram features which did not effect the results
in a positive way (not documented in Table 3).

In addition, we experimented by replacing all @-
strings with a placeholder NE on the token level by
keeping the original length information. The idea
was to reduce overfitting on individual users. The
results on our dev set were discouraging (macro-
avgeraged F1-score using char POS w/tw: 67.46),
so we did not further pursue this approach.

5 Conclusion and Future Work

By participating in the GermEval Shared Task in
the setting of a compact introductory course we
learned how to conduct the basic steps that are
necessary when approaching a machine learning
problem: From choosing a model to setting the
parameters to extracting features from the data set
and implementing them in the algorithm. For our
final classifier, we used an SVM algorithm and op-
timized the system using several features of which

character n-grams and the length of the tweets with
and without POS n-grams proved to be most effec-
tive.

We obtained an F-score of 65.32 on the test data.
In future experiments, the score could possibly be
improved by a larger training set and selecting more
elaborate features: Montani and Schüller (2018),
for example, obtained a high F-score in the Ger-
mEval 2018 Shared Task on the Identification of Of-
fensive Language making use of the TF/IDF scores
of token n-grams. They calculated the TF/IDF for
each n-gram within each class (i.e. OFFENSE and
OTHER) and created a feature that contained only
those TF/IDF scores with a document frequency
within a certain range (determined by a grid search).
Thereby, they reduced the token n-gram counts to
only those n-grams that are important for one of
the classes.

Another promising source for potential feature
extraction could be the emojis in the tweets with
which we only did preliminary tests. They are an
important characteristic of twitter data and reveal
valuable information about the author’s intentions
or emotional state. A semantic annotation (i.e. pos-
itive, negative) of each emoji type, perhaps with
the help of the emoji descriptions in the unicode
table, would precede the feature creation. This an-
notation would have to be done partly manually be-
cause emojis can be represented not only by simple
but also by complex unicode containing variation
selectors.
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the Tübingen Treebank of Written German (TüBa-
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Abstract

The TUWienKBS19 system for German of-
fensive language detection in the GermEval
2019 shared task is a stacking ensemble
system. Five disjoint sets of features are
used: token and character n-grams, relat-
edness to the, according to tf-idf, most
important tokens and character n-grams
within each class, and the average of the
embedding vectors of all tokens in a tweet.
Several base classifiers are trained inde-
pendently on each of these features, yield-
ing meta-level features which one maxi-
mum entropy model uses to perform the
final classification. Our system achieved
a macro-averaged F1-score of 76,80% on
subtask I, and 51,86% on subtask II.

1 Introduction

We describe the TUWienKBS19 system that partic-
ipated in the GermEval Task 2, 2019, Shared Task
on the Identification of Offensive Language.

This task is relevant for supporting humans
when they moderate online content. In the pseudo-
anonymous environment of microposts, abusive
language is easily produced by users and it is an
important objective to prevent that such content is
broadcast to a large number of readers.

Our system is based on a stacked architecture
where a set of base level classifiers is trained on a
set of five feature groups, and the resulting trained
models are forwarded to a meta-level classifier
that determines the final outcome of the prediction.
This architecture and its training method builds
upon the system (Padilla Montani and Schüller,
2018) we submitted to GermEval 2018. This 2018
system was in turn inspired by the EELECTION
system (Eger et al., 2017).

This year’s system compares to its predecessor
(Padilla Montani and Schüller, 2018) as follows:

• Feature extraction was kept as before, al-
though several hyperparameters were read-
justed using this year’s training data.

• The set of base level classifiers used has been
broadened, while keeping training times low.

This paper is organized as outlined below. In
Section 2 we give details about the competition
subtasks and evaluation metrics. In Section 3 we de-
scribe tweet preprocessing and the features we used.
In Section 4 we describe the machine learning mod-
els we used and the stacked predictor model and
we describe how we trained this architecture. Sec-
tion 5 describes our submitted runs and provides
the official competition scores for each run and
subtask. We conclude the paper in Section 6.

The source code of our system, i.e., feature com-
putation, training, and classification, is available
online.1

2 Data and Subtasks

The GermEval Task 2, 2019, Shared Task on the
Identification of Offensive Language2 solicited the
submission of systems to automatically classify
German language microposts (in a Twitter dataset)
with respect to their offensiveness. Such predic-
tions are a valuable tool for assisting human moder-
ators with the job of reducing the amount of hurtful,
derogatory or obscene online content.

This year’s edition of the Shared Task consisted
of three subtasks:

• Subtask I: coarse-grained classification into
the two classes “OFFENSE” and “OTHER”
(where “OTHER” means non-offensive).

• Subtask II: fine-grained classification into
the four classes “PROFANITY”, “INSULT”,
“ABUSE”, and “OTHER”.

1https://github.com/jpadillamontani/
germeval2019

2https://projects.fzai.h-da.de/iggsa/

Proceedings of the 15th Conference on Natural Language Processing (KONVENS 2019)
Distributed under a CC BY-NC-SA 4.0 license.
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• Subtask III: offensive tweets are further clas-
sified into the two subcategories “EXPLICIT”
and “IMPLICIT”.

In each of the subtasks, the classes are mutually ex-
clusive. For example, in subtask II the “PROFAN-
ITY” class does not contain any insults, “ABUSE”
does not insult a single concrete person but a whole
group of people and is also abusive in a way that is
not simply “PROFANITY”. For further details see
also the annotation guidelines (Ruppenhofer et al.,
2018).

The submitted systems are evaluated according
to the macro-averaged F1-score of their predictions,
i.e. each class contributes equally to the final score,
independent from the number of samples in the
class.

Our team participated in subtasks I and II. For
these two subtasks, the training set contains 12536
tweets, where 8359 are marked as “OTHER” and
the remaining ones as “OFFENSE”. Of the offen-
sive tweets, 2305 are marked as “ABUSE”, 1601
as “INSULT”, and 271 as “PROFANITY”.

3 Features

We implemented feature extraction using the li-
braries scikit-learn (Pedregosa et al., 2011) for
tf–idf computations, NLTK (Bird et al., 2009) for
tokenization and stemming, and gensim (Řehůřek
and Sojka, 2010) for managing precomputed word
embeddings.

3.1 Preprocessing
Our preprocessing approach first removes all han-
dles (@username) and replaces the special charac-
ters “#- ,;:/+)<>&” and line break characters by
spaces. The substring “’s” (as in “geht’s”) is also
replaced by a space.

For tokenization we used NLTK’s
TweekTokenizer with reduceLen=True.
This parameter means that repetitions of the same
character are shortened to at most three letters
(e.g., “cooooool” is normalized to “coool”).

For features for which we applied stemming,
NLTK’s GermanStemmer was utilized.

Table 1 gives an overview of the groups of fea-
tures we used and the type of preprocessing used
in each case. We describe each feature group in the
following.

Special Preprocessing indicates which additional
preprocessing was done beyond handle removal,
special character replacement and tokenization. For

creating character-level features we concatenated
(Join in Table 1) the resulting tokens with spaces
into one string for extracting character-level n-
grams, i.e. we always used the tokenizer (even
for character-level features) to make use of its
reduceLen feature.

