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Introduction

The Conference on Natural Language Processing (‘“Konferenz zur Verarbeitung natiirlicher
Sprache”, KONVENS) aims at offering a broad perspective on current research and developments
within the interdisciplinary field of natural language processing. It allows researchers from all
disciplines relevant to this field of research to present their work.

The 15th KONVENS “Bridging the gap between NLP and human understanding” took
place October 9—11, 2019, at Friedrich-Alexander-Universitit Erlangen-Niirnberg, Germany. It
was the first KONVENS in an annual schedule, following KONVENS 2018 in Vienna, Austria,
and preceeding KONVENS 2020 in Ziirich, Switzerland. KONVENS 2019 was collocated with
the GermEval Workshop and a Statistics Tutorial.

The conference was organized by the Chair of Computational Corpus Linguistics led by
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BERT for Named Entity Recognition in
Contemporary and Historical German

Kai Labusch
Staatsbibliothek zu Berlin -
PreuBBischer Kulturbesitz
10785 Berlin, Germany
kai.labusch
@sbb.spk-berlin.de

Abstract

We apply a pre-trained transformer based
representational language model, i.e.
BERT (Devlin et al., 2018), to named entity
recognition (NER) in contemporary and
historical German text and observe state
of the art performance for both text cate-
gories. We further improve the recognition
performance for historical German by un-
supervised pre-training on a large corpus of
historical German texts of the Berlin State
Library and show that best performance
for historical German is obtained by unsu-
pervised pre-training on historical German
plus supervised pre-training with contem-
porary NER ground-truth.

1 Introduction

The transformer (Vaswani et al., 2017) is a recent
neural network architecture that has been used as
the central building block of representational lan-
guage models such as GPT (Radford et al., 2018) or
BERT (Devlin et al., 2018). These representational
models can either be utilized to derive features that
serve as input for other models such as a long short
term memory (LSTM) and/or a conditional random
field (CRF) or they can be directly trained on some
supervised task. In this paper, we follow the lat-
ter approach and train a pre-trained BERT model
directly for named entity recognition (NER) tasks.

In contrast to contemporary German, historical
German texts pose multiple challenges on a poten-
tial algorithm because their language is less stan-
dardized and their digital representation has been
typically obtained by optical character recognition
(OCR) that has been shown to be error prone in this
particular scenario (Federbusch et al., 2013).

In the experiments presented below, we evaluate
the performance of BERT on two contemporary
German NER data sets as well as on three different

Clemens Neudecker
Staatsbibliothek zu Berlin -
PreuBischer Kulturbesitz
10785 Berlin, Germany
clemens.neudecker
@sbb.spk-berlin.de

David Zellhofer
Staatsbibliothek zu Berlin -
PreuBBischer Kulturbesitz
10785 Berlin, Germany
david.zellhoefer
@sbb.spk-berlin.de

historical German NER corpora (see Sec. 5). We
get best results for historical German by applica-
tion of unsupervised pre-training on a large historic
german text corpus plus supervised pre-training us-
ing contemporary German NER ground-truth. In
contrast best results for contemporary German are
obtained without unsupervised pre-training. The
large historical German text corpus that is used for
unsupervised pre-training has been extracted from
the digital collections of the Berlin State Library
(Staatsbibliothek zu Berlin/SBB).

The software used in the experiments is provided
for download !.

2 Background

The SBB is digitizing its copyright-free holdings
and makes them publicly available online in various
formats for direct® or automated® download. As
part of an on-going process, a growing amount
of OCR-derived full-texts of the digitized printed
material is provided in ALTO* format but is mainly
used for internal use cases such as full-text indexing
and other information retrieval tasks.

However, OCR of historic documents is signi-
ficantly more difficult than OCR of modern texts
due to the large variety of fonts, layouts, mixed
languages, and non-standardized orthography of
printed texts from before 1850. As a consequence,
texts generated by standard OCR contain a high
amount of word errors. Similar challenges have
been described by (Lopresti, 2009) and (Alex and
Burns, 2014) who have noted that the quality of
text analysis is directly tied to the level of noise in
a document. Additional difficulties are caused by
the historic language (Piotrowski, 2012).

Despite these obstacles, natural language pro-
cessing — and NER in particular — strongly con-

Uhttps://github.com/qurator-spk/sbb_ner
Zhttps://digital.staatsbibliothek-berlin.de
3https://digital.staatsbibliothek-berlin.de/oai
“https://www.loc.gov/standards/alto/
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tribute to an improvement of the user experience
as they leverage supportive means for exploration
and search within large text corpora. Furthermore,
a growing research interest from the Digital Hu-
manities in text and, e.g., data mining for historical
social network analysis relies on the extraction of
named entities from the digitized and OCR-derived
full-text collections.

First experiences with NER for historical texts
at the SBB were obtained in the Europeana News-
papers project where a CRF (Finkel et al., 2005)
was trained on manually labeled OCR texts of his-
toric newspapers (Neudecker et al., 2014). This ap-
proach was superseded in the Oceanic Exchanges
project where (Riedl and Padd, 2018) achieve state
of the art results for historic German by combining
a bidirectional long short term memory (biLSTM)
with a CRF as top layer and transfer learning.

The work presented in this paper aims towards a
versatile approach that performs decently on texts
of different epochs, i.e. contemporary and histori-
cal, without requirement of intense parameter tun-
ing with respect to particular target corpora.

The paper is structured as follows: The next
section outlines the relevant work in the context of
the presented approach. Section 4 describes four
data sets that are used in the three experiments
presented. In particular, it presents the data of the
Berlin State Library that has not been published so
far. Then, Section 5 gives a brief description of the
technical details of the experiments. The outcome
of the experiments is discussed and interpreted in
Section 6. The paper concludes with an outlook on
future work.

3 Related Work

(Grover et al., 2008) designed a rule-based system
for recognizing person and place names in digitized
records of British parliamentary proceedings from
the late 17th and early 19th centuries and report
F—scores from 70.35 to 76.94 percent.

(Packer et al., 2010) compare the performance of
a dictionary-based extractor, a regular expression
rule-based extractor, a Maximum Entropy Markov
Model (MEMM) and a CRF on historical OCR-
processed documents with a mean word error rate
of 56 percent, revealing that a voting-based ensem-
ble method can boost Fj—scores from 60.7 to 68
percent.

For a corpus of historic French newspapers, (Gal-

ibert et al., 2012) report F;—scores between 55.2
and 68.9 percent for two stochastic and one rule-
based system by including noisy entities in the
annotations.

In the FEuropeana Newspapers project,
(Neudecker et al., 2014) measure Fj—scores
of 46.6 to 73.27 percent with a CRF trained on
annotated noisy OCR from historic newspapers
in Dutch, French, and German. Fj—scores up to
60 percent are obtained for a dataset of Finnish
OCR-treated newspapers from the 19th and early
20th century with a rule-based system (Kettunen
et al.,, 2016) and the Finnish Semantic Tagger,
a lexicon-based semantic tagger (Kettunen and
Ruokolainen, 2017).

A supervised machine learning system (Nouvel
et al., 2011) has been shown to improve Fj—score
up to 76.1 percent (Ehrmann et al., 2016). This
result was improved furthermore by (Riedl and
Padé, 2018) where transfer learning from the Ger-
man Europeana Newspapers data enabled the bil-
STM+CREF classifier to reach a top Fj—score of
78.56 percent (see Table 2).

To conclude, (Schweter and Baiter, 2019) re-
cently employed BERT features for NER resulting
in F1—scores from 75.31 to 79.14 percent while
their best models that have been trained on news-
paper data of corresponding time epochs deliver
F1—scores from 77.51 to 85.32 percent (see also
Table 3).

4 Datasets

4.1 Europeana Newspapers Historic German
Datasets

The Europeana Newspapers NER corpus was de-
rived from historical newspapers that have been
processed by an OCR and subsequently annotated
(Neudecker, 2016). Therefore, that corpus con-
stitutes a good match for the kind of material ad-
dressed in this paper. It comprises data sets for
historical Dutch, French, and German where the
German data has been sourced from newspapers
from 1926 from the Dr Friedrich Tessmann Library
(LFT), newspapers from 1710 to 1873 from the
Austrian National Library (ONB), and newspapers
from 1872 to 1930 from the Berlin State Library
(SBB).



4.2 CoNLL 2003 German Named Entity
Recognition Ground Truth

The German data used in the CoNLL 2003 task
(Tjong Kim Sang and De Meulder, 2003) has been
taken from a German newspaper, the Frankfurter
Rundschau, from 1992. The CoNLL set posesses
two different test sets, i.e. TEST-A and TEST-B.
We use both in the experiments only for testing
(DE-CoNLL-TEST).

4.3 GermEval Konvens 2014 Shared Task
Data

The GermEval dataset (Benikova et al., 2014) has
been sourced from sampling German Wikipedia
and various online newspapers. The GermEval
dataset posesses a training, a development and a
test set. The development set has not been used at
all in the experiments.

4.4 Distribution of Entities

The distribution of labeled entity tokens within the
different NER ground truth data sets is shown in
Table 1.

LOC ORG PER Size
DE-CoNLL-TEST 0.025 0.033 0.037 103387
DE-CoNLL-TRAIN 0.025 0.020 0.022 206931
GermEval-TEST 0.028 0.021 0.027 96499
GermEval-TRAIN 0.028 0.022 0.027 452853
LFT 0.062 0.037 0.067 70259
ONB 0.066 0.007 0.115 28012
SBB 0.022 0.010 0.019 47281

Table 1: Distribution of entity tokens amongst different
training sets and frequencies of entity tokens across different
training sets.

4.5 Digital Collections of the Berlin State
Library (DC-SBB)

At the time of the writing of this paper, the dig-
ital collections of the SBB contain 153,942 digi-
tized works from the time period of 1470 to 1945
(see Figure 1). Up to now, 28,909 works have
been OCR-processed resulting in 4,988,099 full-
text pages.

We applied a sequence of filter steps in order
to exclude pages that do not contain german text,
have very bad OCR results or contain content that
is unlikely to be continuous text.

For each page with OCR text, we predicted its
language by means of the langid tool (Lui and
Baldwin, 2012). Figure 2 illustrates the number
of pages per language limited to the most frequent

8000
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2000 i J‘ d

01400 1500 1600 1700 1800 1900 2000

Figure 1: Distribution of publication dates in the digital
collections of the Berlin State Library (DC-SBB).

languages. For 19,669 works, the language is con-
sistent over all pages as can be seen from the his-
togram of detected languages per work that is given
in Figure 3. Due to this consistency for the vast
majority of all works, we consider the per page lan-
guage detection provided by langid as sufficiently
reliable means to filter out non-german pages. Ad-
ditionally, we take into account only pages with a
confidence score of the German language detection
greater than 0.999999.

Fulltexts of pages where the OCR did not work
at all, for instance pages that contain hand-written
parts, tend to look like random character sequences.
In order to exclude these “broken” pages from the
data, we computed the distribution of the per-page
character entropy rate over all pages. Figure 4
depicts the distribution of the per page character
entropy rate in the DC-SBB. We excluded all pages
with a character entropy rate below the 0.2 per-
centile or above the 0.8 percentile of that distribu-
tion from the dataset.

As a consequence of these filter steps, 2,333,647
pages of unlabeled historical German text remain
and form the DC-SBB dataset. The full dataset
is available freely online (Labusch and Zellhofer,
2019).

5 Experiments

In the scope of the three presented experiments, the
BERT model is trained directly with respect to the
NER by implementation of the same method that
has been proposed by the BERT authors (Devlin et
al., 2018). During training, the maximum sequence
length is set to 128.

Throughout all experiments, we use the Adam
optimizer algorithm with decoupled weight decay
(Loshchilov and Hutter, 2019) where the weight



3000000

2500000
& 2000000
g
ﬁ&jOOOOO

1000000

500000

0

nl en fr es
language

Figure 2: Number of pages per language as detected by
langid for the most common languages.
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Figure 3: Number of detected languages by langid per DC-
SBB document (documents with >5 languages are omitted).

decay is set to 0.03. We apply a linear learning
rate schedule where warm-up and cool-down of the
learning rate take 40% of the performed training
steps. We set the target learning rate to 3% 10~ and
use a batch size of 32 during all the experiments.
We carried out 7 training epochs if not noted other-
wise.

Accumulative gradient descent for both super-
vised and unsupervised learning is applied due to
hardware limitations that would otherwise enforce
a smaller batch size. Instead of the original BERT
implementation, all experimental runs rely on an
equivalent PyTorch implementation provided by
(Hugging Face, 2019) since accumulative gradient
descent cannot be easily carried out using the cur-
rent Tensorflow (< 2.0) implementation of BERT.

5.1 BERT-Base Multi-Lingual Cased Model

In the first batch of experiments, we explore the
NER performance of the baseline model as it has
been provided by Google 5. We use their BERT-

Shttps://github.com/google-
research/bert/blob/master/multilingual.md
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Figure 4: Distribution of the per page character entropy rate
of the documents in the DC-SBB dataset. The 0.2 and 0.8
percentiles have been marked with a vertical line.

Base multi-lingual cased model that has been pre-
trained on 104 languages. It has 12 transformer
blocks where each transformer block has 768 layers
with 12 attention heads and uses a vocabulary size
of 119,547. The entire model has about 110 million
parameters. The left Fj-column of Table 2 shows
the results of the BERT-Base model for different
combinations of training and test sets.

5.2 BERT-Base Model with Pre-Training on
DC-SBB

In this experimental run, we study the impact of
unsupervised pre-training with respect to the NER
performance on historical and contemporary data.
Therefore the multi-lingual BERT-Base model is
pre-trained unsupervisedly on the DC-SBB dataset
(see Sec. 4.5). The unsupervised pre-training task
is composed of the “Masked-LM” and “Next Sen-
tence Prediction” tasks that have been proposed in
(Devlin et al., 2018).

The pre-training of the base model has been run
for approximately 500 hours on a single NVIDIA
2080 GPU which is equivalent to 5 epochs. Dur-
ing pre-training, the batch size is set to 128, the
learning rate is set as in the NER task training and
a weight decay of 0.01 is used. The middle Fj-
column of Table 2 shows results of the BERT-Base
model being pre-trained on the DC-SBB data for
different combinations of training and test sets.

5.3 5-fold Cross Validation and Comparison
with State of the Art Approaches

Since the NER performance varies heavily for dif-
ferent train/test set combinations and in order to
make our results comparable to results in (Riedl
and Padé, 2018) and (Schweter and Baiter, 2019),
we run a third batch of experiments where a 5-fold



cross validation is performed for the three historical
German corpora.

In this run, the impact of pre-training on the
model performance under cross validation is eval-
uated. We apply unsupervised pre-training on the
DC-SBB data as well as supervised pre-training
on contemporary NER ground truth. In case of
supervised pre-training, 7 training epochs are run
again with the same learning parameters described
above. Finally, unsupervised and supervised pre-
training are combined where unsupervised is done
first and supervised second. The corresponding
cross validation results are shown in Table 3.

6 Discussion

The NER ground truth sets that have been used
in the experiments described above are diverse in
terms of size and with respect to the frequencies of
the entity classes as Table 1 summarizes.

While the contemporary data sets GermEval and
CoNLL show similar frequencies of entity classes,
the frequencies of entities within the historical data
sets LFT, ONB, and SBB deviate significantly. The
SBB set comes closest to the contemporary sets in
terms of entity frequencies.

Futhermore, there is far more contemporary
ground truth available than for historical texts. The
amount of ground truth also varies significantly
among the various historical datasets.

Table 2 shows the NER performance in terms of
the Fj—score obtained with different training/test
combinations using either the original BERT-Base
model or a BERT-Base model that has been pre-
trained on the DC-SBB set. (Riedl and Pado, 2018)
present a comprehensive evaluation of CRF and
bidirectional long short term memory (biLSTM)
with CRF layer approaches for NER in contem-
porary and historical German, relying on a partial
utilization of the ground truth data that is consid-
ered in this work. The authors use character em-
beddings together with different pre-trained word
embeddings as input features of the biLSTMs. For
those training/test pairs that have corresponding
results in (Riedl and Padg, 2018), their best result
is listed in the rightmost F;-column of Table 2.

Interestingly, unsupervised pre-training on DC-
SBB data worsens BERT performance in the case
of contemporary training/test pairs while the per-
formance improves for all experiments that test
on historical ground truth with one exception
(CoNLL/LFT). Please note that the same training

BERT multi- (Riedl
lingual-cased
and
Pado,
2018)
pre-train: none DC-SBB none
train test F F F
CoNLL CoNLL 84.5 82.6 82.99
LFT 52.9 52.0 49.28
ONB 56.1 56.6 58.79
SBB 67.6 683 -
GermEval GermEval 88.6 86.7 82.93
LFT 54.2 54.8 55.99
ONB 60.0 62.6 61.35
SBB 63.1 65.1 -
GermEval + CoNLL 80.2 794 -
CoNLL
GermEval 88.0 85.7 -
LFT 55.1 552 -
ONB 58.6 60.1 -
SBB 64.1 65.1 -
LFT ONB 71.5 759 65.53
SBB 54.4 569 -
LFT+SBB ONB 72.5 75.7 -
ONB LFT 59.4 61.5 4935
SBB 51.3 54.6 -
ONB+LFT SBB 54.0 555 -
ONB+SBB LFT 61.9 62.7 -
SBB LFT 53.9 549 -
ONB 63.4 66.0 -

Table 2: BERT NER-performance on different combinations
of training and test sets. For all training/test pairs the same
number of training epochs has been executed and the same
learning parameters have been used.

Left (pre-train none): NER-performance of the non-
modified multi-lingual BERT-Base model as provided by
Google’.

Middle (pre-train DC-SBB): NER-performance of the
multi-lingual BERT-Base model that has been pre-trained for
5 epochs on the DC-SBB data with objective “Masked-LM”
and “Next Sentence Prediction” as proposed in (Devlin et al.,
2018) prior to the NER supervised training.

Right (Riedl and Padé, 2018): NER-performance as
published in (Riedl and Pad6, 2018) where multiple state-
of-the art CRF only and biLSTM + CRF approaches using
different character and word embeddings have been evaluated.

Pre-training on DC-SBB improves results for historical Ger-
man datasets, independently on the type of NER-ground-truth
used for supervised training whereas the original BERT-base
model provides better results on contemporary German test
sets.