3.2 Character and Token N-Gram Features

The feature groups CNGR and TNGR are simi-
lar, so we describe them together. Both operate
on a lowercased version of the input, and TNGR
additionally performs stemming on each token.

CNGR extracts all character-level n-grams of
length 3 to 7, while TNGR extracts all stemmed
token-level n-grams of length 1 to 3.

In both cases, we performed tf-idf over all ex-
tracted n-grams. Only n-grams with a document
frequency between 0.01 and 0.0002 at the token
level, and only those with a document frequency
between 0.02 and 0.0001 at the character level were
kept (i.e., those that are rare enough to carry some
signal, but frequent enough to have a potential to
generalize over unseen data). The described doc-
ument frequency thresholds were tuned by means
of a grid search on a 90%/10% split of the training
data, with the aim to maximize prediction scores
of the base classifiers (see Section 4).

We used the tf-idf score of the relevant n-
grams as input features (realized with scikit-learn’s
TfidfVectorizer).

3.3 Word Embedding Features

We used a pretrained word2vec-style skip gram
word embedding with 100 dimensions and window
size 5, created from a large collection of German
language tweets from the years 2013 to 2017 by
Heidelberg University.3

For each tweet, we created 100 real-valued fea-
tures by taking the average embedding of all tokens
in the tweet, normalized to unit length with the
`2-norm.

Whenever a word embedding is required, i.e.,
for feature groups TIMP and EMB, and whenever
the token is not in the vocabulary of the pretrained
list of word embeddings, we performed a fallback
operation. We searched for the largest prefix and
the largest suffix of the token of length 3 or greater
where we know a word embedding. If we find such

3http://www.cl.uni-heidelberg.de/
english/research/downloads/resource_
pages/GermanTwitterEmbeddings/
GermanTwitterEmbeddings_data.shtml
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Symbol Name Level Special Preprocessing Word Embeddings

CNGR Character N-Grams C Lowercase + Join -
CIMP Important N-Grams C Join -
TNGR Token N-Grams T Lowercase + Stemming -
TIMP Important Tokens T - min/max cos distance
EMB Word Embeddings T - average

Table 1: Groups of features used for classification. Handle removal, special character replacement and
tokenization is used for all features. C and T stand for character and token level, respectively.

Subtask m Feature k

I 2 CIMP 2000
I 2 TIMP 2500

II 4 CIMP 500
II 4 TIMP 1000

Table 2: Number of important types selected for
each subtask and feature group.

affixes with embeddings, we use the embeddings
of these affixes as if they were separate tokens in
the tweet.

As an example, the word “Nichtdeutsche” (non-
Germans) in the dataset does not exist in some
pretrained word embedding models, so we en-
counter an OOV (out-of-vocabulary) exception.
Our method would use as a fallback two word em-
beddings for affixes “Nicht” (not) and “deutsche”
(German+Adj) because both affixes are present in
the word embedding model. This fallback signif-
icantly reduced the number of OOV exceptions
when extracting these features.

3.4 Important N-Gram and Token Features
These two groups of features are based on the same
idea: to perform tf-idf over the whole dataset, select
the k most important types relative to each of the m
classes (m= 2 in subtask I, m= 4 in subtask II). We
determine importance by ranking features accord-
ing to their average tf-idf value in all documents
in the respective class. Based on the resulting list
of k ·m most important type/class combinations we
create a feature for each k ·m combination. For
CIMP each type is a character n-gram, while for
TIMP each type is a token. Intuitively this selects
the most distinguishing types per category.

Table 2 shows the number of important types
selected for each subtask and each feature group.
These values were adjusted with a grid search on

a 90%/10% split of the training data in order to
maximize prediction scores of the base classifiers
(see Section 4).

So far we have only discussed how important
types are selected. We next describe which features
are generated from these important types.

For TIMP, for each important type t in a tweet
we obtain its word embedding~t and compute the
maximum and the minimum cosine distance from~t
to all other embeddings of other types in the same
tweet. We use the same OOV-fallback described
in Section 3.3. This yields a minimum and a maxi-
mum feature for each important type and each class:
2 · k ·m real features for each tweet.

For CIMP we have no embedding information,
therefore we create for each important type t a
Boolean feature that indicates whether t is con-
tained in the tweet or not. This yields a feature for
each important type and each class: k ·m Boolean
features for each tweet.

By creating a set of features for each class, we
increase the signal that can be learned for the “PRO-
FANITY” class in subtask II, since this class con-
tains a very small set of samples.

4 Classification

Our system is a stacking ensemble which builds
upon the system (Padilla Montani and Schüller,
2018) we submitted to GermEval 2018. That sys-
tem in turn was inspired by the EELECTION sys-
tem of Eger et al. (2017).

We implemented most of the classification using
the library scikit-learn (Pedregosa et al., 2011) and
refer to class and function names of scikit-learn in
the following (unless explicitly stated otherwise).

4.1 Base Classifiers

For each subtask and each of the 5 feature groups
discussed in Section 3, we independently trained a
varying number of base classifiers, selected out of:
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Subtask Feature Base Classifiers

I CNGR ete, etg, lre, mnb, gbm
I TNGR ete, etg, lre, mnb
I CIMP lre, mnb, gbm
I TIMP ete, etg
I EMB ete, etg, lre, gbm

II CNGR ete, etg, lre, mnb
II TNGR ete, etg, lre, mnb
II CIMP lre, mnb, gbm
II TIMP ete, etg
II EMB ete, etg, lre, gbm

Table 3: Base classifiers used for each subtask and
each feature group.

(ete) an ensemble of random forests trained
on samples of the training set (Geurts
et al., 2006) using information gain as
criterion for scoring the sample splits
(class ExtraTreesClassifier with
criterion=entropy),

(etg) another ensemble of random forests trained
using Gini impurity for scoring sample
splits (class ExtraTreesClassifier
with criterion=gini),

(lre) a MaxEnt model with bal-
anced class weights (class
LogisticRegression),

(mnb) a multinomial naive Bayes classifier (class
MultinomialNB), and

(gbm) a gradient boosting model with deci-
sion trees as base learners from the li-
brary LightGBM (Ke et al., 2017) (class
LGBMClassifier).

We incorporated in the ensemble the base classi-
fiers from the above list which were able to achieve
good individual cross-validation performance after
fine tuning and were also relatively fast to train.
Table 3 details, for each subtask and feature group,
which of the base classifiers were used. We trained
a total of 18 base level classifiers in subtask I, and
17 in subtask II.

Each base classifier was trained on 90% of the
training data, and used to predict class probabilities
on the remaining 10%. We performed this process
10 times in a cross-validation manner to obtain

predictions for all tweets in the training data. Fur-
thermore, we then also trained each base classifier
on the whole training data, and used this models to
predict class probabilities for the test data. This pro-
cess generates the meta-level features that are used
by the meta classifier, as described in the following
section.

4.2 Meta Classifier

For subtask I we generated 36 meta-level features
per tweet, using the probabilistic class predictions
of 18 base classifiers (two classes). In subtask II we
have 68 meta-level features per tweet, according
to the probabilistic class predictions of 17 base
classifiers (four classes).

On these features and the known true classes of
the training tweets we trained a maximum entropy
model (class LogisticRegression). We used
balanced class weights and fine tuned the C parame-
ter for each subtask using stratified cross validation,
i.e. ensuring stable class ratios in each fold.

5 Submission

We submitted three runs for subtask I
and three runs for subtask II, named
TUWienKBS19 coarse #.txt and
TUWienKBS19 fine #.txt, respectively,
where # is the run number (1, 2 or 3).

Run 2 corresponds to the full ensemble system
as described in the previous sections. Run 1 dif-
fers from run 2 in that the CIMP features (and the
associated base classifiers) were disabled, since in
our pre-competition testing of the ensemble using
cross validation we obtained the best results when
not using these features. Training these ensemble
systems takes around 10 minutes for each subtask
and for each run, on a regular desktop computer.

Run 3 is a lightweight single model, namely a
MaxEnt model with balanced class weights (class
LogisticRegression) trained on our best
performing group of features: character level n-
grams (CNGR). This run only takes a few seconds
of training per subtask.

Table 4 shows the official macro-averaged F1-
score on the testing data for each of our submitted
runs.

6 Conclusion

We presented the TUWienKBS19 submission to the
GermEval Task 2, 2019, Shared Task on the Identi-
fication of Offensive Language. We submitted runs
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Subtask Run F1-score

I 1 76,80
I 2 76,75
I 3 71,42

II 1 51,23
II 2 51,86
II 3 46,94

Table 4: Official results of our system runs.

for subtask I (binary classification) and subtask II
(fine-grained classification). Our approach used
a stacking ensemble system which was based on
our submission from last year’s shared task. We
utilized five groups of features, some operating
at the token level and some at the character level,
and we also made extensive use of pretrained word
embeddings.

Our system is built with a major challenge from
this competition in mind: the evaluation mode in
combination with the class imbalance in the train-
ing data. The competition evaluation uses macro-
averaging, i.e., each class counts the same. At the
same time, in subtask II, there is one class (“PRO-
FANITY”) with only 271 tweets as samples within
a training set which contains 12536 tweets. Our
tuning efforts were focused on managing this class
imbalance.
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Abstract

This paper describes the system submit-
ted by the RGCL team to GermEval 2019
Shared Task 2: Identification of Offensive
Language. We experimented with five dif-
ferent neural network architectures in or-
der to classify Tweets in terms of offensive
language. By means of comparative eval-
uation, we select the best performing for
each of the three subtasks. Overall, we
demonstrate that using only minimal pre-
processing we are able to obtain competi-
tive results.

1 Introduction

The use of offensive language in open and public
actions is a facet of the internet that calls for auto-
matic detection for some kind of monitoring. The
fact that people use language that can cause offence
to other people is in no way a novel phenomenon.
However, with the rise of online platforms such as
Twitter, Facebook, Reddit and so on, along with
the annonymity these platforms offer, offensive
language can be viewed and read by millions of
people in an instance. While the scale of the of-
fence caused by such language can vary, it is clear
that there is some language which causes offence
to many people publicly. Therefore, it is desirable
to be able to automatically detect the use of such
language, in order to flag it and take further action.

Recently, efforts in the field of natural language
processing (NLP) relating to the detection and clas-
sification of offensive language have been gaining
attention. This is not only evidenced by an in-
crease in offensive language datasets, but also a
shift in approach from support vector machine clas-
sifiers to more modern neural networks (Schmidt
and Wiegand, 2017). More evidence for the rising
attention to offensive language detection lies in the
fact that the topic has been featured at shared tasks.

The most prominent example is probably SemEval
2019 Task 6, which dealt with the identification
and categorisation of offensive language in social
media for English, and attracted around 800 teams
with 115 submissions (Zampieri et al., 2019).

Another example of a shared task for offensive
language is GermEval 2019 Task 2. It deals with
the detection and classification of offensive lan-
guage in German Twitter posts. The task itself
is divided into three classification subtasks, with
the first dealing with a binary classification, i.e.
whether a tweet is offensive or not. Subtask II is
a more fine-grained classification, including three
levels of granularity, profanity, insult and abuse.
These two subtasks were featured at GermEval
2018, meaning that data from two years was avail-
able (Wiegand et al., 2018). The final subtask,
aimed at classifying implicit and explicit offensive
language, was newly introduced this year.

This paper describes our submission to the Ger-
mEval shared task. We propose a simple, low-effort
approach, with minimal data processing. We em-
ploy five different neural network architectures in
order to perform the three classification subtasks,
evaluate each network and select the three best per-
forming architectures for our final submissions.

The paper is structured as follows. Section 2
describes the system that was submitted, split into
a description of the dataset (Section 2.1), how the
data was processed (Section 2.2) and the architec-
ture of the classifier that was used (Section 2.3).
Section 3 presents an analysis of the results of our
evaluation of the five different architectures (Sec-
tion 3.1), as well as of the final submission (Section
3.2). Finally, Section 4 offers some final remarks
and a conclusion.

2 System Description

This section describes the shared task data, as well
as the system that was used to classify the data.
The dataset is grouped in two parts, and we use
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minimal preprocessing in order to use the data. For
classification, we used and compared five differ-
ent neural network architectures suited to this task.
Our implementation has been made available on
Github.1

2.1 Dataset

The data provided by the task organisers was split
into subtasks I & II, and subtask III, which where
in turn split into training and test sets. For sub-
tasks I & II we concatenated the 2018 training set
(Wiegand et al., 2018) with the 2019 training set,
resulting in 9004 training instances for subtasks I
& II. Subtask III was introduced for the first time
this year, providing 1958 training instances.

Different tags are used for each subtask. The
binary classification uses OTHER and OFFEN-
SIVE to distinguish non-offensive and offensive
text. Subtask II extends the last tag into PROFAN-
ITY indicating the use of offensive words without
being aimed at anyone specific, INSULT which is
like the previous but aimed at a specific person or
entity, and ABUSE which combines the last two
tags. The final subtask uses the EXPLICIT and
IMPLICIT tags.

2.2 Text Preprocessing

As mentioned previously, the data preprocessing
for this task was kept fairly minimal. More specifi-
cally, we perform only three specialised tasks for
this data, followed by tokenisation. The tasks in-
clude removing usernames, converting to lower
case and removing punctuation marks. The motiva-
tion for a minimal approach was mainly to demon-
strate the effectiveness of the neural network ar-
chitectures used. A secondary motivation is the
portability to other languages, as the tasks carried
out here should be relatively simple to perform
in other languages. This does, however, highlight
the importance of solid word embeddings, as the
approach is completely reliant on them.

First, we completely remove all usernames from
the texts, without inserting a placeholder. This is
carried out quite simply by removing all strings
beginning with the @ symbol, as this is how user-
names are denoted on Twitter. The reasoning be-
hind this step is mainly to remove noisy text, as it
is highly unlikely that there would be any embed-
dings for the usernames. In addition, it stands to

1https://github.com/TharinduDR/
Germeval-Task-2

reason that these usernames do not add any seman-
tic meaning. Moreover, if, for instance, a majority
of offensive tweets were written by one user, this
could lead to bias in the system against one user.
However, this task is targeted at offensive language,
not offensive users.