BERT multi-lingual-cased (Riedl and (Schweter
Pado6, 2018) and Baiter,
2019)
5-fold cross pre-train precision recall F F F
validation on
SBB DC-SBB + GermEval + CoONLL  81.1 1.2 87.8 14 843 +1.1 - -
DC-SBB + CoNLL 81.04+2.1 87.6+1.8 842+19 - -
DC-SBB + GermEval 80.6 +1.8 874 +1.3 838+12 - -
CoNLL 81.0+1.9 86.6+2.2 83.7+15 - -
GermEval 79.7+1.8 872408 833 +£1.1 - -
GermEval + CoNLL 799 +2.1 864 +1.7 83.0+£1.9 - -
DC-SBB 79.1 £2.6 86.7+£0.7 82.7 £1.3 - -
none 79.1£36 8504+1.1 81.9+22 - -
ONB Newspaper (1703-1875) - - - - 85.31
DC-SBB+GermEval + CoNLL 81.54+1.8 87.8+14 846+15 - -
DC-SBB + GermEval 81.6 £2.5 875+1.6 845+1.8 - -
DC-SBB + CoNLL 81.74+28 87.5+1.9 845+23 - -
DC-SBB 81.8 +2.3 87.1£2.1 843+20 - -
GermEval 80.8 £2.1 854 +1.2 83.0+14 78.56 -
GermEval + CoNLL 80.0+1.5 84.7+1.6 823+15 - -
CoNLL 79.1 £2.5 845421 81.7+22 76.17 -
none 78.0+24 84.1+19 809+20 73.31 -
LFT Newspaper (1888-1945) - - - - 77.51
DC-SBB + CoNLL 70.0 £2.6 81.0+0.7 75.1£1.5 - -
DC-SBB + GermEval 699 £30 81.1 1.0 751418 - -
DC-SBB 70.0 3.5 80.8+1.4 75.0+£2.1 - -
DC-SBB + GermEval + CoNLL  69.8 £3.0 80.8 £0.9 749 +2.0 - -
GermEval 689 +2.7 793+14 737+19 7433 -
GermEval + CoNLL 69.1 £2.6 788 +13 73.6£1.5 - -
none 68.8+3.4 79.2+1.5 736422 69.62 -
CoNLL 68.4+3.1 79.1£1.3 733421 729 -

Table 3: 5-fold cross validation results for different historical German NER corpora where different pre-training steps have
been applied to the BERT model. For all experiments the same number of training epochs and the same learning parameters have
been used. Results in (Riedl and Padd, 2018) and (Schweter and Baiter, 2019) have been obtained for some 80/20 training/test

split.

None: Model as published by Google>.

DC-SBB: Model unsupervisedly pre-trained on DC-SBB.

CoNLL: Model supervisedly pre-trained on CoNLL training set.

GermEval: Model supervisedly pre-trained on GermEval training set.

DC-SBB + GermEval + CoNLL: First unsupervised pre-training for 5 epochs on the DC-SBB data.

vised pre-training on the joined GermEval and CoNLL NER ground truth.

Second super-

The NER-performance under cross-validation can be significantly improved by combination of unsupervised and su-
pervised pre-training. DC-SBB+GermEval+CoNLL pre-trained models show close to state-of-the-art performance on all three

historical datasets using exactly the same training parameters and number of training epochs.



data leads to significantly different performances
on varying test sets.

The original BERT model performs better than
the biLSTM+CRF models in the case of con-
temporary training/test combinations. The pre-
trained BERT model performs better than the biL-
STM+CRF models in the case of the majority
of historical training/test combinations except the
CoNLL/ONB and GermEval/LFT pairs.

The impact of the diversity of the ground truth
data sets makes it difficult to assess the actual per-
formance of the BERT models on the historical
data based on the results shown in Table 2 alone.
In order to further study and clarify the experi-
mental outcomes, another sequence of experiments
was performed to evaluate the NER performance
on the historical data under cross validation. The
corresponding results are shown in Table 3. As
above, the corresponding best results from (Riedl
and Pad¢, 2018) are listed, if available, though their
results have not been obtained under cross valida-
tion but for a fixed training/test split. (Schweter
and Baiter, 2019) present a recent study of NER in
historical German. They use a combined biLSTM
+ CRF model together with varying combinations
of character embeddings, contextualized string em-
beddings (Akbik et al., 2018), pre-trained word em-
beddings, and BERT-layer features. We included
their best results that have been obtained for a fixed
train/test split on the LFT and ONB data set in the
rightmost column of Table 3.

As illustrated by Table 3, various degrees of pre-
training successively improve the performance of
the BERT model. In case of the ONB and LFT
data unsupervised pre-training alone (DC-SBB)
provides the biggest part of improvement. Addi-
tional supervised pre-training adds only a small
improvement. In case of the SBB ground truth,
which is more similar to the contemporary data,
supervised pre-training contributes more to the per-
formance improvement.

BERT outperforms the biLSTM + CRF ap-
proaches that have been evaluated in (Riedl and
Pado, 2018) but the results are still worse than some
of the results reported in (Schweter and Baiter,
2019). Their best results rely on a pre-training
scheme that is adapted to the final target domain
whereas in our experiments the pre-training scheme
DC-SBB + GermEval + CoNLL provides very
good cross-validation performance for the three
historical German sets SBB, ONB, and LFT while

utilizing the same set of learning parameters.

7 Conclusion and Future Work

The historical texts of the SBB digital collections
originate from a broad period of time ranging from
1470 to 1945. A long term goal is to reliably con-
duct NER in this large text corpus in order to im-
prove the user experience for researchers interact-
ing with the library’s digitized holdings. Hence, a
versatile approach is required that can deliver de-
cent recognition performance for texts of different
time epochs and a variety of text categories.

Our results show that an appropriately pre-
trained BERT model delivers decent recognition
performance in a variety of settings and even pro-
vides state of the art performance in many cases
without extensive fine-tuning and optimization re-
quirements. This outcome encourages further re-
finement and an extension of the methodology that
has been evaluated in the presented experiments.

In the scope of this paper, we started all our ex-
periments from the BERT-Base model. An increase
of the model size is expected to improve the results
further (Devlin et al., 2018). Therefore, we plan to
re-run the experiments using BERT-Large which
requires even more computation time.

In particular, the unsupervised pre-training on
the DC-SBB set is computationally demanding. So
far, we performed only 5 training epochs though
further improvement in the unsupervised tasks
“Masked-LM” and “Next Sentence Prediction” is
still possible according to the trend of the loss. We
plan to compensate for some of the additional com-
putational demand by better and more GPU hard-
ware that is currently installed at the SBB.

We think that there is a lot of performance to
gain for historical text by adding more historical
ground-truth data. Therefore, we plan to add more
historical ground-truth data in the near future also
in cooperation with the SONAR project (Interfaces
to Data for Historical Social Network Analysis and
Research).

To end with, we plan to significantly reduce the
level of noise in the source OCR texts by means of
re-processing the digitized documents with LSTM
OCR software specifically trained on historical
texts and through the application of unsupervised
OCR post-correction methods based on neural net-
works and finite-state-transducers being developed
in the OCR-D project (Neudecker et al., 2019).
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Abstract

We present the first systematic supervised
learning approach for the extraction of
opinion sources and targets on German lan-
guage data. A wide choice of different
features is presented, particularly syntac-
tic features and generalization features. We
point out specific differences between opin-
ion sources and targets. Moreover, we ex-
plain why implicit sources can be extracted
even with fairly generic features. In or-
der to ensure comparability our classifier
is trained and tested on the dataset of the
STEPS shared task.

1 Introduction

While there has been much research in sentiment
analysis on typical text classification tasks, such
as subjectivity detection, polarity classification and
emotion classification, there has been notably less
work on opinion role extraction. This particularly
also concerns research done on languages other
than English. In opinion role extraction, we distin-
guish between opinion source extraction, where the
entities expressing an opinion are to be extracted,
and opinion target extraction, where the task is to
extract the entities or propositions at which senti-
ment is directed. For example, in (1) the sentiment
expression criticizes has as its source Switzerland
and as its target North Korea.

(1) [Switzerland goygcg] criticizes [North Korea target]-
(2) [The opposition goyrce] claims [that the health service
is getting fewer resources Targer|-

In this work, we address opinion role extraction
on German data. Research on this specific task and
language has been kicked off by the shared task on
Source, Subjective Expression and Target Extrac-
tion from Political Speeches (STEPS) with its two
editions from 2014 (Ruppenhofer et al., 2014a) and
2016 (Ruppenhofer et al., 2016). Our experiments
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are carried out on these data since, to the best of
our knowledge, they are the only publicly available
labeled data comprising annotation for opinion role
extraction on German of sufficient size from which
to train a classifier. These data also allow us to
directly compare our work to systems that have
participated in this shared task.

In this paper, we assume that the underlying
sentiment expression which evokes opinion source
or opinion target has already been identified. De-
coupling role extraction from the identification of
sentiment expressions seems reasonable to us since
previous research has focused on subjectivity detec-
tion, i.e. the detection of sentiment expressions in
context. The latter task is also considerably easier
in which generic and resource-poor features yield
good results. Even STEPS acknowledged this by
offering a subtask where sentiment expressions are
already provided and thus researchers may focus
solely on opinion role extraction.

The contributions of this paper are that we
present the first in-depth study to what extent differ-
ent features are relevant for the task of opinion role
extraction on German data. Since we present work
on German language data this means that there ex-
ist fewer NLP tools and/or tools of lesser quality.
We will examine which tools actually help. While
most previous approaches only focused on the ex-
traction of either sources or targets, we consider
both entity types and highlight notable differences
between these tasks. We also critically assess the
amount of training data that is currently available.
Finally, we conduct an evaluation against previous
participations in the STEPS 2016 shared task to
demonstrate the effectiveness of our approach.

We acknowledge that deep learning methods
have recently received considerable attention in
the NLP community. However, in this work we
follow a more traditional feature-based approach
employing supervised learning. The reason for this
is that in the area of opinion role extraction, the
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usage of deep learning methods has only produced
moderate results (Katiyar and Cardie, 2016). A ma-
jor caveat of deep learning methods is their reliance
on distributional word representations (e.g. word
embeddings). Opinion role extraction, however,
is a task which relies on various types of linguis-
tic information which are more expressive than
the most robust word embeddings, such as syntac-
tic dependency relations. Moreover, the amount
of available training data for German is notably
smaller than what is available for English (approxi-
mately by a factor of 10). This makes our setting
fairly unfavourable for deep learning which usually
outperforms traditional supervised approaches only
if large amounts of labeled data are available.

2 Related Work

Like our proposed classifier, most previous ap-
proaches for opinion role extraction are supervised
classifiers employing features from various infor-
mation sources. They include surface-level infor-
mation (Choi et al., 2005; Wiegand and Klakow,
2010), syntactic information (Choi et al., 2005;
Kessler and Nicolov, 2009) and even information
from semantic role labeling (Bethard et al., 2006;
Kim and Hovy, 2006; Johansson and Moschitti,
2013). While particularly the latter type of infor-
mation is very predictive for this task, we cannot
apply it on our setting, since we are not aware of
any robust semantic-role labeler for German.

Most previous research on opinion role extrac-
tion either only addressed opinion sources (Choi et
al., 2005; Wiegand and Klakow, 2010; Johansson
and Moschitti, 2013) or opinion targets (Kessler
and Nicolov, 2009; Jakob and Gurevych, 2010). In
this work, we look at both tasks. Thus we can show
that there is a notable difference between these two
tasks which also means that different classifier pa-
rameters and feature sets are required for those two
different subtasks.

So far, work on opinion role extraction has
mostly been carried out on English data. There
has been some work on Chinese and Japanese as
part of the NTCIR Opinion Analysis Task (Seki et
al., 2007). Work on German that addresses both
opinion source and target extraction has exclusively
been carried out as part of the STEPS 2014 and
2016 shared tasks. There were few submissions
made to the latter shared tasks. The systems pre-
sented can be divided into 3 different types:

* rule-based approaches: Wiegand et al.
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(2014) present a system that works on extrac-
tion rules defined on sentiment expressions.
The system applies heavy normalization of
syntactic parse trees so that simple extraction
rules cover a wide range of different sentences.
Wiegand et al. (2016) is an extension of that
system in which further components, such as
a module to detect grammatically induced sen-
timent, are added. Despite only fairly generic
extraction rules, this approach produced fairly
good results.

translation-based approaches: Wiegand et
al. (2014) also present a second system which
is a supervised learning system trained on the
MPQA corpus which has been automatically
translated into German. That approach no-
tably suffers from the bad translation quality.
supervised approaches: Both Kriese (2016)
and Wiegand et al. (2016) present a supervised
classifier. While Kriese (2016) proposes mod-
els that build on path bundles derived from a
constituency parse tree, Wiegand et al. (2016)
examine an SVM trained on various features
including features from syntactic parses. The
results are not very conclusive as no proper
feature ablation studies are carried out.

Our work substantially extends previous super-
vised systems as we use more features (e.g. gen-
eralization features, features derived from a con-
stituency parse tree, subcategorization features).
Moreover, we optimize various parameters and fea-
tures on some development set. Thus we ensure
that the features and classifiers are used in their
best possible configuration. Finally, we conduct
various experiments examining different feature
subsets. These experiments are vital in order to
make general conclusions regarding which type of
information is really required for this task.

3 Data & Annotation

For our experiments we employ the labeled datasets
from the STEPS 2014 shared task (Ruppenhofer et
al., 2014b) and the STEPS 2016 shared task (Rup-
penhofer et al., 2016) comprising 605 and 580 sen-
tences, respectively. For STEPS 2016, the STEPS
2014 dataset was revised in order to be compati-
ble with the new annotation scheme introduced for
STEPS 2016. We use this revision of the STEPS
2014 dataset. The advantage of using datasets from
the revised annotation scheme is that this scheme



Property Freq
number of sentences 1185
average length of sentence 21
sentiment expressions 4646
sentiment expr. with neither source nor target 753
number of sources 3402
number of targets 3378
proportion of development set 10%

Table 1: Statistics of the dataset.

has been shown to produce a sufficiently high inter-
annotation agreement (Ruppenhofer et al., 2016).

Since both datasets are fairly small, we merged
them and conduct our experiments on the union
of both datasets. Table 1 provides some descrip-
tive statistics of our resulting dataset. 10% of the
dataset were reserved as development data. On this
data, we optimized various features and parameters
of our classifier (§7.1).

4 Classifier and Instance Space

We pursue a supervised learning approach and de-
cided in favor of using SVMs. As a tool, we em-
ploy SVM/ " (Joachims, 1999). We consider the
extraction of sources and targets as two completely
separate tasks.

Both sources and targets always relate to a
specific sentiment expression which evokes them.
Therefore our instance space comprises tuples of
sentiment expression and candidate opinion source
phrase for sources, and sentiment expression and
candidate target phrase for targets (Table 2). As
a candidate source phrase, we consider all noun
phrases (NPs) and preposition phrases (PPs) from
the sentence in which the given sentiment expres-
sion occurs, while for targets, we consider any con-
stituent of a sentence to be an candidate. This
difference can be explained by the fact that only
persons qualify as a source (hence NPs and PPs)
while targets represent a more heterogeneous class
of entities. For example, in (1) it is an NP repre-
senting a country while in (2) it is a complement
clause representing a proposition.

5 Implicit Opinion Sources

A considerable number of opinion sources in our
dataset are implicit. That is, there is no constituent
in the relevant sentence that represents this opinion
source. Instead the opinion source is the speaker
of the utterance. For example, in (3) the sentiment
expression offensichtlich (obvious) has no explicit
source.
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(3) [Die Griinde dafiir Togger] sind offensichtlich.
([The reasons for that Torger] are obvious.)

The likelihood of an opinion source being im-
plicit very much depends on its sentiment expres-
sion. For example, a word such as obvious will
predominantly have an implicit source. Table 3
shows the distributions of the different source types
according the part of speech of their sentiment ex-
pressions. There is clearly a correspondence. For
example, of all parts of speech the likelihood of
implicit sources is highest with adjectives.! A clas-
sifier that takes into account the part of speech of
sentiment expressions is already able to make good
guesses as to the presence or not of an explicit
source (for example by predicting all opinion ad-
jectives as having an implicit source and all opinion
nouns having an explicit source). Further, the lexi-
cal knowledge of sentiment expressions as a feature
will also be beneficial. For example, we found that
more than one third of the verbal sentiment ex-
pressions having implicit sources are evoked by
verbs conveying so-called grammatically-induced
sentiment (Wiegand et al., 2016). This concerns
sentiment that is conveyed by certain modalities

®-(5).

(4) [Deshalb miissen wir diesen Prozess stirker ankurbeln.

TARGET]
([That is why we must to crank this process up. Tarcer])

(5) [Sie sollten hier ein Signal setzen. Targer)
([You should send a clear message here. Targer])

Such sentiment is evoked by frequently occur-
ring auxiliary and modal verbs, such as werden
(will) or sollen (should). Even on comparatively
small training corpora, such as ours, this informa-
tion can be directly learned. That is, no manual
lexicon is required for detecting such cases of sen-
timent as the precision of those verbs to predict an
implicit source on our dataset is about 94%.

In order to enable our supervised learner to pre-
dict implicit sources, we simply need to adjust the
instance space for opinion sources. In addition
to explicit constituents from the sentence (see dis-
cussion above), we also add a dummy instance
with an empty candidate source phrase. These in-
stances will represent implicit sources. Indeed our
exploratory experiments on the development set,
as shown in Table 4, confirmed that just adding
dummy instances for sources with our full feature

I'We found that the actual proportion of implicit sources
on that part of speech is actually even higher, since many

sentiment adjectives having an explicit source actually turned
out to be verbs erroneously tagged as adjectives.



Role Instance Candidate Phrases
source | <sentiment expr., candidate phrase> | all NPs, PPs and an empty dummy phrase for implicit sources (§5)
target <sentiment expr., candidate phrase> | all phrases of a sentence

Table 2: Instances for opinion sources and targets (the sentiment expression is always given).