Next, we convert the text to lower case let-
ters. This step may seem counter intuitive for Ger-
man, as capitalisation is used to differentiate nouns,
which can cause a difference in meaning. For in-
stance, Rennen can mean the race (noun), whereas
rennen can mean to run (verb). Therefore, our first
intuition was to keep capitalisation, however, after
running with and without capitalisation our results
indicated that all lower case text works better. We
found that this leads to a smaller number of words
for which no embedding is found, and higher preci-
sion and recall values. This finding is in line with
previous findings using a similar approach based
on neural networks (Stammbach et al., 2018).

Finally, we remove all kinds of punctuation
marks and mathematical symbols. We insert a
place-holder that indicates to the system that a
punctuation mark would have been at this place.
With this approach, we can handle each word in
the same way, as leaving punctuation marks would
lead them to be read together with a word, leading
to no embedding being available.

2.3 System Architecture

After data processing each text is encoded using
German fasttext (Mikolov et al., 2018) embed-
dings.2 The encoded tweets are then classified
by one of the neural network architectures. We
evaluated five different neural network architec-
tures for the classification tasks: pooled Gated Re-
current Unit (GRU) (Section 2.3.1), Long Short-
Term Memory (LSTM) and GRU with Attention
(Section 2.3.2), 2D Convolution with Pooling (Sec-
tion 2.3.3), GRU with Capsule (Section 2.3.4) and
LSTM with Capsule and Attention (Section 2.3.5).

The parameters of each architecture were op-
timised using 5-fold cross-validation considering
binary cross entropy loss function and using adam
optimiser (Kingma and Ba, 2015). The motiva-
tion for using 5-fold cross-validation was mainly
the size of the data available for subtask III. Us-
ing a higher number of folds for cross-validation
results in a low number of training and evaluation

2https://dl.fbaipublicfiles.com/
fasttext/vectors-wiki/wiki.de.vec
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instances affects the performance of the architec-
ture (Stone, 1974). We used the reducing learning
rate on plateau technique when a deep learning
architecture stopped improving. Deep learning ar-
chitectures often benefit from reducing the learning
rate by a factor once learning stagnates (Ravaut
and Gorti, 2018). We monitored validation loss
and if no improvement was seen for 2 epochs, the
learning rate was reduced by a factor of 0.6, since
this value seemed to offer the best improvement.

These architectures were successfully applied to
a number of classification tasks such as GRU for
sequence labeling (Chung et al., 2014), GRU with
capsule for toponym detection (Plum et al., 2019),
and their success in these tasks inspired us to use
them for the task at hand.

2.3.1 Pooled GRU

In this architecture, after the embedding layer, em-
bedding vectors are fed to the bi-directional GRU
(Chung et al., 2014) at their respective timestep.
The bi-directional GRU-layer has 80 units. The fi-
nal timestep output is fed into a max pooling layer
and an average pooling layer in parallel (Scherer
et al., 2010). After this, the outputs of the two
pooling layers are concatenated and connected to
a dense layer (Huang et al., 2017) activated with
a sigmoid function. Additionally, there is a spa-
tial dropout (Tompson et al., 2015) between the
embedding layer and the bi-directional GRU layer
to avoid over-fitting. This architecture has been
discussed in (Kowsari et al., 2019) as a common
architecture to perform text classification tasks.

2.3.2 LSTM and GRU with Attention

With this architecture, the output of the embed-
ding layer goes through a spatial dropout (Tomp-
son et al., 2015) and is then fed in parallel to
a bi-directional LSTM-layer (Schuster and Pali-
wal, 1997) with self attention and a bi-directional
GRU-layer (Chung et al., 2014) with self atten-
tion (Vaswani et al., 2017). Both the bi-directional
LSTM-layer and the bi-directional GRU-layer have
40 units. The output from the bi-directional GRU-
layer is fed into an average pooling layer and a
max pooling layer. The output from these layers
and the output of the bi-directional LSTM-layer are
concatenated and connected to a dense layer with
ReLU activation. After that, a dropout (Srivastava
et al., 2014) is applied to the output and connected
to a dense layer activated with a sigmoid function.

2.3.3 2D Convolution with Pooling
The fourth architecture takes a different approach
than the previous architectures by using 2D convo-
lution layers (Wu et al., 2018), rather than LSTM
or GRU layers. The outputs of the embedding lay-
ers are connected to four 2D convolution layers
(Wu et al., 2018), each with max pooling layers.
All the 2D convolution layers were initialised with
normal kernel initialiser. The outputs of these are
concatenated and connected to a dense layer ac-
tivated with a sigmoid function after applying a
dropout (Srivastava et al., 2014). This architecture
has been used in the Quora Insincere Questions
Classification Kaggle competition3.

2.3.4 GRU with Capsule
Most of the previous architectures rely on a pool-
ing layer. However, this architecture uses a capsule
layer (Hinton et al., 2018) rather than pooling lay-
ers. After applying a spatial dropout (Tompson
et al., 2015) the output of the embedding layer is
fed into a bi-directional GRU-layer (Chung et al.,
2014). The bi-directional GRU-layer has 100 units
and was initialised with the Glorot normal kernel
initialiser and orthogonal recurrent initialiser with
1.0 gain. The output is then connected to a cap-
sule layer (Hinton et al., 2018). The output of the
capsule layer is flattened and connected to a dense
layer with ReLU activation, a dropout (Srivastava
et al., 2014) and batch normalisation applied, and
re-connected to a dense layer with sigmoid acti-
vation. This architecture has been used to detect
locations within word windows (Plum et al., 2019).

2.3.5 LSTM with Capsule and Attention
The final architecture uses combination of a cap-
sule layer (Hinton et al., 2018) and a self atten-
tion layer (Vaswani et al., 2017). After the embed-
ding layer a spatial dropout (Tompson et al., 2015)
is applied to the output, which is then fed into a
bi-directional LSTM-layer (Schuster and Paliwal,
1997) with 80 units. The layer is initialised with
the Glorot normal kernel initialiser and orthogonal
recurrent initialiser with 1.0 gain. The output of
the bi-directional LSTM-layer is fed into a capsule
layer and to a self attention layer in parallel. Then
each output of both capsule layers and the self atten-
tion layer goes through a DropConnect (Wan et al.,
2013). They are concatenated before connecting

3https://www.kaggle.com/c/quora-
insincere-questions-classification
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to a dense layer with sigmoid activation. This ar-
chitecture has been used in the Jigsaw Unintended
Bias in Toxicity Classification competition.4

3 Results

This section presents the results of the evaluation
of the five architectures, as well as the evaluation
of the final submission. As outlined in the previ-
ous sections, we compare the performance of five
different neural network architectures in order to
select the best for each task. Therefore, an evalua-
tion of each architecture was performed, the results
of which are presented in Section 3.1. In Section
3.2 we present the results of the final submission as
carried out by the organisers of the task. Although
we submitted the runs of the three best performing
systems, we only present the best performing here.
The full results have been added to Appendix A.