Adj Noun Verb
Source | Freq Perc | Freq Perc | Freq Perc
explicit 154272 | 1411 80.T | 1164  71.1
implicit 412 728 350 199 472 289

Table 3: Parts of speech of implicit sources.

w/o Implicit Instances
Prec Rec F1
56.6 276 37.1

w Implicit Instances
Prec  Rec F1
558 49.7 52,6

Table 4: Impact of implicit sources instances.

set (that includes the above features describing the
part of speech and the lemma of the sentiment ex-
pression) drastically increases extraction perfor-
mance for source extraction.

6 Feature Design

Our feature set is too large for us to be able to per-
form an evaluation on each individual feature. In-
stead, we group our features according to 5 mean-
ingful dimensions and evaluate them. In the fol-
lowing, we discuss those dimensions. Our com-
plete feature set is heavily based on features em-
ployed for opinion role extraction in English. For
more motivation of our feature set, we therefore
refer the reader to previous work, particularly by
Choi et al. (2005) and by Kessler and Nicolov
(2009).

The first dimension groups our features accord-
ing to the linguistic representation on which they
are based. For instance, there are features that en-
code some semantic information, others describe
syntactic or just surface-based information.

The second dimension is the focus of the feature.
We distinguish between features that describe the
individual linguistic entities involved in role extrac-
tion, that is, the sentiment expression or the can-
didate source/target phrase; features that describe
their relation; and features that describe further
context (i.e. features that focus on words other than
the sentiment expression or candidate phrase).

Our third dimension divides the feature set into
simple and complex features. By complex features,
we understand features that require the usage of
some lexical resource or a computationally inten-
sive NLP tool (here we consider every tool more
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complex than a part-of-speech tagger).

The fourth dimension states whether a feature
generalizes some lexical information or not. The
generalization may be produced in a data-driven
way (e.g. Brown clustering (Brown et al., 1992))
or with the help of some lexical resource (e.g. Ger-
maNet (Hamp and Feldweg, 1997)).

The final dimension groups our feature set ac-
cording to the information source it uses. By infor-
mation source, we define the resource or NLP tool
that is used in order to extract a particular feature.
Table 5 lists all features we use and also character-
izes them according to each dimension.

For part-of-speech tagging we used TreeTagger
(Schmid, 1994), for constituency parsing the Berke-
ley Parser (Petrov et al., 2006), for dependency
parsing ParZu (Sennrich et al., 2009), for named-
entity recognition, we used the tagger by Faruqui
and Padé (2010). The Brown clusters were in-
duced with the help of SRILM (Stolcke, 2002).
We induced 1000 clusters from the HGC corpus®.
As a subcategorization lexicon, we used IMSLex
(Fitschen, 2004).

7 Experiments

7.1 Parameter Optimization

Before we examine the different feature subsets, we
need to optimize some feature and classification
parameters. For these experiments, we always test
a classifier on the development data. The classifiers
are trained on the remaining data. We now list
these optimized settings:

» Best level of generalization for GermaNet hypernyms
(we do not just consider the direct hypernyms but also
higher-up ancestors): for both sources and targets we
consider hypernyms up to their third ancestors.

* Best cut-off value for length of part-of-speech se-
quences: 5 for sources; all sequences for targets.

* Best cut-off value for length of constituency paths: 5
for sources; 10 for targets.

* Best cut-off value for length of dependency relation
paths: 5 for sources; 5 for targets.

* Best cost-parameter that adjusts the classifier to the
imbalanced class distribution: j=35 for sources; j=6
for targets. (In opinion role extraction, like all entity
extraction tasks, the entities to be extracted represent a

thtp ://www.ims.uni-stuttgart.de/
forschung/ressourcen/korpora/hgc.html



Dimensions

Feature Representation Focus Simplicity | Generalizing Info. Source
head of sentiment expr. word individual simple no lexical unit
head of candidate phrase word individual simple no lexical unit
context as bag of words word context simple no lexical unit

Is candidate phrase first phrase surface individual simple no other

of sentence?

orientation of candidate phrase surface relation simple no other

in relation to sentiment expr.

distance between candidate surface relation simple no other

phrase and sentiment expr.

cluster id of head of sentiment semantic individual complex yes Brown clustering
expr.

cll?ster id of head of candidate semantic individual complex yes Brown clustering
phrase

cluster ids of context words semantic relation complex yes Brown clustering
named entity of candidate semantic individual complex yes named-entity tagging
phrase

synset 1d(s) of head of sentiment semantic individual complex yes GermaNet
expr.

syrrl)set id(s) of head of candidate semantic individual complex yes GermaNet
phrase

GermaNet word class of head of semantic individual complex yes GermaNet
sentiment expr.

GermaNet word class of head of semantic individual complex yes GermaNet
candidate phrase

GermaNet word class of words semantic relation complex yes GermaNet

in context

pos of head of sentiment expr. syntactic individual simple no pos tagging

pos of head of candidate phrase syntactic individual simple no pos tagging

pos sequence between candidate syntactic relation simple no pos tagging
phrase and sentiment expr.

subcategorization frame accord- syntactic individual complex no subcat. lexicon
ing to subcat. lexicon

number of arguments on subcat- syntactic individual complex no subcat. lexicon
egorization frame according to

subcat. lexicon

phrase Jabel of candidate phrase syntactic individual complex no constituency parsing
tuple of phrase label of candi- syntactic relation complex no constituency parsing
date phrase and pos of head of

sentiment expr.

pos-tuple of head of candidate syntactic relation simple no constituency parsing
phrase and head of sentiment

expr.

subcategorization frame derived syntactic individual complex no constituency parsing
from constituency tree

number of arguments in subcat- syntactic individual complex no constituency parsing
egorization frame derived from

constituency tree

constituency label path between syntactic relation complex no constituency parsing
heads of candidate phrase and

sentiment expr.

length of constituency label syntactic relation complex no constituency parsing
path between heads of candidate

phrase and sentiment expr.

subcategorization frame derived syntactic individual complex no dependency parsing
from dependency tree

number of arguments on subcat- syntactic individual complex no dependency parsing
egorization frame derived from

dependency tree

dependency relation path be- syntactic relation complex no dependency parsing
tween heads of candidate phrase

and sentiment expr.

length of dependency relation syntactic relation complex no dependency parsing

path between head of candidate
phrase and sentiment expr.

Table 5: Features and their categorization along 5 dimensions.
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Figure 1: Optimizing the cost parameter.

minority class. This typically results in datasets with
very imbalanced class distributions.)

We exemplify the importance of this optimiza-
tion on the cost-parameter. Figure 1 shows the
different F-scores of different cost-parameters for
both source and target extraction on the develop-
ment set. Clearly, the default value (i.e. j=1)
would only produce poor results of the classifier.

7.2 Comparison of Different Feature Groups

Given the optimal configurations determined in
§7.1, we now examine the different feature groups
on a 10-fold crossvalidation. We report macro-
average precision, recall and F(1)-score.

Table 6 shows the performance of the individual
foci and their combinations. This analysis shows
that the most important focus is the set of relational
features. Adding other features only yields mild
increases in performance. The table also shows
that regarding the other foci, there is a notable
difference between the tasks. While for extraction
of sources, both individual and context provide
some decent F-score, on the extraction of targets
they are not useful at all. While it is difficult to
explain this behaviour for the context features, we
found some intuitive explanation for the behaviour
of the individual features. Opinion sources are per
definition a very restricted set of entities sharing
specific semantic properties. That is, only persons
or groups of persons qualify as opinion sources.
Therefore, a personal pronoun or the mention of
a proper name (notice that our individual features
capture this type of information), will already have
a relatively high prior probability of representing
a source. Targets, on the other hand, represent a
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Source Target
Subset Prec  Rec F1 Prec  Rec F1
individual | 482 412 444 54 0.2 03
relational | 59.5 49.8 542 | 47.5 40.1 435
context 447 33.1 38.0 | 38.2 4.1 7.4
ind.+rel. 594 51.6 552 | 48.8 40.1 44.0
ind.+cont. | 48.3 447 464 | 31.6 127 18.0
rel.+cont. 564 474 515 | 47.8 388 429
all 56.0 54.0 550 | 491 399 44.0
Table 6: Comparison of different foci.
Source Target
Subset Prec  Rec F1 Prec  Rec F1
all 56.0 54.0 55.0 | 491 399 440
-clustering 557 524 54.0 | 49.0 39.6 43.8
-GermaNet 570 51.6 54.1 | 499 406 44.7
-depend. 554 53.0 542 | 453 373 412
-constit. 55.1 497 523 | 46,1 354 400
-subcat 563 537 550 | 49.1 398 440
-pos 558 52,6 542 | 495 385 433
-namedent. | 56.0 53.6 54.8 | 492 40.0 44.1
-other 56.1 523 541 | 50.6 39.1 44.1
-lexical 60.1 514 557 | 49.1 403 443
-dep.-const. | 522 47.6 49.8 | 39.6 32.6 358

Table 7: Ablation experiments.

much more heterogeneous group. They may be
entities of various semantic types, they may even
be represented by propositions (cf. (1) and (2)).
This explains why targets are more dependent on
relational features. That is, they can be more easily
identified by their relationship towards the existing
sentiment expression. For example, in both (1)
and (2), the target is an object of its sentiment
expression.

Table 7 shows some ablation experiments in
which we remove one information source at a time.
This gives us an indication of how unique the in-
dividual information sources are in terms of the
information they contribute to the prediction of
sources and targets. Only few information sources
seem to carry unique information. The most no-
table exceptions are dependency and constituency
parse information. On target extraction, we notice a
notable drop in performance if either of those types
of features are removed. We also removed both of
these information sources at the same time to show
that dependency and constituency information are
not only important but are also complementary to
each other.

Table 8 compares the performance of the dif-
ferent linguistic representations. The results are
in line with the previous experiments. Word-level
features are much more predictive for sources than
for targets. Virtually all those features are individ-
ual features, so the explanation that we provided
in Table 6 also applies here. Although word-level,



Subset Source | Target
word 427 6.9
word+semantic 45.3 17.1
word+surface 47.2 24.4
word+semantic+surface 48.0 26.4
word-+syntactic 53.6 44.2
word+surface+syntactic 53.6 44.1
all 55.0 44.0

Table 8: F-Scores of different linguistic representa-
tions.

Source Target
Subset Prec Rec FI | Prec Rec FI
simple 536 464 498 | 40.7 347 375
complex | 59.9 49.7 543 | 503 299 375
all 560 540 550 | 49.1 399 440

Table 9: Simple and complex features.

semantic and surface features can be effectively
combined, the most notable boost in performance
is obtained when syntactic features are added. This
is in line with our ablation experiments (Table 7)
where we found that constituency and dependency
parsing, in other words, syntactic features carry the
most distinct information for this task.

Table 9 compares simple and complex features.
Again, we observe notable differences between
source and target extraction. While the two feature
groups are on a par on target extraction, on source
extraction the complex features are stronger. The
combination of the feature groups is more effective
on target extraction than on source extraction.

Table 10 shows the impact of generalization of
both tasks. There is no clear indication that the
generalization features actually help. Particularly
on the extraction of targets these features are not
useful at all. We explain the latter results by the
fact that the generalizations are basically general-
izations of the individual features and we pointed
out in the discussion of Table 6 that those features
seem to not be predictive for targets. A generaliza-
tion of a completely unrelated feature is very likely
to be not predictive either.

7.3 Learning Curve

The amount of labeled training data that is available
to us (i.e. about 1,200 sentences) is still very small.

Source Target
Subset Prec Rec FI [ Prec Rec F1
plain 575 512 5421 495 401 443
generalizat. | 47.1 393 429 4.1 0.2 0.3
all 56.0 54.0 55.0 ] 49.1 399 440

Table 10: The impact of generalization.
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Figure 2: Learning curve on gold standard.

Because of this, we computed a learning curve in
order to estimate in how far increasing the amount
of labeled training data would affect classification
performance. Figure 2 displays a learning curve.
While for sources, the curve clearly indicates that
a larger amount of labeled training data is likely
to increase classification performance, for targets
the curve seems to be almost saturated. We already
argued above that the extraction of targets is consid-
erably more difficult than the extraction of sources.
Presumably, source extraction would benefit from
more labeled training data since then the classifier
could get more evidence of which nouns or noun
phrases are likely opinion sources and which are
not. We strongly assume that due to the semantic
heterogeneity of targets, such features are not ef-
fective no matter what amount of training data is
available. With regard to relational/syntactic fea-
tures, the current amount of labeled training data
may be sufficient since there are only a handful of
meaningful syntactic relationships holding between
a sentiment expressions and either of its sources or
targets (e.g. subject, object etc.).

7.4 Comparison against Previous Classifiers

Finally, we evaluate our classifier with the full fea-
ture set against other systems that participated in
the STEPS 2016 shared task. In order to produce a
meaningful comparison, unlike our previous exper-
iments, we train our classifier only on the training
data from that shared task.? Table 11 shows the per-
formance of the different classifiers. Overall, our
proposed supervised system produces the best per-

3This explains why the performance of our proposed sys-
tem is slightly lower than in the previous experiments.
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exactly one constituent.

formance. While on the extraction of sources, we
notably outperform all other classifiers, on the ex-
traction of targets, the rule-based system from Saar-
land University (Wiegand et al., 2016) is on the par
with our classifier. This classifier is able to recog-
nize instances of opinion targets that our system is
unable to recognize. It concerns cases of so-called
grammatically induced sentiment (§5). In such
cases, the target typically is an entire (sub)clause.
In the output of a constituency parser, these clauses
often correspond to more than one constituent as
illustrated in Figure 3. However, our classifier al-
ways assumes one constituent per source and tar-
get each as illustrated in Figure 4. Therefore, our
approach is unable to correctly extract the above
targets. In future work, we would like to combine
that classifier with ours in order to hopefully obtain
even a higher classification performance.

7.5 Error Analysis

Unfortunately, it is outside the scope of this paper
to provide an in-depth error analysis. However, we
could identify the output of syntactic parsing as a
major source of error. We established in our eval-
uation that syntactic features are most predictive.
Given that completely correct syntactic analyses
on our data are rare it comes as no surprise that
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Source
System Prec Rec F1
Saarland University (supervised) | 59.4  38.3  46.6
Saarland University (rule based) 599 28.6 38.7
Potsdam University (supervised) | 36.2 30.0 329
proposed system 58.0 44.0 50.3

Target
System Prec Rec F1
Saarland University (supervised) | 42.6 31.7 363
Saarland University (rule based) 69.2 289 408
Potsdam University (supervised) | 37.3 222 27.8
proposed system 48.1 35.0 405

Table 11: Comparison with systems of the STEPS
2016 Shared Task.

the overall classification performance we achieve
is still comparatively low.

8 Conclusion

We presented a supervised learning approach for
opinion role extraction for German. We found that
there are notable differences between the extraction
of opinion sources and opinion targets. Opinion
targets are more difficult to handle. Even with com-
parably simple features, opinion sources can be
extracted. For both tasks, information describing
the relation between the given sentiment expres-
sion and the candidate opinion role, particularly
the information drawn from syntactic parses, is
most important. Generalization features do not
increase classification performance much. Even
though our feature set is not specifically tailored
to implicit opinion sources, we are able to detect a
considerable proportion. Our best classifier outper-
forms the best classifier which participated in the
STEPS 2016 shared task. With regard to opinion
target extraction, it performs on a par with the best
previously reported classifier.
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Abstract

We present a descriptive analysis on the
two datasets from the shared task on
Source, Subjective Expression and Tar-
get Extraction from Political Speeches
(STEPS), the only existing German dataset
for opinion role extraction of its size. Our
analysis discusses the individual properties
of the three components, subjective expres-
sions, sources and targets and their rela-
tions towards each other. Our observations
should help practitioners and researchers
when building a system to extract opinion
roles from German data.

1 Introduction

While there has been much research in sentiment
analysis on typical text classification tasks, such
as subjectivity detection, polarity classification and
emotion classification, there has been notably less
work on opinion role extraction. This particularly
concerns research done on languages other than
English. In opinion role extraction, we distinguish
between opinion source extraction, where the enti-
ties expressing an opinion, i.e. the opinion sources,
are to be extracted, and opinion target extraction,
where the task is to extract the entities or proposi-
tions at which sentiment is directed, i.e. the opinion
targets. For example, in (1) the subjective expres-
sion criticizes has as its source Switzerland and as
its target North Korea.

(1) [Switzerland goygcg] criticizes [North Korea Target]-
(2) [The opposition soyrcg] claims [that the health service
is getting fewer resources Targer)-

In this paper, we address opinion role extraction
on German data. Research on this specific task and
language has been kicked off by the shared task
on Source, Subjective Expression and Target Ex-
traction from Political Speeches (STEPS) with its
two editions from 2014 (Ruppenhofer et al., 2014a)
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and 2016 (Ruppenhofer et al., 2016). We present
a descriptive analysis of the two datasets from this
shared task that serve as a gold standard for opin-
ion role extraction on German. Our aim is not to
produce a classifier to automatically extract opin-
ion sources and targets. Instead, we look into the
properties of this gold standard in order to guide re-
searchers and practitioners who intend to build such
a classifier. Our analysis should largely influence
the choice of classifiers, particularly the underlying
feature set that describes potential opinion roles.

The focus of our analysis is on the structure of
the opinion frame (§3), i.e. the linguistic structure
that relates opinion source and target to its subjec-
tive expression. For each of these three linguistic
components (subjective expression, opinion source
and opinion target), we look at their individual
linguistic forms and also their (syntactic) relation
towards each other. Since STEPS consists of two
datasets, i.e. the editions from 2014 and 2016, we
also compare in how far the observed properties be-
tween the two different datasets differ. Given that
each dataset individually is very small (i.e. only
about 600 annotated sentences) the combination of
the two datasets is a desirable step when building
a classifier for opinion role extraction. Only if the
two datasets are compatible to a large degree, can
they be used for building a single application.

For general accessibility, we will always pro-
vide English examples when German and English
follow the same linguistic pattern. Since, to the
best of our knowledge, this is the first descriptive
corpus-based study for opinion role extraction in
general, we believe that our insights may be rele-
vant to research beyond the German language.

Syntactic information plays a significant role in
opinion role extraction, particularly, dependency
relations. In this work, we consider dependency
parses produced by ParZu (Sennrich et al., 2009).
We consider this parser since it is also the depen-
dency parser which the organizers of STEPS em-
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ploy in the release of their dataset.