3.1 Architecture Evaluation
This section describes how we selected the architec-
tures for the final submissions in each subtask. For
subtask I, all of the architectures were trained on
the 2018 and 2019 training data. The architectures
were evaluated on the 2018 test data. GRU with
Capsule, 2D Convolution with Pooling and Pooled
GRU had the best F1-scores with 0.743, 0.740 and
0.728, respectively.

Again, for subtask II all of the architectures were
trained on the 2018 and 2019 training data, and
evaluated on the 2018 test data. GRU with Cap-
sule, 2D Convolution with Pooling and LSTM &
GRU with Attention were selected for final sub-
mission, with F1-scores of 0.698, 0.695 and 0.684,
respectively.

As subtask III was organised for the first time
this year, we did not have 2018 training data for
architecture training or 2018 testing data for evalu-
ation. Nonetheless, for subtask III we used 20% of
the available 2019 training data for the evaluation,
and used the rest of the data for training. For sub-
task III, GRU with Capsule, Pooled GRU and 2D
Convolution with Pooling were used for the final
submission, as they had F1-scores of 0.887, 0.840
and 0.817, respectively.

It is interesting to note that the GRU with Cap-
sule and 2D Convolution with Pooling architectures
were always among the top three performing archi-
tectures.

4https://www.kaggle.com/c/jigsaw-
unintended-bias-in-toxicity-
classification

Subtask P R F1 Acc.
I 79.49 67.94 73.26 77.96
II 58.64 36.53 45.02 72.35
III 65.55 72.55 68.87 80.11

Table 1: Results of the evaluation. All values are
reported as percent.

3.2 Submission Results

This section presents the results of the evaluation
of our submission. The evaluation was carried out
by the task organisers, and at the time of writing
the paper the results and rankings of other groups
are not available. Therefore, we report only the
evaluation provided to us by the task organisers.
We report precision, recall and f-measure averaged
overall for each classification subtask. Separate
values for each group of each individual classifica-
tion task are presented in the full results, as well
as the results for the other two architectures. Ta-
ble 1 shows the results of the evaluation of the
best performing architecture, 2D Convolution with
Pooling.

4 Conclusion

In this paper, we have presented our system for
identifying offensive language in tweets. The sys-
tem uses minimal preprocessing, and relies on word
embeddings. We experimented with different neu-
ral network architectures in order to determine the
most suitable for this task. Going by our evaluation,
and the results provided by the task organisers, it
is clear that 2D Convolution with Pooling scores
highest overall.

While our system should be quite portable to
other languages, due to non language-specific pre-
processing, it is also clear that this aspect could
potentially improve the performance of our system.
Moreover, a detailed look into the results of the
fine-grained classification of subtask II could yield
good indications of how to improve the system for
this kind of classification. Nonetheless, for future
research we would like to see how well this system
could perform in other languages on similar tasks.
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Abstract

We describe our submissions to the Shared
Task on Identification of Offensive Lan-
guage at GermEval 2019. We take part in
all three subtasks, utilizing a Support Vec-
tor Machine (SVM) for subtasks 1 and 2,
and a Long short-term memory (LSTM)
neural net as well as a Convolutional neu-
ral net (CNN) for subtask 3. We obtained
a macro-F1 score of 75.21 for subtask 1,
55.42 for subtask 2 and 64.20 for subtask
3 on a development set that was split from
the overall training set provided by the or-
ganisers.

1 Introduction

The interest in systems that are able to classify of-
fensive language on social media platforms such
as Twitter has grown over the last years. Sev-
eral scientific contributions deal with the devel-
opment of such systems (cf.(Zampieri et al., 2019),
(Hakimi Parizi et al., 2019)). As a consequence
of this increased interest, critical voices can also
be heard regarding the way in which offensive lan-
guage is detected. Davidson et al. (2019), for ex-
ample, report on finding racial bias in datatsets that
are used to train detection systems and Silva et al.
(2016) state that designing an objective definition
of hate speech is invariably difficult because of the
complex context in which it needs to be integrated.

Within the frame of the GermEval shared task,
offensive language is defined as ”hurtful, deroga-
tory or obscene comments made by one person to
another” (Ruppenhofer et al., 2018). Three tasks
are given regarding the detection of such language.
The first of these is a coarse-grained binary classi-
fication task that aims at the general detection of
offensive tweets. The categories OFFENSE and
OTHER need to be assigned.

(1) @SusanBrenning In Sachen Verrat war die
Kirche schon immer groß. OFFENSE

(2) @Doodoofist Das mach dir was zu essen
Kamerad OTHER

In the second, fine-grained task, offensive tweets
have to be further categorized into PROFANITY,
INSULT and ABUSE where profanity depicts the
least and abuse the most offensive class.

(3) Wie viel Oblaten muss ich denn jetzt essen
bis ich ein Steak von Jesus zusammen hab?ˆˆ.
PROFANITY

(4) Sagt mal, kommt .es nur mir so vor, oder
ist das Staasfunk Fernsehprogramm wirklich
so scheiße? INSULT

(5) @YigidoYosi58 @Mesut A @ntvde
@ntv Bald seid ihr alle hier ”Entsorgt”!
ABUSE

The final task is binary and is directed at the distinc-
tion between EXPLICIT and IMPLICIT offense.

(6) @sozialromantik Eine Schande für
Deutschland ist diese BOLSCHEWISMUS
Regierung! EXPLICIT

(7) Was tut Ihr, wenn Ihr merkt, dass jemand
grün wählt? IMPLICIT

2 Classification Approach

We used different system designs to solve the spec-
ified tasks. For subtask 1 and 2, we choose a SVM
system that was created with the help of scikit-learn
(Pedregosa et al., 2011). For subtask 3 we used a
LSTM neural net as well as a CNN implemented
with Keras (Chollet, 2015).
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2.1 Data

To develop classification systems that can achieve
satisfying results for the described tasks, a suffi-
cient amount of training data is essential. The or-
ganisers provided two sets of training data, one for
subtasks 1 and 2 and another one for subtask 3.
The set for subtask 3 does not include additional
tweets but categorizes OFFENSE examples taken
from the first data set further into IMPLICIT and
EXPLICIT. The data distribution of all training sets
is presented in table 1.

Class Tweets %
Subtask 1
Offense 4117 33.32
Other 8359 66.68
Total 12536 100
Subtask 2
Profanity 271 2.16
Insult 1601 12.77
Abuse 2305 18.39
Other 8359 66.68
Total 12536 100
Subtask 3
Implicit 259 13.23
Explicit 1699 86.77
Total 1958 100

Table 1: Training data distribution

To evaluate and optimize our systems during the
training phase, we took a random sample of 20%
of the provided data to form a development set for
each task. The distribution of these samples can be
found in table 2.