2 Related Work

So far, work on opinion role extraction has mostly
been carried out on English data, especially the
MPQA corpus (Wiebe et al., 2005), the standard
corpus for fine-grained sentiment analysis. There
has also been a related shared task on the topic: the
Sentiment Slot Filling track (SSF) that was part of
the Shared Task for Knowledge Base Population
of the Text Analysis Conference (TAC) (Mitchell,
2013). For Japanese and Chinese some compara-
ble data have been created as part of the NTCIR
Opinion Analysis Task (Seki et al., 2007; Seki et
al., 2008; Seki et al., 2010).

To the best of our knowledge, the only descrip-
tive analysis of opinion role extraction was pre-
sented by Ruppenhofer et al. (2008). The major
difference to our work is that Ruppenhofer et al.
(2008) enumerate linguistic phenomena involved in
opinion role extraction without reference to some
existing datasets. Since we examine a labeled cor-
pus, our main contribution is that we quantify the
linguistic phenomena involved.

For German sentiment analysis, there exist quite
a few different corpora ranging from sentiment
aspect classification (Séger et al., 2016; Wojatzki et
al., 2017) to much more fine-grained tasks, such as
attitude classification (Klenner et al., 2017). Apart
from STEPS, however, there only exists the MLSA
corpus (Clematide et al., 2012) with annotation
of both opinion holders and targets on German
text. The annotation scheme of STEPS was mainly
inspired by Layer 3: Expression-level Annotation
of MLSA. (The same researchers who annotated
that layer of MLSA also created the two STEPS
datasets.) The reason we conduct our study on the
STEPS corpus rather than on the MLSA corpus is
that the two STEPS corpora totaling about 1,200
sentences are significantly larger than the MLSA
corpus with only 270 sentences.

3 Opinion Frames

In STEPS, opinion roles are represented as opinion
frames. An opinion frame is a triple <subjective
expression, opinion source, opinion target>. The
subjective expression is a word or phrase which
conveys some opinion, its source is the entity that
expresses that opinion, and its farget is the entity or
proposition towards which that opinion is directed.
In this paper, subjective expressions will always
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Figure 1: Illustration of an opinion frame.

be indicated by bold type font in examples and
abbreviated by the acronym SE in the prose.

Each opinion frame has exactly one SE and at
most one source and target each. In other words,
there can be opinion frames without a source (3),
without a target (4) or without both (5).

(3) Idon’t understand this interest [in weapons Targer)-
(4) [Peter source] Was so unhappy that he immediately left

the party.
(5) Altruism is not a very common thing in our society.

4 IGGSA-STEPS: Shared Task on
Source and Target Extraction from
Political Speeches

For our experiments we employ the labeled datasets
from the Shared Task on Source and Target Extrac-
tion from Political Speeches. In that shared task,
German language speeches from the Swiss par-
liament were annotated with opinion frames. In
German, there exists no comparable dataset of sim-
ilar size for opinion role extraction. The data have
been annotated in TIGER/SALSA XML (Erk and
Pado, 2004), a format originally devised for rep-
resenting frame-structures from FrameNet (Baker
et al., 1998). This representation format combines
syntactic constituency parses with some semantic
annotation. Like FrameNet-frames, opinion frames
represent semantic structures that build upon syn-
tactic structures. Figure 1 illustrates the structure
of a typical opinion frame.

There are two editions of the shared task (Rup-
penhofer et al., 2014b; Ruppenhofer et al., 2016).
For STEPS 2016, the STEPS 2014 dataset was re-
vised in order to be compatible with the new anno-
tation scheme introduced for STEPS 2016. We use
this revision of the STEPS 2014 dataset. Another
advantage of using the dataset from the revised
annotation scheme is that it has been shown to pro-
duce a sufficiently high interannotation agreement
(Ruppenhofer et al., 2016).

Table 1 displays some general statistics of the
two datasets. The table already indicates that there



freq
property STEPS 2014 [STEPS 2016
no. of sentences 605 581
avg. no. of tokens in sentence 22.58 24.08
no. of subjective exprs. (SEs) 2105 2166
avg. no. of SEs in sentence 3.58 3.94
no. of opinion frames 2228 2417
no. of sources 997 1064
no. of targets 1608 1770

Table 1: Statistics of the two STEPS datasets.

are no significant differences in the frequency of
the different major constructions between STEPS
2014 and STEPS 2016.

5 Subjective Expressions (SEs)

The first step in opinion role extraction is to deter-
mine which words represent SEs. Table 2 provides
some statistics about this linguistic entity. The
most notable observation is that many SEs are sin-
gletons. (This ratio does not change much even if
we merge the two datasets STEPS 2014 and STEPS
2016.) This is highly relevant for building a classi-
fier to detect SEs. If most SEs only occur once in a
gold standard, then they can hardly be learnt from
this data directly. Instead, some form of sentiment
lexicon listing SEs should be used. However, by
computing the coverage of the SEs in the standard
sentiment lexicon for German, the PolArt lexicon
(Klenner et al., 2009), we found that only a small
proportion (i.e. 25%) is actually covered.

With about 19% of the vocabulary, multiword ex-
pressions (MWEs) represent a considerable share
in the set of SEs. About 75% are MWEs that con-
sist of exactly 2 tokens, which, in most cases, are
phrasal verbs, e.g. tritt ab (stands down), denkt
nach (considers). Compared to idioms, e.g. in
den sauren Apfel beifien (to bite the bullet), which
due to their free word order in German can have
many different surface realizations (Wiegand et al.,
2016a), phrasal verbs are relatively easy to detect.

Table 3 lists the distribution of the different
parts of speech among the SEs. To our surprise,
nouns are the most frequent type of SEs. One typi-
cally associates sentiment with adjectives (e.g. bad,
nice) or verbs (e.g. adore, hate) and, therefore, one
would expect a higher proportion of these parts of
speech. The high frequency of subjective nouns can
be explained by the fact that many of these nouns
are nominalized adjectives (e.g. badness) and nom-
inalized verbs (e.g. hatred). Additionally, many
subjective nouns are some form of compound, e.g.
Bombenattentat (bombing attack) or Expertenmei-
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dataset types singletons MWEs
STEPS 2014 | 1115 805 213
STEPS 2016 1110 769 214

Table 2: Statistics of subjective expressions (SEs).

dataset verb adj noun adv other
STEPS 2014 270 206 418 18 227
STEPS 2016 280 207 405 27 224

Table 3: POS-Distribution of SEs (types are
counted).

nung (expert advice). Wiegand et al. (2016b) state
that every other sentence in STEPS 2014 contains
a noun compound.! A noun compound (Bombe-
nattentat) typically consists of two constituents,
a modifier (Bombe) and a head (Attentat). Noun
compounds are very productive. In principle, noun
heads may combine with a large number of differ-
ent noun modifiers (e.g. Bombenattentat, Selbst-
mordattentat, Flugzeugattentat, Sprengstoffatten-
tat, Sdureattentat etc.) This results in a large num-
ber of different compounds in STEPS (please keep
in mind that in Table 3, we count types and not to-
kens). Each of these compounds only occurs once
or twice on average which explains the high num-
ber of noun types, particularly singleton nouns in
STEPS.

In order to detect SEs automatically and given
the large number of sparse noun compounds on
both datasets, some form of noun normalization
would be advisable. Only the head of a noun com-
pound is relevant for detecting SEs, i.e. Attentat
(attack) in Bombenattentat (bombing attack). We,
therefore, anticipate a higher coverage of match-
ing SEs in a sentiment lexicon by reducing noun
compounds to their heads.

If one pursues a lexicon-based approach to detect
SEs, not only is a lexicon sought that has a good
coverage, one should also keep the reliability of
the entries in mind. Table 4 compares the precision
of an oracle lexicon, i.e. a lexicon comprising all
words being labeled at least once as an SE expres-
sion in either of the two editions of STEPS, with
the precision of the words in the PolArt sentiment
lexicon. (We evaluate here on the concatenation
of STEPS 2014 and STEPS 2016. In the follow-
ing sections, we always merge the distributions of
STEPS 2014 and STEPS 2016 whenever there was
not sufficient space and we did not observe any
significant difference between the two datasets.)

'We also confirm a similar proportion in STEPS 2016.



Texicon Prec
union of words being labeled as SE at least once | 72.1
PolArt lexicon 89.9

Table 4: Precision of different lexicons.
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Figure 2: Distribution of phrase labels.

Although the PolArt sentiment lexicon has a low
coverage of SEs in STEPS, the entries that match
that lexicon are fairly reliable. A lexicon with a
full coverage of SEs (as our oracle lexicon) would
not solve the problem of detecting SEs, as a large
proportion of SEs are ambiguous words. One addi-
tionally would have to devise a subjectivity word-
sense disambiguation (Akkaya et al., 2009) once a
word within a sentence has been matched with that
lexicon. The task would be to decide whether an
ambiguous word, such as alarm is used in a sub-
jective sense, as in (6), or in a non-subjective one,
as in (7). If no reliable disambiguation is possible,
a sentiment lexicon may still be a good solution
because of its high precision.

(6) When he heard that particular news, his alarm grew
even more.

(7) Our new smoke detector is malfunctioning. The alarm
went off twice yesterday although there was no smoke.
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6 Inherent Properties of Opinion Roles

We now examine properties of opinion sources and
targets. We start by looking at inherent properties.
Figure 2 compares the phrase label distribution of
opinion sources and targets. Typically, both source
and target exactly match one phrase node in the
constituency parse tree representing the sentence
(Figure 1). We introduce a phrase label Complex
by which we subsume all cases in which an opin-
ion role does not match exactly one constituent.
A large fraction of those instances will be parse
errors.”

Figure 2 shows that sources and targets have no-
tably different phrase labels. Opinion sources are
mostly noun phrases (NP) or personal pronouns.
This result is quite intuitive. Opinion sources can
only be persons or groups of persons as other types
of entities typically do not have any specific senti-
ment. The fact that prepositional phrases are also
frequent can be explained by passive constructions
(9) in which the opinion source is realized as a
prepositional phrase rather than an NP which is the
case in the more canonical active constructions (8).

(8) [Peter source) loves [Mary Targer]™
(9) [Mary Targer) is loved [by Peter SOURCE]PP'

Opinion targets, on the other hand, are much
more heterogeneous. Targets do not have to be en-
tities. They can also represent entire propositions.
This explains why other constituents, such as (com-
plement) sentences (10) or verbal phrases (11), are
also frequently labeled as targets.

(10) [Peter source] thinks [that Mary should work harder

TARGET]S-
(11) [Peter source] Wants [to go shopping TARGET]VP.

It is also surprising that the second most fre-
quent phrase label is Complex. By manually in-
specting these cases, we found that in most of
them there was an error in the parse. Targets rep-
resenting entire propositions are typically much
longer phrases (i.e. they comprise more tokens)
than source-phrases representing simple entities.
Figure 3 illustrates the different token lengths of
sources and targets. It confirms that sources tend to
be shorter than targets. The long phrases that rep-
resent targets, such as sentences or verbal phrases,

2The constituency-parse trees in STEPS have been auto-
matically generated by the Berkeley parser (Petrov and Klein,
2007). In case of parsing errors, the annotators were instructed
to label those spans of text that they thought represent the cor-

rect span. This often meant that one opinion role was assigned
more than one phrase node in the constituency-parse tree.
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Figure 3: Distribution of phrase length.

are also much more likely to be affected by parsing
errors.

7 Opinion Roles and Their Relation
towards SEs

We continue our examination of opinion roles by
looking at the relation between opinion roles to the
SEs they evoke. We start by looking into syntactic
relationships.

Table 5 lists the 5 most frequent dependency-
relation paths observed between the individual
opinion roles and the SEs they evoke. The table
lists the paths for subjective verbs, adjectives and
nouns each. It suggests that some dependency-
relation paths are predictive for either sources or
targets. For example, for subjective verbs, sources
are often realized as subjects (fsubj) while targets
are realized as accusative objects (Tobja), as illus-
trated by (12). For subjective attributive adjectives,
one can very reliably predict targets by looking for
the noun that modifies them (|attr) as illustrated
by (13).

(12) Mary SOURCE}mbj likes,,;, [Peter’s new flat TARGET}Ubj‘
(13) Tjustsaw a beautifulzgjr [rainbow TarGET]-

However, there are also relation paths that are am-
biguous. The most notable example is the geni-
tive modifier of subjective nouns (1gmod) which
is the most frequent dependency relationship con-
necting both opinion sources (14) and targets (15).
This analysis proves that opinion roles cannot be
extracted exclusively on the basis of dependency-
relation paths.

(14) Das entsprach auch der Sichtweise,,,, [der meisten
Biirger SOURCE]gmUd'
(This was also the view of most citizens.)

(15) Er hob die Einfachheit,,,, [des Ansatzes Targer]8"%?
hervor.
(He emphasized the simplicity of that approach.)
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ratio [% ]
pos relation path | sources | targets | freq
verb subj 81.2 18.8 | 479
aux_tTsubj 67.9 32.1 324
obja 7.7 92.3 | 221
PP 12.6 87.4 87
objd 21.2 78.8 52
adj attr 1.3 98.7 | 235
pred_f'subj 30.9 69.1 55
aux_tTsubj 69.2 30.8 26
adv_tsubj 333 66.7 21
PP 66.7 33.3 12
noun gmod 384 61.6 | 199
PP 15.2 84.8 79
obja_Tsubj 68.9 31.1 74
det 76.9 23.1 65
attr 48.0 52.0 25

Table 5: Ambiguity of dependency-relation paths
between sources and targets.

One major obstacle in processing German text
is the high degree of errors in automatic syntactic
parse analyses. The longer a sentence is the more
likely errors in syntactic parsing occur. This cer-
tainly is an issue with STEPS 2014 and STEPS
2016 since both datasets contain long sentences
(between 22 and 24 tokens on average, see also
Table 1). The ParZu parser may fail to produce a
fully connected dependency tree for long sentences.
Instead only a set of partial trees are produced. In
that case, there is often no dependency-relation
path available that connects opinion roles with the
SEs they evoke.

For all pairs of <opinion role, SE> where the
members of the pair are separated by a specified to-
ken distance, Figure 4 shows the proportion of pairs
for which there is no connecting dependency path
available in the output of ParZu. The figure shows
that the longer the token distance is the higher the
proportion of pairs are that have no dependency-
relation path. Even for pairs with a short token
distance, there is still a considerable number of
pairs for which there is no dependency-relation
path. All in all, this analysis underlines that errors
in the syntactic parse output will have an impact on
classification performance.

As an alternative to syntactic dependency-
relation paths, we also examine whether the order
of pairs <opinion role, SE> is predictive for this
task. Unlike syntactic information, information
about the sequential order of two constituents is
not dependent on the output of a syntactic parser.
Table 6 displays the ratio of different orders. The
table shows that there may be certain correla-
tions between certain orders. For example, the
source mostly precedes subjective verbs or adjec-
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Figure 4: Connecting paths between opinion role and SE for different token lengths.

STEPS 2014 STEPS 2016
order verb adj noun|verb adj noun
<source, SE>| 81.7 91.1 62.0/ 834 97.6 559
<SE, source> | 18.3 89  38.0| 16.6 24 441
<target, SE> [ 67.5 242 3211668 365 309
<SE, target> [ 32.5 758 679|332 635 69.1

Table 6: Order of opinion role (i.e. source or target)
and SE (in percentage).

tives. However, in the case of targets, these cor-
relations are less pronounced. The general lack
of a predictive sequential order can be explained
by the fact that depending on tense or sentence
type, the order between different constituents may
vary. For instance, the canonical order for subjec-
tive verbs <SE, opinion target> as can be observed
in a present tense main clause (16) changes if that
sentence is shifted into present perfect (17) or a
subordinate clause (18).

(16) Peter hasst,,,;, [Julia Targer]| 2.
(Peter hates Julia.)

(17) Er hat schon immer [Julia targer]??/¢ gehasst,q,,.
(Peter has always hated Julia.)

(18) ... weil Peter [Julia TARGET]”’”“ hasst,,,;,.
(... because Peter hates Julia.)

However, in all of these cases, the dependency
relation between subjective expression and opinion
target remains the same (fobja). This example
illustrates that, in principle, syntactic dependency
relations are more expressive than sequential order.

8 Frame Structure Configurations

According to the definition of opinion frames (§3),
the presence of both source and target is not oblig-
atory. We want to examine how often the opinion
frame structure deviates from the canonical form
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in which both source and target are present. Table
7 lists the frequency of different frame structure
configurations. The table clearly shows that both
in STEPS 2014 and STEPS 2016 there is a signif-
icant number of frames that do not include both
source and target. This observation is quite impor-
tant since it suggests that joint modelling of opinion
source and target using simple constraints of the
type an opinion frame has to comprise exactly one
opinion source and one opinion target would not
work.

In Table 7, we also observe that partial frames
with only a target are much more frequent than the
frames with only a source. We ascribe this large
amount to the so-called implicit sources. Implicit
sources are sources without a concrete surface real-
ization (19). They typically represent the speaker of
the utterance in which the opinion frame is evoked.
Strictly speaking, therefore, frames with such a
source are not partial frames. These frames just
lack an explicit source, that is, a constituent in the
sentence in which the SE occurs which has been
annotated as an opinion source. Whether an SE
comes with an explicit or implicit source largely
depends on the SE itself. In other words, it is a
lexical property of SEs. For English, Wiegand et al.
(2016c¢) developed methods to distinguish whether
an SE is more likely to have explicit or implicit
sources. While SEs with a tendency for implicit
sources are called speaker-views SEs, SEs with
a tendency for explicit sources are referred to as
actor-views SEs. Most of these methods should be
largely reproducible on German language data.

Apart from opinion frames with implicit sources,
there may, of course, also be opinion frames lack-



STEPS dataset
frame structure 2014 2016
frames with source and target 845 850
frames with only source 152 214
frames with only target 763 920
frames with neither source nor target 468 433

Table 7: Distribution of different frame structures.

ing both an explicit and implicit source. An exam-
ple of the latter type is (20). It does not contain an
explicit source and from the context it is clear that
it is not the speaker of the utterance either since
the speaker (represented by /) explicitly distances
themselves from the interest in weapons. There-
fore, the exact source remains unspecified.

(19) [The reasons for voting to leave the EU Tagrger] are

obvious.
(20) Idon’t understand this interest [in weapons Target)-

Figure 5 compares the distribution of frames
without source and frames without target across
SEs with different parts of speech. While for verbs,
we observe fewer frames that exclude either source
or target, we observe that for nouns and adjec-
tives partial frame structures are much more fre-
quent. (This also matches our previous examples
(3)-(5).) Particularly, most frames without a tar-
get are evoked by subjective nouns. The fact that
mostly adjectives and nouns are likely to form par-
tial opinion frames might be explained with the
help of subcategorization. Although the subcatego-
rization frames of verbs and nouns can be similarly
complex (for instance, both the subjective verb in
(21) and the subjective noun in (22) have two argu-
ments), for verbs the realization of its arguments
is usually obligatory in order to make a sentence
grammatical (cp. (21) with (23)). For nouns (and
adjectives follow similarly), however, it is quite
often the case that they come with fewer arguments
than their valency suggests (24). The fewer argu-
ments a subjective expression has, the more likely
partial frames are to be evoked. (24) contains a
partial frame lacking a target.

(21) [Mary SOURCE}Subj loves,;, [PeterTARGET}Obj~
(22) Everyone knew about [Mary’s source] 5" 10Ve,oun [to
Peterraraer)P??.

(23) ?[Mary SOURCE]Subj loves,.
(24) In public, only few people talk about [Mary’s

SOURCE]gmUd love;pun.
9 Inferred Sources

Most opinion roles are syntactic dependents of the
SE by which they are evoked. For instance, the
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Figure 5: POS-Distribution of partial frames.

source of like in (25) is its subject. In STEPS, there
is a special subset of sources, referred to as inferred
sources. By that we understand sources that are not
associated with any of the syntactic dependents of
its SE (26). (In (26), the SE impressive has only one
syntactic dependent which is its subject.) These
sources are called inferred since from the subcat-
egorization frame of the SE, we cannot conclude
their presence. This makes them more difficult to
detect than normal sources.

(25) [Mary source]™ likes,,,, [Peter’s new flat Targer|??.
(26) [Mary INFERRED,SOURCE] said [Peter’s new flat
Tarcer) ™ was impressive, ;.

26% of the opinion sources in STEPS 2014
and STEPS 2016 have been flagged as inferred
sources by the annotators. Since this is a substan-
tial amount, we want to investigate whether we
can further characterize this subset of sources. If
we look at the distribution of parts of speech of
the SEs evoking inferred sources (Figure 6), we
find that there is a notable difference to the general
part-of-speech distribution of SEs. While the pro-
portion of nouns remains fairly constant, there is a
disproportionately high amount of inferred sources
with subjective adjectives. For SEs being verbs, the
proportion of inferred sources, on the other hand,
is fairly low.

We assume that the valency of the individual
SEs is responsible for that distribution. The pro-
totypical (subjective) adjective has one syntactic
argument, for example, a subject (27) which is its
target. There is no argument position for the opin-
ion source and therefore, the source is the implicit
speaker of the utterance.> However, if this SE is

3The source in this sentence is not unspecified, since im-
pressive in (27) comes with all its obligatory syntactic argu-
ments, i.e. its subject. According to Wiegand et al. (2016¢)
more than 90% of all subjective adjectives are speaker-view
words, i.e. these are subjective expressions that tend to have
implicit sources.
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further syntactically embedded, as in (26), there
may be some explicit source but it is inferred. For
subjective verbs, unlike subjective adjectives, there
is a syntactic argument in their subcategorization
frame, typically their subject, as in (25), that is
associated with their opinion source. Therefore,
fewer inferred sources occur with subjective verbs.

> subj sq 3 s .
s s adi-
(27) [Peter’s new flat Tsrger]*™” is impressive,q;

10 Multiple Frame Evocation

There are SEs that evoke more than one opinion
source and target. In STEPS this is modeled by
allowing the same SE to evoke more than one single
opinion frame. For example, the verb force can
evoke three different opinion frames at the same
time as illustrated by (28)-(30). (28) describes
the view that James has some request to someone.
(29) describes the view of James towards walking
the dog. Finally, (30) represents Alice’s negative
sentiment towards walking the dog (if she did not
have that sentiment, James would not need to force
her to do so).

(28) [James goyrce] forced [Alice Targer] to walk the dog.
(29) [James source] forced Alice [to walk the dog Targer)-
(30) James forced [Alice source] [to walk the dog Targer)-

12% of the SEs in STEPS evoke more than one
opinion frame. Figure 7 shows the distribution of
multiple frame evocation across SEs with different
parts of speech. The statistic shows that by far most
SEs evoking multiple frames are verbs. This can
be explained by the fact that verbs have the most
complex subcategorization frames (e.g. in (28)-(30)
force has three different syntactic arguments). We
assume that the more syntactic arguments a SE has
in a sentence, the more likely there is some multiple
frame evocation.

Enoun
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11 Conclusion

We presented a descriptive analysis of the STEPS
2014 and 2016 datasets, a resource for building
and evaluating opinion role extraction systems in
German. We found that the linguistic properties
of the two datasets are very similar which means
that they can be usefully merged into one resource.
A large proportion of subjective expressions are
nouns including noun compounds. The majority of
subjective expressions are singletons. We assume
that in order to increase the coverage of subjective
expressions in lexical resources, such as as senti-
ment lexicons, more effectively, some noun nor-
malization that reduces compounds to their heads
may be helpful. Opinion sources and targets differ
very much from each other. Opinion sources tend
to be realized as (short) noun phrases, while opin-
ion targets are long phrases of various types. For
both opinion sources and targets there is a small set
of characteristic dependency relationships towards
the subjective expression they evoke. Conceptu-
ally speaking, dependency relationships are more
predictive than sequential order. However, reli-
able syntactic information is difficult to produce
since parsers for German are fairly error prone.
STEPS includes a substantial number of inferred
sources. Those subjective expressions that come
with inferred sources have more often few syntactic
arguments, such as adjectives. Subcategorization
frames also play a role when it comes to partial
opinion frames. Subjective expressions with very
complex subcategorization frames, such as verbs,
typically come with complete opinion frames un-
like adjectives and nouns, which more often evoke
partial opinion frames. There is also a significant
number of subjective expressions that evoke mul-
tiple frames, however, this phenomenon is largely
restricted to subjective verbs.
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Abstract

The proficiency level of the learner is an
important factor in various educational
settings. In order to find the adequate
language difficulty level, we classify texts
written by language learners of German
into proficiency levels A, B and C, as
defined by the CEFR (Common European
Framework of Reference for Languages),
based on linguistic features extracted
from the texts. Working on a combined
data set of previously-used corpora, we
use both data- and theory-driven feature
sets, and determine the best-performing
features. Our model achieves an accuracy
of 82%, and the best-performing feature set
contains features from all the theoretical
groups, while all groups alone perform
significantly above the random baseline.

1 Introduction

An important concept in the field of educational
systems is Automatic Text Scoring (ATS), which
automates the process of scoring texts by using
NLP techniques. A special case of ATS is
Automatic Proficiency Assessment (APA), which
aims at scoring texts written by language learners
according to a proficiency scale; in Europe, this is
defined by the Common European Framework of
Reference for Languages (CEFR). With the help of
APA, educators can more easily find appropriate
reading materials and students can get immediate
feedback on their performance. Furthermore,
perhaps we can also get closer to a more practical
definition of the CEFR levels by way of linguistic
feature extraction.

In the scope of this project, we have developed
an APA system that classifies diverse German texts
written by language learners into levels A, B and
C of the CEFR. Level A (elementary), includes
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CEFR levels Al and A2, Level B (intermediate),
consists of levels B1 and B2 and level C (advanced)
is composed of levels C1 and C2. We implement
a wide range of linguistic features, which are
described in Section 3.

2 Related Work

The earliest large-scale APA systems for German
have been developed in the work of Hancke (2013)
(see also Hancke, Vajjala and Meurers (2012)).
She implements lexical, morphological, syntactic
and language model features, building on work
from different languages as well as different but
highly related fields, such as Second Language
Acquisition and Readability Assessment. Her
feature sets are theoretically well-motivated and
exhaustive. One aspect of her work that we think
can be improved concerns the size and imbalance
of the data set, the MERLIN (Wisniewski et al.,
2011). While we also include it in our study, we
overcome some of the problems by using a larger
and balanced data set. Hancke achieved 72.5%
accuracy working on 5 classes, A1-C1, and our
overall goal is to build on and expand her research
with new analyses.

As for other authors who work on German
readability, Vajjala (2013) tests readability features
on German text books in her PhD thesis, using
the readability features developed by Hancke et al.
(2012). Lavalley and Kay (2014) use children’s
writing as their data and work with embellishment
clues (adjectives and adverbs) as features. Nietzio
et al. (2012) work with texts written for mentally
challenged people, and use sentence length and
complexity features. Briick and Hartrumpf (2007)
work with legal texts and semantic features. Zesch
et al. (2015) use English and German texts to
test which features are independent of the specific
writing tasks or prompts. One very recent piece
of work is by Weiss and Meurers (2018), who use
media texts for children and adults with the goal
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of implementing a linguistically broad readability
model for German. Their features are from the
fields of lexicon, syntax, morphology, discourse,
language use and human processing.

Among studies of texts written by learners of
other languages, the majority — as can be expected
— has focused on English. Yannakouadis (2011)
works on grading texts written by learners of
English with lexical features, part of speech (POS)
tags, syntax features, length features and error rate.
Treffers et al. (2018) study the correlation between
lexical diversity and CEFR levels. Briscoe et al.
(2010) analyze machine learning methods better
suited for the task, using n-grams, parse rules, word
length and error measures. It is also important
to consider the possible end users of this line of
research, namely educators, students, and readers.
With that in mind, Chen and Meurers (2016)
provide a publicly available platform for automatic
complexity feature extraction and visualization.

3 Methods

3.1 Overview

In our work, we have implemented a wide range
of features based on Hancke’s thesis (2013), but
using a bigger data set (see Section 4). While one
of our goals is to develop a classification system,
what we think is even more important is a thorough
discussion of the performance of the feature space,
and see how it relates to Hancke (2013), which
is the only other piece of work discussing similar
features in a similar setting.

We work with texts written by learners of
German and implement a supervised classification
model according to the CEFR categories A, B
and C as labels. In order to train the model, we
have experimented with different machine learning
algorithms, such as Decision Trees, Logistic
Regression and Support Vector Machines (SVM)
with different configurations. We have decided to
use a Linear SVM as it performed best given our
data set. This was an expected outcome, as SVMs
perform well in various classification settings,
both inside and outside NLP. Other researchers in
the field of automatic readability and proficiency
assessment also found them to give the best
results (Hancke, 2013; Pilan et al., 2016; Zesch et
al., 2015; Weiss and Meurers, 2018)

We have used the implementation of scikit-learn
(Pedregosa et al., 2011) with its default settings.
Since SVMs are sensitive to the distribution of
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the data, we have balanced our data set. We end
up working with 612 texts for each level, so our
data set consists of 1836 texts altogether. When
we present accuracy scores, they are based on a
10-fold cross-validation.

We use two different kinds of feature groups:
data- and theory-driven. We have made this
distinction because of the different approaches
inherent in each. Namely, our theory-driven
features are hand-engineered; we are checking for
specific linguistic units or ratios we have theorized
to predict proficiency. As for data-driven features,
we are looking at the data as a whole, analyzing
what we find by a given feature extraction
method, without any concrete hypotheses. Our
data-driven features are n-grams, parse rules,
and grammatical tags, while our theory-driven
features can be categorized into traditional, lexical,
frequency, morphological, syntactic, and error
measure sets. While this distinction is our own
contribution, the specific features in the groups
are mostly re-implementations of the features
from Hancke’s thesis (2013). The following is a
general description of the sets, pointing out some
important differences from her work.

3.2 Theory-driven Feature Sets

e Traditional Features predate advanced
machine learning techniques. They are based
on surface-level features, such as the average
number of characters per word. While Hancke
(2013) only works with text length, and the
average number of words and syllables, we
experiment with a wide range of traditional
formulae, such as the Flesch reading-ease
score or the SMOG score.

Lexical Features measure the range and
variety of vocabulary used in a text by a
writer. A traditional measure is the type-token
ratio (TTR). As the TTR is sensitive to text
length, various mathematical corrections of
the original formula have been proposed,
such as the root TTR, corrected TTR, log
TTR, Uber Index and Yules K. More recent
attempts to account for this problem include
for instance the hypergeometric distribution
diversity (HD-D) (McCarthy and Jarvis, 2007)
and the measure of textual lexical diversity
(MTLD) (McCarthy and Jarvis, 2010). It is an
interesting counterpoint to mention the work
of Treffers-Daller et al. (2018), who claim that



basic measures explain more variance in the
CEFR levels of language learners’ texts than
the HD-D and MTLD, provided text length
is kept constant across texts. Other lexical
features are lexical density, measuring the
ratio of lexical words to all words and lexical
variation with respect to specific syntactic
categories.

Frequency features are based on the general
idea that words that are more common in one
language are acquired more easily and earlier
by language learners. However, research
also shows that especially L2 language
learners often start with infrequent, more
specific words (Crossley et al., 2011). We
used a list with the number of occurrences
of words in movie subtitles compiled by
Brysbaert et al.(2011) to calculate the mean
log( frequency) and the standard deviation of
the log(frequency). The list was selected as
subtitles are a common and easily available
means of portraying everyday language.
Hancke (2013) does not explain the choice
of her binning method, so we chose equal
width binning with 14 bins to determine
whether words in certain frequency bands are
characteristic of a specific level of text.

Morphological Features are often realized
through use of several linguistic features
such as gender, case markers, verb tense
markers, prefixes and suffixes. German is
considered to be a morphologically rich
language due to its three genders (masculine,
feminine, neuter), four cases (nominative,
genitive, dative, accusative), verb prefixes
(both separable, such as auf-, and inseparable,
such as ver-), and word compounding. In
order to extract morphological features from
the data set, we used the RFTagger (Schmid
and Laws, 2008). For compound word
detection, the CharSplit module for German
was implemented (Tuggener, 2016).

Syntactic Features measure the complexity
of the dependency and parse tree structure of
the text, based on Hancke (2013). She adapts
these from various sources and fields and also
adds some German-specific concepts to the
feature set, such as the number of infinitival
phrases with zu, or the ratio of passive
constructions. For parse tree complexity,
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3.3

examples include the length of production
units measured by average length of sentences
and clauses, the number of clauses per
sentence, or ratios of dependent clauses,
coordinating conjunctions, and complex
nominals per clause and sentence. In addition,
we have also included the ratio of separated
verb prefixes. As for dependency features,
a representative feature is for instance the
maximum and average number of words
between a head and a dependent in a text.

Error Measures As we are dealing with
data written by learners of the language, we
have implemented a spell check that also
counts the number of misspelled and corrected
words. We use this number to calculate the
ratio of misspelled words and total number
of words. Implicitly the error measures are
part of some of our other feature groups as
well, for instance the RFTagger uses the tag
FM (’foreign word’) for words it does not
recognize as German, and in our application,
many of those would actually be misspelled
words.

Data-driven Feature Sets

Parse Rule Features Following Hancke
(2013), Briscoe et al. (2010), and
Yannakoudakis et al. (2011), we build a
feature vector out of Parse Rule frequencies
for each text. An example would be "NP ART
NN’ standing for a Noun Phrase consisting
only of an article and a noun.

N-grams are a theoretically simple yet
powerful set of features to extract from
unstructured data, which are used in a wide
variety of NLP tasks, as the words used in a
text intuitively convey a lot of information
about its makeup. In the field of automatic
test scoring, Yannakoudakis et al. (2011)
and Briscoe et al. (2010) have worked with
them. While unigrams are powerful, they
are not capable of handling phrases, but it
is easy to improve them by adding bi- and
trigrams to the feature sphere. In this project,
we implemented word, lemma, character and
POS n-grams.

Grammatical tags are extracted with the
RFTagger. Some examples are the type
of particles (answer, degree, negation,



zu, separated verb particle) or the type
of conjunctions (comparative, coordinating,
subordinating with finite clause, subordinating
with infinitive). Note that Hancke (2013) does
not work with n-grams or grammatical tags.

4 Dataset

In order to overcome the limited availability of
appropriate data, we use a combined data set built
from five different sources: MERLIN (Wisniewski
etal., 2011), Falko (Reznicek et al., 2012), KanDeL
(Vyatkina, 2016), CLEG13 (Maden-Weinberger,
2013) and data from online sources for learners
of German.! While all data sets contain different
annotations, for the purposes of this project, only
the CEFR level of the learner and the raw text
were considered. As for the reading materials, we
have decided to include them, as according to Pildn
et al. (2016), textbook data can be beneficial for
proficiency assessment in the event of a lack of data
from the same domain.

The MERLIN corpus consists of texts written
in an exam setting, which are assigned levels
A1-C2 of the CEFR by trained human examiners.
KanDeL is a collection of texts written by students
from the US, who are enrolled in a basic German
language program. The Falko corpus consists
of text summaries written by C1-C2 learners of
German and essays written by upper intermediate
and advanced learners in various international
institutions. Learners who scored more than 80
points on the C-test were hand-selected to form part
of our C-level instances. The CLEG13 texts are
essays, summaries and critical commentaries, and
were written by students from the UK and labelled
according to the year group of students into three
groups. In the first two, students are assumed to be
at levels B1 and B2, while the third consists of C1
learners.

See a summary of the combined data set in
Table 1.

We are aware that the labels A, B and C do not
necessarily signify the exact same level within the
subcorpora. We have studied the levels’ official
description (Council of Europe, 2001) and the
human-graded essays, and noticed that there can
be significant differences inside one level. Thus,
we believe that the categories are wide enough to

'german.net/reading/, lingua.com/german/reading/,
www.cornelsen.de/shop/capiadapter/download/get/
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allow for the potential differences caused by the
non-uniform labeling methods.