Class Tweets %
Subtask 1
Offense 840 33.49
Other 1668 66.51
Total 2508 100
Subtask 2
Profanity 41 1.63
Insult 321 12.80
Abuse 478 19.06
Other 1668 66.51
Total 2508 100
Subtask 3
Implicit 47 15.61
Explicit 254 84.39
Total 301 100

Table 2: Development set distribution

2.2 Feature Description

For the classification with the SVM, a number of
features were used during training. We combined
these features into groups and assigned transformer
weights to them.

Group Feature
Sentiment Sentiment Score
Character content Character n-grams
Tweet content Number of words

Number of mentions
Number of capital words
Number of hashtags
Number of emojis
Number of exclamation
and question marks
Number of URLs

Pre-process Removal of stop words
Lemmatization

Table 3: Features used in subtask 1 and 2

The sentiment scores were extracted with the help
of the Python module textblob-de 1. We used char-
acter n-grams that are weighted by their TF-IDF.
Lemmatization was implemented with the Spacy
lemmatizer 2. The described features were used for
subtask 1 as well as subtask 2.

For the LSTM neural net and the CNN that were
utilized in subtask 3, we merely pre-processed the
data. No specific features were fed into the net.
During pre-processing, we converted the text to
lowercase and removed all punctuation and stop
words. A German stop word list was acquired from
the Python module stop-words 3. Furthermore, we
removed the line break token ”lbr” and stemmed
the text with the GermanStemmer by NLTK 4. To
be able to use the Tweets as input for the neural net,
we created sequences out of the examples given,
with a maximum length of 100. Shorter instances
were padded.

3 Preliminary Results

We present our preliminary results. These re-
sults were obtained by testing our systems on self-
compiled development sets that comprise 20% of
the training data respectively. In addition, we report
on 10-fold cross validation results.

1https://textblob.readthedocs.io/en/dev/
2https://spacy.io/api/lemmatizer
3https://pypi.org/project/stop-words/
4https://www.nltk.org/ modules/nltk/stem/snowball.html
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3.1 Subtask 1 and Subtask 2

We evaluated our systems with the described de-
velopment sets. During the optimization phase
we firstly experimented with different character
n-gram ranges. The decision to start the evalua-
tion with a search for the best performing character
n-grams is based, among others, on findings of
last year’s GermEval Shared Task on Identification
of Offensive Language that show that character
n-grams are rewarding features (Ruppenhofer et
al., 2018). Detailed results for subtask 1 that were
obtained during the development process can be
found in tables 4 and 5.

Feature Macro-F1
Development

Char 1-4 grams 67.62
Char 1-5 grams 69.58
Char 3-6 grams 69.65
Char 3-7 grams 69.38

Table 4: Character n-gram evaluation

Due to the minimal difference between the perfor-
mance of character 1-5 grams and character 3-6
grams, we decided to continue the optimization of
our system with both ranges. Character 1-5 grams
outperformed character 3-6 grams regarding the
classification of OFFENSE slightly (F1-score of
55.60 vs. 55.52) while character 3-6 grams exhib-
ited better results for the OTHER class (F1-score
of 83.79 vs. 83.55).

Feature Macro-F1
Combination Development
1-5 grams + tweet content 68.85
1-5 grams + sentiment 69.27
1-5 grams + pre-process 74.40
1-5 grams + sentiment
+ pre-process 74.40
1-5 grams + sentiment
+ tweet content 68.94
1-5 grams + pre-process
+ tweet content 74.66
1-5 grams + sentiment
+ pre-process + tweet content 74.65
3-6 grams + tweet content 69.05
3-6 grams + sentiment 70.27
3-6 grams + pre-process 74.34
3-6 grams + sentiment
+ pre-process 74.44

3-6 grams + sentiment
+ tweet content 69.93
3-6 grams + pre-process
+ tweet content 73.91
3-6 grams + sentiment
+ pre-process + tweet content 74.31

Table 5: Feature evaluation

As can be seen in table 5, we achieved the best
macro-F1 score, 74.66, when using character 1-5
grams in combination with pre-process and tweet
content. It can be observed that even though the
feature group tweet content does not improve the
results in combination with character 1-5 grams
alone, it does contribute to a higher macro-F1
score when used together with other features. We
achieved a nearly equally high macro-F1 score of
74.65 with the combination of 1-5 grams and all
other features. In the case of character 3-6 grams,
a combination of all features except tweet content
yields the best results, 74.44. We continue our train-
ing and evaluation process with the combination of
character 1-5 grams, sentiment scores, tweet con-
tent and pre-process as well as the combination of
character 1-5 grams, tweet content and pre-process.

As all feature groups were combined in a feature
union, we were able to assign transformer weights
to the different groups. The best performing com-
bination was the following:

• Character content: 0.8

• Sentiment: 0.6

• Tweet content: 1.0

• Pre-process: 0.8

We obtained a final, highest macro-F1 score of
75.21. This score was obtained by using character
1-5 grams, pre-process and tweet content. The
additional inclusion of sentiment scores yields a
slightly lower macro-F1 score of 75.02.

Precision Recall F1 Support
OTHER 80.68 90.89 85.48 1668
OFFENSE 75.83 56.79 64.94 840
macro avg 78.26 73.84 75.21 2508

Table 6: SVM results subtask 1

10-fold cross validation of the highest scoring sys-
tem results in a mean macro-F1 score of 73.96.

For the second, fine grained subtask we imple-
mented the same optimization process as for sub-
task 1. We found the best feature combination for
the SVM to be character 3-6 grams and pre-process.
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We achieved a macro-F1 score of 55.42 on our de-
velopment set. Other combinations that yielded
relatively high macro-F1 scores were character 3-6
grams, pre-process, tweet content and sentiment,
(55.05), and character 3-6 grams, pre-process and
sentiment (54.97).

Precision Recall F1 Support
OTHER 78.15 92.63 84.77 1668
PROFANITY 60.71 41.46 49.28 41
INSULT 53.80 30.84 39.21 321
ABUSE 60.50 40.38 48.43 478
macro avg 63.29 51.33 55.42 2508

Table 7: SVM results subtask 2

We evaluated the best performing system with 10-
fold cross validation and obtained a mean macro-
F1 score of 46.18. The discrepancy to the results
achieved when using a fixed development set can
and should be attributed to variations in the data.

3.2 Subtask 3
For subtask 3, we trained and tested a LSTM neural
net as well as a CNN. Even though we achieved
the best results for subtask 1 and 2 with the SVM
model, we obtained distinctly better results for sub-
task 3 when training and evaluating the correspond-
ing data on a neural net (macro-F1 score of 0.46
with the SVM vs. 0.64 with a neural net). This was
due to difficulties of predicting IMPLICIT tweets
with the SVM. We obtained a very low F1 score
of 02.82 for this category which impacted the final
macro-F1 score negatively.

The input for the neural nets was pre-processed
as described in subsection 2.2. With the LSTM
neural net, we achieved a macro-F1 score of 64.20,
the CNN produced a score of 64.06.