5 Results and Discussion?

5.1 Theory-driven features

When calculating all our theory-based features,
we arrive at a total of 129. See Fig. 1 for a
PCA (Principal Component Analysis) graph of
the data set. PCA is a method for dimensionality
reduction of data by retaining as much variance
(information) as possible. It is easy to note that
while A and C are neatly separated, level B is
more interspersed throughout the graph. This
result is intuitively plausible: While it is easier
to give a casual definition for a beginner or an
advanced speaker, the intermediate level, by its
very definition, is a less well-defined category in
between the two.

PCA using all features
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Figure 1: PCA with our theory-driven features

Our results are not directly comparable to any of
the literature we have encountered, mostly due to
the different class labels used. Hancke (2013), our
main background literature, classifies according
to A1-C1 on the MERLIN data set. We have
re-implemented a large part of her best performing
features, which she calls Best34 (Hancke, 2013,
p. 56). She achieves 72.5% accuracy and we
achieve 69% in the same setting. Our assumption
is that the difference is due to the different spell
checker we use, as the MERLIN data is very noisy
compared to our other data sources. Hancke (2013)
uses Google Spell Check?, which was not publicly

20ne can argue that there is a conceptual overlap between
the theory- and data-driven feature sets. However, the two
feature sets are kept distinct throughout the experiments so it
should not affect the results.

3https://code.google.com/p/google-api-spelling-java/



Level A Level B Level C

CLEGI13 416 (172,876) | 315(146,545)
FalkoSummaries 107 (40,787)
FalkoEssay 159 (84,519)

FalkoWHIG 92 (56,513)

KanDeL 185(29,635)
MERLIN 363(22,576) | 624 (103,986)
Reading 64 (10,390) 41 (8,642)

Total 612(62,601) | 1,081(285,504) | 673(328,364)

Table 1: Number of texts (and tokens) in the subcorpora

Feature set | Data Set | Classes | Acc.

Best34 MERLIN | A1-Cl1 | 72.5
Best34 by us | MERLIN | Al1-Cl 69
Our best MERLIN | A1-C1 70
Our best Combined A-C 82

Table 2: Results

available at the time of our project. Using our best
features on the same data in the same setting, we
achieve an accuracy of 70%. For a comparison, see
a list of our best features in Table 3 and Best34
in Hancke (2013, p. 56). Testing on our newly
created dataset, the model achieves a 82% accuracy,
and most importantly, it very rarely misclassifies
A for C, or vice versa. The verification of this
statement is shown in the confusion matrix in
Figure 2. The figure also shows that the model
makes the highest number of incorrect predictions
when classifying level B. See a more detailed error
analysis in section 5.3, and a summary of the results
in Table 2.

140

120

100

]

True label

v T
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Figure 2: Confusion matrix
classification results on a test set.

presenting the

As for the analysis of our feature groups, when
tested alone, traditional features, lexical features,
morphological features and syntactic features
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achieve an accuracy above 70%, with morphology
being the best group. The reason for that might
be that German is a morphologically complex
language, and also that some of our morphology
features capture the complexity of other fields as
well. For instance the different verb forms, while
morphologically different, also represent syntactic
complexity. Even the spelling error features alone
achieve an accuracy that is significantly better than
the random baseline of 0.33.

When performing an iterative feature
elimination, we arrive at around 40 features
that perform approximately equally as well as
our whole feature set. Additional features do not
increase the classification accuracy significantly.
The 40 best consist of 5 traditional, 8 lexical, 2
frequency, 5 spelling error, 14 morphological and
6 syntactic features.

These features are similar to Hancke’s(2013)
best-performing group, with the main difference
being that she does not work with the traditional
readability features, and we are not using language
model features. See the features that performed
best in this project in Table 3.

It is interesting to note that all of our spelling
error features are in the best group, signaling that
analysis of the errors the writer makes is a good
direction for future additions to the feature set.
While working with the data, we have noticed that
the frequency of spelling errors noticeably changes
across corpora. Ideally, the setting in which the text
was written should also be taken into account, as
the MERLIN texts which contain the most spelling
errors were written in an exam setting, while other
corpora also include homework assignments.

Inside the syntax group, we can see that the
general complexity features perform well, e.g.,
average number of words between the head and
a dependent, average clause length, number of



Group

Features

Traditional

SMOG, average number of characters per word, number of polysyllables, FOG

Lexical

Lexical Diversity
Yule’s K, Uber Index, HDD, MTLD

Lexical Density and Variation
adverb variation, modifier variation, verb variation, corrected verb variation

Frequency

bin 0, bin 6, mean frequency

Error

spelling errors, spelling errors with correction, capitalization errors, umlaut
spelling errors, real spelling errors

Morphological

number of articles, ratio of compound nouns to noun, number of 1st person tags,
number of past tense tags, ratio of nominative to nouns, number of nominatives,
ratio of -keit suffix to nouns, number of past participle verbs, ratio of participles
to verbs, number of singular tags, ratio of dative nouns to nouns, number of
second person tags, ratio of verbs per sentence, ratio of 1st person to finite verbs

Syntactic

Dependency
average number of words between head and dependent, average number of
dependents per noun excluding modifiers

Parse Tree Complexity
average clause length, average number of dependent clauses per clause, average
number of non-terminals per sentence, average number of interrogative clauses

per sentence

Table 3: Best-performing features

non-terminals, or the ratio of dependent clauses
per clause. From the more specific features we can
see that NP complexity is relevant.

As for morphology, we can see that both
compounds and derivational features (nouns
ending with the suffix -keir), as well as inflections
appear in the best-performing features. Certain
verb forms, like past tense, participles, 1st and 2nd
person have a correlation with proficiency. The
inflection of nouns is also relevant, and the number
of datives and nominatives divides the data best.

One can see that a lot of the features are
dependent on sentence length, e.g. the traditional
readability measures SMOG and FOG, number
of polysyllables or most of the lexical features.
The degree to which sentence length influences
the classification level is up for debate. While it
is true that it is theoretically possible to produce
a short but complex or a long but simple text, in
real life scenarios text length and complexity or
proficiency very often go hand in hand. Exploring
this correlation further is a direction for further
research.

5.2 Data-driven features

We have experimented with word, lemma,
character and POS n-grams. For words and
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lemmas, instead of a simple count, a tf-idf (term
frequency-inverse document frequency) weighting
method is used, with the goal of scaling down the
effect of features that occur very frequently and are
thus not informative, for instance the. We set the
length of n-grams to 3 to avoid the problem of data
sparsity. We have iteratively experimented with the
number of features that gives the best accuracy.

According to, for instance, the findings of Zesch
et al. (2015), when analyzing the task-dependency
of features, n-grams are highly task-dependent.
Thus, as expected, our n-gram model performs
rather poorly when trained on one subdataset and
tested on another. See Fig. 3 to observe how closely
n-grams are related to the data set and specific tasks
that the learners were writing about: Words such
as Kansas show up since one corpus is written
by students from Kansas, as well as Feminismus
(’feminism’), as that was one of the essay topics.
Some features are more generalizable, for instance
ich (CT’) is an important feature for A level text,
which relates to the communicative skills needed
for beginner levels, i.e., they are expected to be
able to talk about their immediate surroundings.
In fact, all of the words support this observation.
Inside the negative coefficient group, we can see the
complementiser dass ('that’), showing a syntactic



feature; low-level learners are likely to not use
dependent clauses.
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Figure 3: Important word n-grams

POS-unigrams, while producing a low, 59%
accuracy, do present some interesting observations.
For level A, some of the most predictive features
are the presence of FM (foreign material), probably
due to misspellings, VFIN (finite verbs), or INT
(interjections). The VINF (infinitival verb) shows
up in the features for levels B and C, as they are part
of more complex verb structures, and the use of a
PROADV (pronominal adverb) or VPP (participle
verb) signals a level C.

See Table 4 for the accuracies of our different
n-gram features. Trained on a specific task, they
could achieve really high accuracy and we notice
interesting observations looking at their results,
however, they generalize poorly. Note that the
cross-dataset accuracy is binary.

N-gram | #Feat. | Accuracy | Cross-data
Word | 10,000 0.756 0.66

Lemma | 5,000 0.748 0.63
Char. | 20,000 0.881 0.55
POS 5,000 0.835 0.65

Table 4: Accuracy of n-gram features

The parse rules (PR) are extracted by the
Stanford Parser. In order to reduce computational
complexity and increase relevance, we have
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excluded rules that appear fewer than 10 times
in the data set. With this we arrived at 1222
parse rules. The length of the parse rules can be
anything greater than or equal to two. We have
achieved the best accuracy with 200 PR features,
which was 0.766 +/- 0.056. See Table 5 for some
of the best-performing PR features and possible
interpretations. The best accuracy we have reached
is 77% with 500 PR features. We notice that
the data-driven features support and validate
our theoretical feature engineering. NP and PP
complexity seems to be important in classification,
as is the use of conjunctions and zu-infinitives.
The table is intended as an illustration of possible
interpretation of some rules with high importance.
For an exact understanding of the PR features, the
TIGER Treebank (Smith, 2003) can be consulted.

Interpretation Parse rules
NP complexity NP PIAT NN
NP ADJA NN
NP ART NN NP ART NN
PP complexity | PP APPR ART ADJA NN
PP APPR NN
Conjunctions CNP NN KON NN
CAP ADJA KON ADJ
Adj. and adv. AVP ADV ADV
AP ADV ADID
Zu-Infinitive VZ PTKZU VVINF

Table 5: Important Parse Rules and their
interpretation

Prediction using the 85 grammatical tags of
the RFTagger gave an accuracy of 79 (+/-4) %.
The tags name, masculine, full verb, noun and
coordinating conjunction are the best predictors for
level A; attributive adjectives, personal pronouns,
prepositions, and degree particles signal B level
texts the strongest, while C level texts are best
recognizable by colons, interrogatives, adverbs,
negations and definite articles, according to the
model. The presence of the word zu (in English
corresponding to ’for’, ’to’ or the intensifier "t00’)
is the clearest sign of a text not being A level. We
can conclude that in the case of this data-driven
feature set as well, many of the features the
system found to be important are the same as those
we manually created. Some additional features,
such as different kinds of articles, pronouns, or
particles can be added to the model for future
experimentation.



5.3 Error analysis

In order to think about directions for improving our
classifier in the future, we have performed an error
analysis on incorrectly classified sentences.

As we are dealing with a 3-way classification,
the biggest error the classifier can make is a miss
of two levels, e.g. classifying A instead of C.
Running a classification 10 times and observing
and analyzing these errors, we can state that the
number is very low, ranging between 0 and 3 at
each trial. An example sentence from one of these
texts is Dieser Film handelt die amerikanische
revolutiondre Zeiten wdihrend der friihen Monate
Jahres 1776, die auch ihm seine Name gibt. (This
film is about the American Revolutionary Times
during the early months of 1776, which also gives
it its name.) The text is part of the KanDeL
data set, which includes both in-class assignments
and homework. Our assumption is that the text
was written as a homework assignment, so the
writer could put time and effort into performing
beyond their expected proficiency level. When
observing the feature values for the text compared
to the mean values for A texts, not only does it
surpass them in the surface-level categories, but
also in categories such as average number of words
between head and dependent. Another example
of misclassification is when there is not enough
information in the text, for instance the A level
text LIEBER JENS, GLUCKWUNSCH ('DEAR
JENS, CONGRATULATIONS’) gets classified
as C by our classifier. Due to its length, the
relatively long term Gliickwunsch or the high TTR
are possibly given too much weight as many of
the other features would be zero. Another text that
showed up multiple times in this non-exhaustive
experiment was a C-level text from the CLEG
data that was classified as A. On closer inspection,
comparing the feature values to the mean, the
problem is the surface-level features, like number
of syllables or SMOG. The implications of these
findings is that the traditional readability formulas
are not without their problems, which we are aware
of. However, excluding them completely from the
calculation is not the best option, as they show up
in the most distinctive features.

The question of errors by one level is more
complicated. We can conclude that texts from the
CLEG data set are mostly classified higher than
their label. This might be unintuitive as in the
case of CLEG, the labels are actually the level the
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students are supposed to be at a certain academic
year, and not dependent on any test score or essay
grade. Working with the data, we have already
noticed that CLEG level B is closer to the level
C from other sources. Texts from the MERLIN
data are the most commonly misclassified in both
directions. We assume that level A texts often get
misclassified because of the lack of information
they contain. We also have to note that our classifier
at the moment does not take the flow or cohesion of
texts, or correct word choice, into account, which
would probably be vital when dealing with such
a short text; looking at the feature vector, we see
that such a text tricks our classifier in terms of
surface-level and lexical features which are highly
correlated with text length.

6 Conclusion

With the help of our classifier and the data set,
the writing level of language learners can be
found with a reasonably high accuracy. We
found that linguistic features correlate with CEFR
proficiency levels and can perform reasonably
well in a classification scenario. Moreover, with
our detailed description of the performance of
different features, we hope to have come closer to
a tool that helps educators obtain a more practical
list of what is expected from learners at certain
levels. In the case of German, our target language,
morphological features appear to be especially
important. Some syntactic and lexical features are
also given a high weight by the machine learning
algorithm.

By constructing a larger and more balanced
data set, we report 82% accuracy, a significant
improvement over our models performance on
just the MERLIN texts, which reached 70%.
For further investigation, the most important
factor is the data set itself. = With enough
data, we can also try running the model on
the full CEFR scale from A1-C2, instead of the
three-level classification currently being performed.
Additional improvements to the data preprocessing
can also be incorporated into our current pipeline,
such as experimenting with different German spell
checkers and sentence boundary detection methods.
As for the feature groups, data from other fields,
such as semantic or pragmatic information, are not
included in the scope of this project; this additional
information would also be worth testing. In other
cases, a more fine-grained feature division could



be helpful, for instance, analyzing different error
categories.

It is also important to note that the feature
sets, while tailored for German, are not
language-specific per se. The data-driven features
are all language-neutral and as for the theory-driven
ones, traditional, lexical, frequency, and error
measures are also not tied to the language of
the text. As German is a morphologically rich
language, it is unsurprising that morphological
features perform well for classification, which
may not be the case for other, morphologically
less rich languages. As for syntactic features,
most features are related to the dependency or
parse tree structure and thus, also language neutral.
However, a few features, such as the number of
passive constructions, or specific infinitival phases
we would not expect to contribute to the results
greatly in other languages. Testing cross-language
performance is a promising direction for future
research, as well.
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Abstract

Lemmatization is a central task in many
NLP applications. Despite this importance,
the number of (freely) available and easy to
use tools for German is very limited. To fill
this gap, we developed a simple lemmatizer
that can be trained on any lemmatized cor-
pus. For a full form word the tagger tries
to find the sequence of morphemes that is
most likely to generate that word. From
this sequence of tags we can easily derive
the stem, the lemma and the part of speech
(PoS) of the word. We show (i) that the
quality of this approach is comparable to
state of the art methods and (ii) that we can
improve the results of Part-of-Speech (PoS)
tagging when we include the morphologi-
cal analysis of each word.

1 Motivation

In the following we present a simple approach to
lemmatization of German texts and compare the re-
sults with a number of other easily available tools.
The motivation was twofold: while lemmatiza-
tion seems to be a core task in analyzing text, in
most standard Python packages like Stanford’s Nat-
ural Language Toolkit (NLTK), no lemmatization
for German is available. Mainly for teaching un-
dergraduate students we wanted to have a simple
tool, that gives linguistically correct lemmata for
all words and is also easy to use and install on a
Python notebook server. In the second place, we
wanted to investigate, whether a careful splitting
of a word into a stem and suffix can improve the
treatment of unknown words in a standard trigram
PoS tagger, in which the PoS otherwise is guessed
on the base of the final letters of a word.
Lemmatization is a core task in analyzing text.
Nevertheless it did not receive as much attention
as e.g. PoS tagging. Rule based systems can reach
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a very high accuracy for morphological analysis.
However, existing systems are not always available
and the construction of a lexicon and morphologi-
cal rules is a very tedious task. In practice therefor
often simple heuristic rules or a dictionary lookup
are used, even if the quality of the tools is not
even known. Especially for information retrieval
the quality of lemmatization seems not to be very
important and some studies suggest that any form
of heuristic stemming, mixing up inflectional and
derivational morphology can be used (Kettunen et
al., 2005; Moral et al., 2014) though some other
studies contradict these findings (Braschler and
Ripplinger, 2004).

In the following we present an approach to mor-
phological analysis based on computing the most
likely sequence of morphemes for a given word. In
section 2 we present the details of this method. In
subsection 2.4 we show how we can use the results
in a PoS tagger. In section 3 we discuss related
work and alternative approaches and finally, sec-
tion 4 compares the results on lemmatization and
PoS tagging.

2 Method

Given a word w = a; ...a, we try to find the most
likely sequence of morpheme tags s =1, ...# that
generates w. We cannot use a standard Hidden
Markov Model and the Viterbi algorithm to find
the most likely sequence s since we do not have
a segmented list of output observations. However,
the solution presented here is very similar to a Hid-
den Markov Model and the computation of the
most likely tag sequence is almost identical to the
Viterbi Algorithm. We define the most likely tag
sequence s that generates w as

k

kr,.?gkgp(ti | tizati=1) - p(@sm |1i)

ey

where T is the set of all tags, 0 < [; < m; < n for
eachiand w=app, ... am,.


https://creativecommons.org/licenses/by-nc-sa/4.0/

Since here every state is dependent on two pre-
vious states we call the model second order model
and we have to add two start states to every se-
quence. We also add a final state that generates
the empty string to each tag sequence. We add one
final state for each PoS tag. This will allow us, to
compute the most likely tag sequence for each PoS.

Using dynamic programming we can find the
optimal tag sequence efficiently. Using a first order
model, for a string w = aj ...a, we define the prob-
ability that a prefix a; ...a; of w is tagged with a
tag sequence in which the last tag is ¢ as

8(t,j) = max (8(s,0) - pla; [ 1) plt [ 5)) @
foreachteTand2 < j<nwhereseT,2<i<],
a;j denotes the substring a; . ..a; from w and

¥(t,1) = p(t | START). 3)

The equation can easily be extended for a second
order model but the becomes slightly more com-
plicated. When we compute (¢, ) we get the
well-known Trellis diagram. When we extend the
algorithm with a backpointer, we can easily find
the optimal tag sequence for a given word.

Consider e.g. the word Sorgen, that can either
be the plural of the noun Sorge, the infinitive of
the verb sorgen, or a finite form of the same verb.
Now, for each of the corresponding final states
we can compute the most likely tag sequence that
generates the word sorgen. In our data we thus find
the following tag sequences:

Sinf = None, START, VV,SUF_INF,END_VVINF
sin = None,START,VV,SUF_FIN,END_VVFIN
ssn = None, START,NN,SUF_NN,END_NN

The probability that the sequence sy, generates the
word is computed as follows: p(Sorgen,sn,) =
p(NN | None, START) - p(SUF_NN | START,NN) -
p(END_NN | NN,SUF_NN) - p(‘sorge’ | NN) -
p('n’ | SUF_NN) = ¢~ 1:60854 | ,—146985 . ;0.0 .
782129 o= 143789 _ ,=1233757 Gimilarly, we find
p(sorgen, sg,) = e 1977981 and p(sorgen, sinf) =
o—10.63024

Since there could be several sequences generat-
ing sorgen and ending in END_NN, the probability
p(Sorgen, syy) is not the probability that the word
is generated by a noun sequence. To compute that
probability we would need an equivalent of the for-
ward algorithm, that computes the sum of all proba-
bilities leading to one state instead of the maximum.
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However, in practice alternative paths turn out to
be completely nonsense (since the model is highly
over generating) or extremely unlikely (and thus
do not change anything).

Given the large amount of training data for
words, and the fact that for each substring we can
assume that it is generated by one of the open
class morphemes, we do not need any interpola-
tion or smoothing and use the trigram probabilities
directly.

Finally, we use also case information and multi-
ply the found probability with the probability that
a word of the found class is capitalized or not.

2.1 Unknown Words

For each string we can assume that it is an unseen
instance of an open morpheme class. Currently we
defined by hand, which classes are the open classes,
but this also can quite easily be guessed from the
number of hapax legomena in each class.

For a morpheme m = ay ...a, we can estimate
the probability that an unseen morpheme is gener-
ated by a given morpheme tag using the probability
that a morpheme ending on a given suffix is gen-
erated by that class. We compute these suffixes
probabilities on infrequent morphemes, assuming
that morphemes not observed in the test data are
more similar to infrequent than frequent to mor-
phemes. If not enough observations are available
for suffixes of length n we use the probabilities for
suffixes of length n — 1. To compute the proba-
bilities of the shorter suffixes we exclude all mor-
phemes ending on one of the longer suffixes for
which we had enough observations. E.g. if we use
the probability p(noun | ung), for bigrams we use
p(noun | ng and not ung) rather than p(noun | ng).

For longer unknown words we need to be sure,
that an analysis using several known morphemes
is preferred over the analysis as one unknown mor-
pheme. Especially long nouns should be much
more likely to be a noun compound, consisting of
two or more known stems than being a completely
unseen stem. Thus we also use the probability
p(n | t) that a morpheme of length n is generated
by . We compute this probability on infrequent
morphemes again. Finally, we use the probability
Phap(t) that the tag produces a hapax legomenon.
Thus we approximate the probability of an unseen
morpheme m =ay ...a, given atag ¢ as

p(m|t) = p(an—2an_1a,|t)-p(n|t)-phap(t). (4)



2.2 Generating training data

The most critical part in the development of the
analyzer is the generation of training data. We
generate the training data from the Tiger Corpus
(Brants et al., 2002). Here we find a lemma and a
PoS for each word form. The basic idea now is to
split the word form in the stem, that can easily be
derived from the lemma, and prefixes and suffixes.
E.g. the word geplant with lemma planen and stem
plan can be split up in ge, plan and ¢t. For the affixes
we assign tags based on the given PoS. Thus, in the
present example we generate

[(’ge’, PREF_PP’), (’plan’, VV’),

, 'SUF_PP’), (’’, END_VVPP’)]

('t

In many cases we end up with much more compli-
cated sequences. We restrict the decomposition
of words to inflectional morphology except for
noun compounds, comparatives and superlatives of
adjectives and adjectives derived from participles.
Thus we have sequences like

[(*auf’, PTKVZ’), (’ge’, 'PREF_PP’), (’
schreck’, 'VV’), (’t’, *SUF_PP’), (’
>, "END_VVPP’) ]

[(’amtier’, 'VV’), (’end’, 'PRESPART’),
(en’, 'SUF_ADJ’), (°°, ’END_ADJA’)]

[(ordnung’, 'NN’), (’s’, 'FUGE’), ( kri
ft>, 'NN_VAR’), (’en’, 'SUFNN’), (°
>, "END_NN’) ]

We use several language dependent heuristic rules
to split up each word. In German the stem often
is not a part of the surface form. In most of these
cases we can find a variant of the stem by search-
ing a substring that starts and ends with the same
consonants. E.g. for the word jiingeren (younger)
with stem jung (young) we find:

"ADJ_VAR’) ,("er’,
"SUF_ADI") ,(* ",

*ADJ_COMP’ )
"END_ADJA” ) |

[("jung”,

,(Ten’,
In addition now the substitution jiing/jung will be
stored for the adjective class. These substitutions
will be used later to reconstruct the stem and lemma
of an analyzed word.

In total we used 52 final tags (i.e. tags encoding
the PoS of a word and not corresponding to any
morpheme) and 75 real morpheme tags.

The morpheme classes obtained in this way are
very rough and result in a massively overgenerating
model. E.g. for some verbs the past participle is
formed without the prefix ge. Thus the model
allows the morpheme tag SUF_PP without having
seen the morpheme PREF_PP before and inde-
pendent of the verb, since no distinction is made
between verb classes needing the prefix and those
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that do not have this prefix in the past participle.
Thus even a form like lauft could be analyzed as
[('lauf’, 'VV’'), ('t’, "SUF_PP'),
(", "END_VVPP’) ].However, it turns out that
for analyzing there is only a limited number of
cases, where this causes problems.

2.3 Lemmatization

Once the most likely sequence of tags is found, a
small set of rules is used to generate the correct
lemma. These rules mainly deal with the genera-
tion of an infinitive from a stem and with the appli-
cation of the stored substitutions for irregular stems
and stems with Ablaut (vowel gradation).

2.4 Part of Speech Tagging

The usual way to analyze German or English is to
start with part-of-speech tagging and then to ana-
lyze each word according to the found PoS. It is
now tempting to investigate, whether the other way
around works as well: instead of using observed
probabilities we could use the probabilities as com-
puted by the morphological analysis. To be precise:
we computed p(w,?) for a word and a tag before. In
a standard trigram tagger (see e.g. Brants (2000))
we need the probability p(w | ¢). This probabil-

ity can be computed easily by using the fact that

_ pwt)
pwlt)= o) -

The approach has the advantage that we get
much better statistics for inflectional variants of
infrequent words. On the other hand we lose a lot
of information on specific word forms. For some
words only certain forms are frequently used, and
others are infrequent or even not existent. E.g. the
noun Arger (trouble, annoyance) does not have a
plural form. Consequently, the form drgere only
can be a verb form (from drgern, to annoy). Using
the morphological analysis described above, we
will nevertheless find an analysis as noun as well.

In the following we will use two variants: in the
first variant we use only the probabilities computed
by the morphological analysis. In the second vari-
ant we will use the observed probabilities and use
the morphological analysis for words that were not
observed in the training data. Here we treat words
seen once and twice as unseen words as well.

We base the transition probabilities on trigram
statistics over tags. Here we use linear inter-
polation to avoid zero probabilities and set the
smoothed probability p*(t, | t,—2t,—1) = 0.95 -
Pty | th—aty—1) +0.04 % p(t, | t,—1) +0.01 - p(t,).



2.5 Implementation

We implemented all algorithms in pure Python. The
script to generate training data from the Tiger cor-
pus and the classes to train and apply the morpho-
logical analysis and the PoS tagging are available
on Github! and PyPI2.

In order to speed up the computation, we com-
pute the analysis for 2000 frequent words imme-
diately after training and store the results in the
model file as well. Here we exclude all analyses
resulting in a PoS tag that was never observed for
that word. This also slightly improves the results.

In the following we will call this tagger Hanover
Tagger or short, HanTa, and refer to the version
using observed probabilities for all words that were
seen at least three times in the training data as
HanTa (hybrid).

In the package available on GitHub there are
functions to analyze a single word, to tag a sentence
or to tag and lemmatize a sentence at once. The
user can also choose to get only the PoS tag, the
lemma, or a morphological analysis.

3 Related Work and Alternative Tools

At first glance lemmatization seems to be an easy
task. Nevertheless, for most languages, at least for
German, we need some morphological analysis to
find correct lemmata. State of the art methods for
morphological analysis are still rule based. In the
first place here the work of Koskenniemi (1983)
has to be mentioned. For German this approach
was used in the SMOR tool (Schmid et al., 2004).
Besides the rule based approaches there are sev-
eral attempts to derive a morphological model for
a language in a complete unsupervised way. An
example of this approach is Morfessor (Creutz and
Lagus, 2007), that in fact uses an underlying model
for morphology that is very similar to ours. For a
recent overview of unsupervised learning of mor-
phology we refer to (Goldsmith et al., 2017).
Only a few studies deal with the possibility to
learn lemmatization or morphology in general from
annotated data. Kanis and Miiller (2005) and Jonge-
jan and Dalianis (2009) learn rules from a lemma-
tized corpus to transform an inflected word form
to a lemma. Gashkov and Eltsova (2018) obtain
good results for German by a full-form dictionary
and applying analogy for unknown words: basi-
cally, for an unknown word form the word with

'https://github.com/wartaal/HanTa
Zhttps://pypi.org/project/HanTa/
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the longest common suffix is searched and then
the transformation associated with that word is ap-
plied. Gesmundo and Samardzi¢ (2012) propose
to annotate words with the type of rule, needed to
transform the full form to a lemma, thus reducing
lemmatization to a tagging task. A similar idea
is followed by Chrupala et al. (2008) who define
classes that correspond to mappings from word
forms to lemmata and train a classifier to classify
words accordingly. This approach is extended by
Miiller et al. (2015) who use more features and con-
ditional random fields for classifying morphemes.
To some extend our model resembles this approach.
The main differences are (i) that we learn on seg-
mented data (and thus have to produce such data be-
fore learning) and (ii) that Miiller et al. (2015) learn
the transformation needed to produce a lemma as
well, while we need a small language specific, rule
based component that produces a lemma from the
list of morphemes found.

Our goal is not to improve on state of the art
morphological analysis but just to have an easy tool
that gives results that can be used in further tasks
and to provide an alternative for lemmatization
tools that are easily available and therefor used
frequently. In the following we thus compare the
results of lemmatization to those obtained by the
TreeTagger, Spacy and GermalLemma. For testing
PoS tagging we use the same tools and in addition
an own implementation of a standard second order
Hidden Markov Model, using suffix statistics to
guess the output probabilities for unseen words.

The TreeTagger (Schmid, 1999) is a PoS tagger
based on a second order Hidden Markov Model
(or trigram model) extended with decision trees to
use more contextual information and dictionaries
of prefixes and suffixes to improve the basic model.
The standard model for German was trained on a
manually tagged newspaper corpus.

Spacy (ExplosionAl GmbH, 2019) is a state of
the art tool based on deep learning for tokenization,
PoS tagging and named entity recognition. Spacy
also provides lemmatization. While other mod-
ules are based on trained artificial neural networks,
lemmatization is rule based. We used release 2.1.4.

Germalemma (Konrad, 2017) is a tool that com-
bines a full form lexicon, extracted from the Tiger
Corpus, an algorithm for splitting compounds and
morphological rules from the Pattern package (The
CLiPS (Computational Linguistics & Psycholin-
guistics) research center, 2018). GermalLemma



requires that the lemmatization is preceded by PoS
tagging.

4 Evaluation

Since our focus is on the development of a prac-
tical tool for lemmatization, that can be used as a
component in a larger pipeline, we will use large
corpora, in which many words occur many times,
instead of word lists for evaluation.

4.1 Data

As mentioned before we use the Tiger Corpus for
training. We used version 2.2 which consists of
50103 sentences or 0.9 - 10° tokens. For cross
validation we split the corpus into 10 contiguous
parts, as was also done by Giesbrecht and Evert
(2009) and is considered to be a slightly harder
and more realistic setting than taking every tenth
sentence, since every part now gets sentences from
different texts. In addition we use a list of the most
frequent verb forms extracted from the DeReKo
Corpus (Stadler and Wegstein, 2016) to train the
morphology model and to make sure, that at least
the most frequent verb stems are seen in the training
phase.

For evaluation, besides the Tiger Corpus, we use
TiBA D/Z and the Hamburg Dependency Treebank.
The Hamburg Dependency Treebank (HDT) (Foth
etal., 2014) is very interesting for our purpose since
it consists of texts from a different domain. Tiger
and TiBA D/Z consist of daily newspaper texts,
while HDT uses texts from heise . de with news
and background articles on anything related to com-
puter hard and software. Here we observe the use
of a different vocabulary and sometimes deviations
from standard German spelling, like writing com-
pounds as words separated by blanks. We use part
A of the corpus, which was manually annotated
and checked for consistency. This part consists
of 102000 sentences or 1.87 - 10° tokens. We use
HDT for evaluation of PoS Tagging. The lemmata
provided cannot be used for evaluation, since for
compounds only the head is given as a lemma.

TiiBa D/Z (Telljohann et al., 2004) is a manu-
ally annotated newspaper corpus of a similar size
(104.787 sentences or 1.96-10° tokens). TiBA
D/Z uses a slightly different tagset than Tiger:
TuBA D/Z has a different tag for pronominal ad-
verbs (which we just can replace to compare re-
sults) and it distinguishes between two different
forms of attributive indefinite pronouns (with and
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Figure 1: Observed (x-axis) vs. predicted proba-
bilities (y-axis) (here displayed as the natural loga-
rithm of the probabilities) for 2337 word-tag pairs.

without determiner) while Tiger just has one. Thus,
we remove this distinction when evaluating results
trained on the Tiger annotation scheme. With re-
gard to the lemmata, TiiBa D/Z uses a #-sign to
mark the boundary of separable prefixes and some-
times adds disambiguating PoS information to the
lemma. Both are removed. In some cases (espe-
cially for adjectival nouns) several possibilities for
the lemma are listed and separated by a pipe sym-
bol. Here we keep the whole string as it is.

4.2 Lemmatization

First, we compare the values of the predicted prob-
abilities with the observed probabilities. For this
purpose we take every 10th word of a list of all
word forms occurring at least 3 times. This results
in a list of 2337 words. For each of these words
we compare the probability for the most probable
observed tag with the probability estimated for that
tag. The Pearson correlation between the two meth-
ods is 0.455 indicating a low correlation between
the observed and predicted values. Especially for
infrequent word forms the estimates are much too
low (see Figure 1). This situation is not completely
unwanted: we will predict non-zero probabilities
for many word forms not present in the corpus.
Consequently, some observed probabilities have to
become smaller.

4.2.1 Quantitative Analysis

The morphological analysis gives a ranked list of
possible PoS tags for each word. We use precision,
recall and Mean Reciprokal Rank (MRR) to eval-
uate these rankings, computed for one fold from
the 10-fold cross validation division of the tiger
corpus. Here we do not take into account the words



Table 1: Mean Reciprokal Rank on the prediction
of the PoS on 10% of the Tiger corpus, using 90%
as training data. The prediction is only based on
the morphological analysis, not taking into account
information from surrounding words.

all words unknown words
HanTa 0.955 0.900
HanTa (hybrid) 0.962 0.900
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Figure 2: Precision and recall of the prediction of
the PoS on 10% of the Tiger corpus. The green
line gives the results for unknown words, while the
blue (upper) line corresponds to all words.

around each word and for an ambiguous word we
thus always predict the most likely tag.

Figure 2 shows the precision-recall curves for
the tagger using only predicted probabilities. The
MRR for known and unknown words for both vari-
ants of the tagger are given in Table 1.

Despite the low correlation of the observed and
computed probabilities, the ranking of the results
seems to be almost identical.

Next, we test the accuracy of lemmatization of
HanTa, the TreeTagger, Spacy and GermalLemma
on the Tiger and the TiiBa Corpora. We use Ger-
malemma here in combination with our own Tri-
gram Tagger implementation (GerTriTa). For Ger-
TriTa and HanTa we use 10-fold cross validation
on the Tiger Corpus. However, GermalLemma is
trained on the Tiger Corpus. Thus, here we cannot
really use the results. The same holds for Spacy
that is trained on Tiger as well.

Since the correct lemmatization for many closed
class elements is unclear and arbitrary (e.g. in Tiger
the lemma of the determiner das is der while the
TreeTagger generates the lemma das, which we do
not want to consider as incorrect) we evaluate on
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Table 2: Accuracy of lemmatization on the Tiger
corpus. Values in brackets are obtained by evaluat-
ing on the training data

all unknown
HanTa 96.98 +0.24 86.00 £0.68
HanTa (hybrid) 97.12 £0.25 86.00 £0.68
TreeTagger 96.12
Spacy (87.46)
GermalLemma (97.79 £0.20) (96,38 £0.37 )

Table 3: Accuracy of lemmatization on the TiiBa
D/Z corpus.

HanTa 92.98

HanTa (hybrid) 93.06
TreeTagger 93.59
Spacy 86.60
GermalLemma 92.23

the open class words only. Results are given in
Table 2.

We also evaluated the lemmatization on the
TiBa D/Z Corpus. This corpus was not used in
development or training of any of the compared
tools (as far as we know) and therefore is much
better suited for evaluation. The results are given
in Table 3.

4.2.2 Error Analysis

For the HanTa lemmatizer we clearly see two main
sources of errors. In the first place many plural
forms of long (unknown) nouns are not correctly
analyzed as a stem and a plural suffix. E.g. the
word Plattenldiden (Record shops), occurring in
TiiBa D/Z but not in Tiger gets the lemma Plat-
tenldden, since the analysis as one long unknown
word is slightly more probable than the analysis
as a compound, which would have enabled HanTa
to correctly lemmatize the word as Plattenladen.
Also for a simple word like Volkslieder (Folk songs)
HanTa preferred the analysis as one large unknown
noun over the analysis Volk+s+lied+er. This is
partly also caused by the quite low probability of
the suffix er. Here it could help to have more fine
grained classes that would give a higher probability
for the suffix er after certain nouns.