Precision Recall F1 Support
EXPLICIT 89.63 85.04 87.27 254
IMPLICIT 36.67 46.81 41.12 47
macro avg 63.15 65.92 64.20 301

Table 8: LSTM neural net results
Precision Recall F1 Support

EXPLICIT 88.89 88.19 88.54 254
IMPLICIT 38.78 40.43 39.58 47
macro avg 63.83 64.31 64.06 301

Table 9: CNN results

3.3 Submitted Results
The following files were submitted:

1. fkie coarse 1.txt — SVM, character 1-5
grams, pre-process, tweet content

2. fkie coarse 2.txt — SVM, character 1-5
grams, pre-process, tweet content, sentiment

3. fkie fine 1.txt — SVM, character 3-6 grams,
pre-process

4. fkie fine 2.txt — SVM, character 3-6 grams,
pre-process, sentiment

5. fkie fine 3.txt — SVM, character 3-6 grams,
pre-process, tweet content, sentiment

6. fkie implicit 1.txt — LSTM

7. fkie implicit 2.txt — LSTM

8. fkie implicit 3.txt — CNN

For subtask 1 (coarse) we submitted one run
(fkie coarse 1.txt) which uses character 1-5 grams,
pre-process and tweet content as features for the
SVM and another run (fkie coarse 2.txt) which in
addition uses sentiment scores.

The first submission for subtask 2
(fkie fine 1.txt) was obtained by using a
SVM with character 3-6 and pre-process. For
the second submission (fkie fine 2.txt), we
again used character 3-6 grams, pre-process and
added sentiment scores. The third submitted run
(fkie fine 3.txt) uses all available features.

For subtask 3 (implicit), three runs were
submitted. Two of these (fkie implicit 1.txt,
fkie implicit 2.txt) include results obtained
with the LSTM neural net. The other one
(fkie implicit 3.txt) presents the CNN results.

4 Discussion

In general, the binary classification systems yield
better macro-F1 scores than the multi-class sys-
tem. This was to be expected. The best performing
system is the one that focuses on the simple dis-
tinction between offensive and not offensive tweets.
This is also intuitive: categorizing offensive tweets
into profanity, insult, abuse or explicit, implicit,
requires more precise feature engineering.

A fine-grained classification is, in this case, ad-
ditionally difficult as the annotation of some sub-
categories is at times not coherent, e.g.:

(8) @KingGeorgVI @EngelGert Ich kann es
nicht mehr sagen. Bild und Artikel sind ver-
schwunden und ich habe es nicht gespeichert.
Das Bild zum Tweet ist ebenfalls weg. Sorry.
OFFENSE ABUSE

(9) @JuttaMBrandt @jouwatch Ich muss da
nicht überlegen. OFFENSE INSULT

The examples above are annotated as OFFENSE
even though they do not appear to be insulting or
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abusive. Especially example (8), which is cate-
gorized as abuse, the most offensive class, does
not include offensive content but rather conveys a
factual and even apologetic tone.

We assume that the categorization of such in-
stances is based on background knowledge that is
not accessible to us and subsequently not accessible
to the classification systems. Still, it is advisable
to train the systems on the provided data set and
therefore inevitably on examples that break ranks,
to make them applicable to the test set.

Regarding subtask 3, it is instinctive that the de-
tection of EXPLICIT instances can be achieved
more easily than that of IMPLICIT ones. The
term implicit as such can be defined as “capable
of being understood from something else though
unexpressed” (Merriam-Webster, 2011) which al-
ready hints at the problem that something that is
not overtly expressed might be difficult to identify.
The impact of this can be observed clearly in the
results depicted in tables 8 and 9. In addition, the
distribution of EXPLICIT and IMPLICIT tweets
in the training data is skewed (86.77% EXPLICIT,
13.23% IMPLICIT). This complicates the eventual
detection of IMPLICIT tweets in the test data.

5 Conclusion

We presented our submission to GermEval Task 2,
2019 - Shared Task on the Identification of Offen-
sive Language. We described the generation and
implementation of a SVM, a CNN and a LSTM
neural net as well as feature engineering and pre-
processing strategies that were used.

For future work in this area, some issues should
be considered and, if possible, improved. The data
set that was provided for the training of the sys-
tems should be more balanced with regard to the
individual categories. Especially for subtask 3, the
small number of IMPLICIT examples was prob-
lematic. In addition, it would be helpful if the data
was annotated in a more consistent manner. A data
set that is fully coherent will quite likely improve
the performance of the classification systems in the
end.
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Abstract

The bertZH system for abusive tweet detec-
tion in the GermEval 2019 competition is
a neural classifier based on BERT (Devlin
et al., 2018). We describe our submission
runs for subtask 2 on fine-grained classifi-
cation of tweets. We used the pretrained
German language model from deepset.ai1

implemented in pytorch and fine-tuned
it to the data of the task, before then using
it to train on the classification task. We also
experimented with the pretrained multilin-
gual BERT model from Google Research
implemented in keras, but it resulted in a
worse score than with the German model.
We have found that a language-specific
BERT model outperforms a multilingual
model and that fine-tuning a BERT model
to the tasks domain achieves a small gain
in performance.

1 Introduction

It can be very useful for the user experience of a
social media platform to sort out abusive content.
But first one has to know what content can be de-
clared as abusive in order to avoid false-positives.
The goal of our deep neural network is to find this
abusive content.

We developed our models as a part of a Text
Mining course at the University of Zurich as a final
work. We are two Bachelor students in Computa-
tional Linguistics.

This paper is organized as follows: in section 2
we will explain the details of the competition, espe-
cially task 2. Then, in section 3 we provide some
details about the preprocessing of of our pipeline.
In the 4th section we present the architecture of our
deep neural network and the background of BERT.
In section 5 we describe the configuration of each

1https://deepset.ai/german-bert

submitted run in detail and we finally present our
results in section 6.

2 Competition Tasks

The GermEval 2019 Shared Task on the Identi-
fication of Offensive Language2 focused on clas-
sification of German tweets with respect to their
offensiveness. With the overwhelming amount of
social media posts everyday, systems that can reli-
ably detect profane language or harassment grow
more important in assisting human moderators.

• Subtask 1: Coarse grained classification. This
dataset was labelled with only two labels,
namely OFFENSIVE and OTHER, where
OTHER represents non-offensive tweets.

• Subtask 2: Fine grained classification. For
this task, each sample of the dataset (which is
the same as in subtask 1) is labelled with four
labels: INSULT, PROFANITY, ABUSE and
OTHER.

We only participate in subtask 2. The task is
a multi-class classification problem, which means
that each tweet is only labelled with a single label
(e.g. an abusive tweet that uses profane language is
only labelled ABUSE). The data is not uniformly
distributed as the class OTHER has a frequency of
67.8%, while the others are quite under-represented
(INSULT: 15.6%, ABUSE: 12.7%, PROFANITY:
3.8%). This usually makes it very difficult to learn
automatically how to predict the under-represented
classes - especially the class PROFANITY.

The evaluation metric is F1-score, hence it is im-
portant to have a good classification rate for every
single class.

3 Preprocessing

Since tweets contain a lot of colloquial language
and also hashtags or usernames or similar, we

2https://projects.fzai.h-da.de/iggsa

Proceedings of the 15th Conference on Natural Language Processing (KONVENS 2019)
Distributed under a CC BY-NC-SA 4.0 license.

434

https://creativecommons.org/licenses/by-nc-sa/4.0/


Figure 1: Top-level overview of our pytorch architecture.

needed to filter or normalize such occurrences.
For that reason we used the German tokenizer
SoMaJo3 and added some extra cleaning steps:

• Normalizing character repetitions: We replace
characters which occur more than twice in a
row with two of them (”cooooool”→ ”cool”).

• Substituting usernames: Every username gets
replaced with ”@USER”. We didn’t cut out
the whole username because it could be impor-
tant for the classification if someone is men-
tioned.

• Removing special characters: We remove
characters such as hashtags, newlines, line-
breaks or underscores.

We also used scikit-learn (Pedregosa and
others, 2011) for the train-test split during develop-
ment.

4 Architecture

BERT (Devlin et al., 2018) has proven to be ex-
ceptionally effective in many downstream NLP-
tasks including sentence classification. It has
improved the state-of-the-art in several applica-
tions, and hence our goal was to implement BERT
for the fine-grained classification task. However,
training a BERT model from scratch is compu-
tationally very expensive and impossible to train
on a single consumer-grade GPU, so we had to
rely on the publicly available models. When
we first started the project, the only available
BERT model that was trained on German data
was bert multi cased L-12 H-768 A-12,
a BERT model released by Google Research on
GitHub4 that was trained on Wikipedia dumps in

3https://github.com/tsproisl/SoMaJo
4https://github.com/google-research/

bert

104 different languages, of which one was German.
In order to use the model in keras (Chollet and
others, 2015), we followed Jacob Zweig’s blogpost
BERT in Keras with Tensorflow hub5. With this
implementation, we could fine-tune the last n lay-
ers of the BERT transformer while connecting a
256-units Feed-Forward layer with dropout to the
first generated token by BERT. This [CLS] token
is a representation of the whole sequence and is
the only component of BERT’s output we use to
perform the classification task (Devlin et al., 2018).

Later on in the project, we found that
deepset released a BERT model to the public
that was trained on German data exclusively
(bert-base-german-cased)6, which was
promising better results on several German tasks
than the multilingual model by Google Research,
including the GermEval 2018 Shared Task on the
Identification of Offensive Language (Wiegand et
al., 2018). The implementation in keras we de-
scribed in the preceding paragraph relied on the
model being available as a module on TensorFlow
Hub, which was not the case for this model. Hence,
we used the well-known pytorch (Paszke et al.,
2017) implementation of BERT by the Hugging-
Face team7 and followed the blogpost A Simple
Guide On Using BERT for Binary Text Classifica-
tion8 by Thilina Rajapakse to be able to use the
German model, and modified the code to suit the
multiclass classification task. With the implemen-
tation by HuggingFace we were able to fine-tune
the German model on to the tasks dataset using
BERT’s original language modeling tasks MLM

5https://towardsdatascience.com/bert-
in-keras-with-tensorflow-hub-76bcbc9417b

6https://deepset.ai/german-bert
7https://github.com/huggingface/

pytorch-transformers
8https://medium.com/swlh/a-simple-

guide-on-using-bert-for-text-
classification-bbf041ac8d04
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(masked language modeling) and next sentence
prediction before we trained the model to actu-
ally perform classification (Devlin et al., 2018).
For classification, we then used the already pro-
vided BertForSequenceClassification
model architecture without modifying it at all. We
conducted some informal experiments on the fol-
lowing hyperparameters:

• Number of layers to fine-tune BERT (keras-
implementation)

• rate of dropout (keras-implementation)

• Learning rate (both implementations)

• Number of epochs

5 Submitted Runs

5.1 Run 1
Run 1 was a submission that was trained on 11536
samples and evaluated on 1000 samples. It used
the pytorch-implementation with the German
BERT model and the following Hyperparameters:

Hyperparameter Size
Learning rate 0.00002
# of epochs 5

Table 1: Set Hyperparameters of run 1.

5.2 Run 2
Run 2 was a blind submission, which we trained on
all of the available 12536 samples, which means we
did not know how well the system would actually
perform. It was a pytorch-implementation using
the German BERT model as well and used the
following Hyperparameters:

Hyperparameter Size
Learning rate 0.00002
# of epochs 5

Table 2: Set Hyperparameters of run 2.

5.3 Run 3
Our third submission was made with the keras-
implementation and Google-Research’s multilin-
gual model. Even though we were observing sig-
nificantly worse performance using this model, we

were interested in how well this model would per-
form. This submission was trained with the follow-
ing Hyperparameters:

Hyperparameter Size
Learning rate 0.00002
# of epochs 3
# of fine-tuned layers 3
Dropout 0.5

Table 3: Set Hyperparameters of run 3.

5.4 Training Times

All of our experiments were conducted on a sin-
gle RTX 2080ti GPU. The fine-tuning of the Ger-
man BERT model took around 60 minutes for 3
epochs, and the training of the classification tasks
for runs 1 and 2 took around 15 minutes. The
keras-implementation of run 3 finished in 6 min-
utes. It is very impressive that using such powerful
and large models is possible within very reason-
able time-frames on consumer grade GPUs, and
the practice of open-sourcing these large pretrained
models should be applauded.

6 Results

We pre-calculated the F1-score for our different
systems:

Features F1 Diff
run 2: with all data - -
run 1: German BERT + fine-tuning 0.65 -
(no submission): German BERT 0.63 -0.02
run 3: multilingual BERT 0.53 -0.12

Table 4: Pre-calculated F1-scores of the models.

Features F1 Diff
run 2: with all data 0.53 -
run 1: German BERT + fine-tuning 0.52 -0.01
(no submission): German BERT 0.50 -0.03
run 3: multilingual BERT 0.43 -0.1

Table 5: Final F1-scores of the models.

From these results it is obvious that a language
specific BERT model improves the performance of
a system. This should hold for any language. We
also assume that our models are not yet saturated
and that more training data would help achieve
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Class F1
OTHER 0.87
ABUSE 0.59
INSULT 0.54
PROFANITY 0.56

Table 6: F1-score distribution of the different
classes for run 1: German BERT with fine-tuning.

an even higher score without any modification to
the model, especially because more samples from
the underrepresented classes should help the BERT
model to get a better grasp of what for example
makes a tweet an INSULT and not an abusive tweet.
Another observation to point out is that fine-tuning
a BERT model to task-specific data seems to im-
prove the score even further. Hence, given enough
training examples, BERT might be all you need.

7 Conclusion

After BERT has revolutionized the NLP-
Community, we have applied it to the task of
German offensive language detection. A common
problem with neural approaches is that they usually
require a larger amount of training data than more
traditional machine learning approaches. However,
large, pre-trained language models seem to model
a language well enough so that even with a rather
small dataset of 12536 they can be used to achieve
impressive results. It was also very impressive
to see that, even though PROFANITY made up
only 3.8% of the training data, without any further
data augmentation or oversampling, the BERT
model did not face the problem of not predicting
PROFANITY at all. Hence, our submission shows
that relatively good results can be achieved without
spending many resources on feature engineering
or training large models, as fine-tuning existing
released models does not take a lot of time.
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