The second source of errors is formed by adjec-
tival nouns and especially present participles that
are used as nouns, like Lehrende (teaching person).
We did not code this type of nouns in any special



Table 4: Accuracy of PoS tagging on the Tiger
corpus.

all unknown
HanTa 96.52 +0.33 88.98 +1.04
HanTa (hybrid) 96.96 +0.34 88.98 +1.04
GerTriTa 96.94 £0.31 88.04 £0.72
TreeTagger 95.08

way in the training data, but just coded them as
one nominal morpheme. In the Tiger corpus lem-
mata are not assigned uniformly to these type of
nouns. E.g. the word Andersdenkende (dissent-
ing person) is lemmatized as andersdenkend , the
word Asylsuchenden (asylum seeking person) is
lemmatized as Asylsuchender (with strong mascu-
line flexion) and Wohlhabenden (wealthy person)
as wohlhabende (with weak flexion). In the TiiBa
D/Z corpus these type of nouns have three lemmata
(one for each gender), separated by a ’I’-sign in case
the gender is underspecified and the lemma with
the corresponding gender marking, if the gender
is clear. Thus Siichtigem (addicted person, dative
masculine singular) gets the lemma Siichtiger.

Most other lemmatizing errors are caused by am-
biguity and the assignment of the wrong PoS. E.g.
the word iiberzeugt (convinced) has to be lemma-
tized as iiberzeugen if it is a past participle, but it
has to be lemmatized as iiberzeugt if it is a past
participle used in an adjectival way (at least accord-
ing to the annotation principles of Tiger and TiiBa
D/Z; see e.g. (Lenz, 1993) and (Eisenberg, 1994,
p- 71) for a discussion on the status of German par-
ticiples). Finally, the frequent words mochte and
mochten (would like) are lemmatized incorrectly
in Tiger as mochten, and thus learned incorrectly
by HanTa, while they are correctly lemmatized as
mogen in TiiBa D/Z.

4.3 Part of Speech Tagging

For the evaluation of the PoS tagging based on
the tag probabilities found by the lemmatizer we
use two corpora: the TiiBa D/Z treebank and the
manually corrected part (part A) of the Hamburg
Dependency Treebank. Especially, the latter one is
interesting since its text are not from daily newspa-
pers like the data from Tiger and TiiBa D/Z.

The results for evaluating PoS tagging with 10-
fold cross validation on the Tiger Corpus are given
in Table 4. The results on TiiBa D/Z and HTB are
given in Table 5.
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Table 5: Accuracy of PoS tagging on the TiiBa D/Z
and HDT Corpora.

Tiiba HTB
HanTa 95.07 93.80
HanTa (hybrid) 95.54 94.29
GerTriTa 93.19 92.97
TreeTagger 94.81 92.87
Spacy 93.38 92.75

Table 6: Top 10 most frequent errors. The first col-
umn gives the correct PoS tag, the second column
the predicted PoS and the last column the propor-
tion this error has to the total number of errors.

PoS Predicted PoS Perc.
NN NE 10.20 %
NE NN 5.36 %
KOKOM APPR 5.11 %
VVEFIN VVINF 423 %
NE FM 3.09 %
ADV ADJD 2.76 %
NN ADJA 2.47 %
FM NE 1.78 %
VVFIN VVPP 1.69 %
KOUS PWAV 2.63 %

4.3.1 Error Analysis

Finally, we have a more detailed look of the errors
that HanTa makes on the TiiBa-D/Z corpus. Ta-
ble 6 shows the 10 most frequent errors. We see
that there are some frequent ambiguous words, like
als (as, than) and wie (as) that are hard to clas-
sify and already were reported by Giesbrecht and
Evert (2009) to be a main source of errors. For
most verbs the infinitive and first and third per-
son present tense plural are identical and in many
cases the correct class cannot be determined with-
out syntactic analysis. Furthermore, there are many
problems with proper nouns (NE). Here HanTa has
difficulties to decide whether an unknown word
is a proper noun (NE), a foreign word (FM) or a
common noun (NN). In addition, Tiger and TiiBa-
D/Z also differ in the distinction between common
nouns and proper nouns. E.g. the words Osteu-
ropa (eastern Europe), Bundesnachrichtendienst
(Federal intelligence office) and EU-Kommission
(EU commission) are classified as proper names in
Tiger but as common names in TiiBa-D/Z.



Table 7: Average runtime of analyzing the first
1000 sentences from TiiBa D/Z. All results are
averages from 7 runs.

Tagger Time
TreeTagger 2.85s5s+0.501 s
Spacy 145s +1.61s
HanTa 10.7s +£0.102s
HanTa (hybrid) 6.945+0.162s

HanTa incl. lemm.
HanTa (hybrid) incl. lemm.

37.6s +0.794 s
319s +1.26s

4.4 Run Time

We measured the time needed to tag and/or lemma-
tize the first 1000 sentences from TiiBa D/Z in a
Jupyter Notebook on a Laptop with one Intel i7 2.7
GHz Processor and 8.0 GB RAM. The results are
given in Table 7. Currently the results of the mor-
phological analysis of each word is not stored. So
after PoS Tagging of the whole sentence the words
have to be analyzed again for lemmatization. More-
over only probabilities for each PoS and not the
lemmata are stored in the model, so for lemmatiza-
tion each word has to be analyzed, which is clearly
reflected in the run time. We report results for tag-
ging only (i.e. analyzing each word only once) and
for tagging and lemmatization.

5 Discussion

Looking at the lemmatization, we see that our
approach gives surprisingly good results: the ap-
proach in fact is quite naive, the morphological
classes are too coarse-grained and the model is
massively overgenerating and allowing for all kind
of nonsense analyses. Nevertheless, in most cases
the correct PoS and the correct lemma is predicted.
On the Tiger corpus HanTa is even slightly better
than the TreeTagger, on the TiiBa D/Z Treebank
the TreeTagger outperforms HanTa with half a per-
cent. GermalLemma gives the best results on Tiger.
However, GermalLemma uses a dictionary derived
from the Tiger corpus, thus a comparison on these
data is not fair. On TiBA D/Z GermalLemma does
not perform very well, but this is due to the bad
performance of the trigram PoS tagger that was
used to provide GermaLLemma with the PoS tags it
needs. The results from Spacy in both experiments
are much behind all other approaches.

HanTa’s accuracy on lemmatization (97.12 %) at
first glance seems to be below the results of LEM-
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MING reported by Miiller et al. (2015) (98.10 %).
However, these results cannot be compared directly.
In the first place, the reported result is on one split
from the Tiger corpus, but it is unclear, whether it
is a contiguous or a random split. More important,
we excluded all closed class words from the eval-
uation. Since most closed class words occur very
frequently and are easy to lemmatize, including
these words will improve the results.

In the evaluation of the PoS Tagger the first re-
markable observation is the result from the Tree-
Tagger that is noticeable below the evaluation re-
sults of Giesbrecht and Evert (2009). A possi-
ble source of difference could be the version of
the Tiger corpus. Probably, Giesbrecht and Evert
used version 1 of the Tiger corpus that consists of
0.7 - 10° tokens.

Here again the results from Spacy stay behind
the other taggers. Interestingly, the baseline trigram
tagger is almost as good as HanTa on the Tiger cor-
pus, but on the Hamburg Dependency Treebank
HanTa outperforms the baseline clearly. Thus, in-
deed, the careful splitting of a word into its stem
and suffix has an advantage over just using the last
letters of a word to guess its PoS.

6 Conclusion and future work

In this paper we have presented a simple approach
to German lemmatization. We have evaluated the
lemmatization on three different large corpora and
shown that the results are close to results that can be
obtained by state of the art tools and methods. Fur-
thermore, we have shown, that the use of HanTa’s
morphological analysis for unknown words in PoS
tagging is more useful than using arbitrary length
suffixes to guess the PoS. The PoS tagging us-
ing morphological analysis even outperforms other
widely used PoS taggers.

In order to make HanTa a useful tool, we will
work on the speed of the analysis, which is now
clearly below that of most other tools evaluated
here. Small improvements on the quality can be
achieved by further development of the script gener-
ating the training data. Here e.g. a better treatment
of adjectival nouns could help. Most interestingly,
however, would be to see the effect of using more
fine grained morpheme classes, including informa-
tion on number, gender, tense, etc.
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Abstract

Every user of email is aware of the problem
of reacting to emails that require a time-
sensitive action by the recipient while be-
ing overwhelmed by informational emails.
We define a new classification problem to
capture this distinction, creating compre-
hensive annotation guidelines and carrying
out annotation. We carry out a proof-of-
concept implementation of a classifier and
discuss our future research which will re-
sult in a tool that is usable in an everyday
business environment.

1 Introduction

The usage of email as a major communication tool
has grown over the past 20 years. As per the current
email statistics report by the Radicati Group, it was
estimated that 3.8 billion users would receive 281.1
billion emails per day in 2018 with an estimated
growth of about 4.4 percent each year (Radicati-
Team, 2018). So a user receives on average about
74 emails per day. Carreras and Marquez i Villodre
(2001) discuss how users spend too much time sort-
ing, with one problem being spam. But whereas
spam filters nowadays work more and more ef-
ficiently and instant messenger services such as
WhatsApp, Signal and Threema are on the rise for
private communication - and thus keep the major
load of non-work-related mail from our mailboxes,
and for example Googlemail already provides a
topic related sorting of the remaining emails to
their users - many emails people receive at work
still don’t require immediate attention. In business,
most emails still are basically only for information
purposes, such as a report of a meeting or an invi-
tation to a workshop. While these emails might be
relevant and perhaps even time critical, there is no-
one waiting for the recipient’s reaction to the email.
One can assume that emails that contain a ques-
tion or a task would need to be prioritized higher
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than an invitation. Sorting through those emails
and setting priorities by hand often takes up a lot
of time and can be seen as a major distraction in a
stressful work environment. Information emails get
more attention than necessary, important emails get
overlooked easily and the time that could be used
for working on assigned tasks or even for breaks is
diminished by the sheer amount of emails one has
to manage.

While email providers nowadays allow users to
create simple filters based on keywords, setting up
these rules still takes up a lot of time and can be
difficult (Gupta and Goyal, 2018). As was noted by
Carreras (2001), most users waste a large amount
of time in managing their emails or they prefer not
to use keyword-based rules for filtering their email
inbox. So, an automated tool that classifies emails
regarding the expected attention that needs to be
provided to them could help with prioritizing the
received emails and thus improve the efficiency of
work related communication.

Text classification in general and classification
of emails in particular is a major subject in compu-
tational linguistics. Sebastiani (2001) defines it to
be “the activity of labeling natural language texts
with thematic categories from a predefined set” and
considers it to be an instance of text mining, since
“‘text mining’ is increasingly being used to denote
all the tasks that, by analyzing large quantities of
text and detecting usage patterns, try to extract
probably useful (although only probably correct)
information.” Thus, classifying emails regarding
an action that is possibly expected from the recip-
ient by the transmitter can be broken down into a
bi-label or multi-label text classification problem
depending on the desired degree to which the ex-
pected action should be distinguished. The general
idea is to have a predefined set of labels or classes
and find the class that best fits a given text. In this
case, a binary label classification would simply be
to sort the email into one of the two categories ac-
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tion required and no action required, depending on
whether there is any text in the email that indicates
that the addressor of the email expects the recipi-
ent to become active in any way - for example to
answer a question or to do a task. But it could also
be interesting for the recipient to further discern
between these two options and to have the emails
labeled according to the degree of action that is
required, as we will discuss later.

The paper is structured as follows. First a short
overview over the annotation process will be given
with an example email. Then the experiments done
on these mails will be described and analyzed. This
is followed by an outlook on possible improve-
ments and a conclusion.

2 Annotation

In December 2001 the Enron corporation, one of
the biggest energy companies of the US at the time,
declared bankruptcy. In the ensuing investigation
by the Federal Energy Regulatory Commission
about 500000 emails by over 150 users were re-
leased to the public. It is perhaps the biggest pub-
licly available email corpus and since then has been
very popular with researchers. It contains a large
variety of business emails as well as spam mails
and private mails. A SQL-dump by Ruhe (2016)
of the Enron data set was used. This is basically a
“repaired” version of the MySQL-dump that was
originally created by (Shetty and Adibi, 2004) but
is no longer available. This MySQL-database con-
tains all the info from the emails in a clean and
easily retrievable format. For saving the annota-
tions, the message-table was simply extended with
the columns label, notes and reviewed.

Consider the email presented in table 1. The
sender of this email obviously expects the recipi-
ents of this email to become active, which is im-
plied by the following wording: “Can the two of
you coordinate...” which would lead to this email
being annotated with the Action Required (AR) cat-
egory. But at the end of the email, the sender asks
a question: “Can we get together that morning and
review your analyses?” This means, the addressor
expects a reply by the recipients, confirming this
request for a meeting or maybe an alternative pro-
posal. This leads to the annotation with Reaction
Required (RR).

Since the categories are considered to be hierar-
chical, a requested reaction is considered to be a
little more important than an action, since the ad-
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dressor might wait expectantly for the reply. There-
fore, the possible RR annotation trumps the also
possible AR annotation.

Also, as you can see, the email ends with “888-
582-7421thankskh”, where obviously some whites-
paces went missing, leading to the weird string
“7421thankskh” being considered a token in this
email.

1240 emails were randomly selected and sorted
into one of eight categories. Table 2 shows them in
their hierarchical order with their respective abbre-
viation, their count and a short description.

These labels were selected for their relevance
regarding a work situation. While private emails
might still have some of the same cues as busi-
ness emails the annotators perceived their lan-
guage and subjects as so strongly differing from
the business emails that it was decided to cre-
ate an own label for them. Some of these pri-
vate mails for example contained jokes, cook-
ing recipes or discussions about 9/11. For fur-
ther information on the definition of these cate-
gories, the annotation guidelines are available at
http://hintzenv.wordpress.com.

While non-relevant emails were usually easy to
annotate, sometimes missing context made it hard
to decide on a label. These emails were annotated
“Unsure” and reviewed again later. Those that still
would not be clear stayed in that category. Also, the
announcement of a birthday cake at a colleagues
cubicle led to some discussion. It was decided it
would be considered to be an invitation.

3 Experiments

3.1 Evaluation Techniques

To evaluate a classifier, after the classification of
the test data, the appointed classes need to be com-
pared with the originally annotated classes. There
are several common practices to evaluate the perfor-
mance of a classifier. Precision, recall and f-score
were computed for each class used by each of the
implemented classifiers. Confusion matrices are
also presented.

3.1.1 Micro and Macro scores

For a general overview of the different models, the
micro and macro averaged scores will be computed,
which show a weighted (micro) and unweighted
(macro) average score of the performance of a
model.

The procedure for computing these scores is



subject body

James &David —\t

Can the two of you coordinate a revenue model for Sun Devil
that incorporates a Straight - Fixed Variable rate design along
the following parameters using 15, 20 and 25 year terms:

San Juan utilization: 85% of 780,000/ MMBtu/d

SFV Rate Design
for Sun Devil

Mainline: 85% utilization of 810,000/MMBtu/d
Phoenix lateral: 75% utilization of 500,000 MMBtu/d

Also, prepare some ROE sensitivities if the above utilization

falls by 10% and rises by 10%.

I will be out of town till Tues 11/13. Can we get together that
morning and review your analyses?page me if you have questions
at 888-582-7421thankskh”

Table 1: Example email from the Enron data set

category name label count description

Reaction Required RR 259 A reaction to the email is required.

Action Required AR 87 The recipient is required to take an action.
Appointment/Deadline ~ AD 94  The email contains an appointment or deadline.

Invitation I 25 The email contains an invitation.

Contains Information CI 518 The email contains business-relevant information.

Private P 135 The email is private, not business relevant.

Non-Relevant NR 113 The email is business-related, but not relevant (e.g., newsletters).
Unsure U 9 This is a catch-all category, see the discussion in the text.

Table 2: Categories with respective counts

described by Yang (1999), and Tsoumakas et al.
(2010) present the respective formulas. Further-
more, for the micro average score, Asch (2013)
shows, that for single-label classifiers the scores
for precision and recall are equal. Since the F-
Score is the harmonic average between Precision
and Recall, and for the micro-average-score, those
two scores are equal, so is the F-Score. In this
paper, the macro averaged F1-Scores (later in this
paper referred to as macro score) will be compared
with the micro averaged F1-Scores (later in this
paper referred to as micro score).

3.2 Preprocessing

In order to get the emails into a processable format,
the bodies have to be tokenized: special characters,
punctuation, tabs and newlines were filtered out
and the text was split on blanks. We use Word2Vec
word embeddings and create a single average vector
for each document. We split the annotated data into
80 percent training data and 20 percent test data.
Because the annotated data has been labeled in a
way that is quite fine grained and the counts vary

52

greatly between the categories, the classifiers were
tested on different groupings of the labels, which
will be described in detail in the evaluation section.
These groupings were selected by their intuitive
relevance to everyday working life and in the hopes
of finding a grouping that gives a balanced overall
performance.

3.2.1 Word Embeddings

For this study, Word2Vec word embeddings were
used. Word2Vec models with the dimensionalities
of 50, 100, 200 and 300 were trained on the En-
ron data set and thus on about 62 Million tokens
- and a vocabulary of about 650 thousand unique
tokens. We do not use pre-trained Word2Vec em-
beddings because the Enron data set consists of
emails, and emails are of a different nature than,
for example, Wikipedia articles regarding the used
vocabulary, syntax and the existence of many typos.
The idea was to use Word2Vec embeddings trained
on the Enron data set in order to better account
for these errors and inconsistencies. We also tried
pre-trained GloVe embeddings in initial experimen-



| micro | macro |

Naive Bayes | 0.583 | 0.426
SVC baseline | 0.538 | 0.321
Word2Vec 50 | 0.551 | 0.501
Word2Vec 100 | 0.571 | 0.489
Word2Vec 200 | 0.543 | 0.473
Word2Vec 300 | 0.575 | 0.499

Table 3: Micro and macro scores of all models on
non-grouped classes

tation, but the results were much worse, and so we
did not continue experimentation with them. We
leave further study of this issue for future work.

3.3 Classification

Afterwards the classifier was trained on the vec-
torized texts with their respective labels from the
training sets and with the learned features the vec-
torized texts from the test set are classified. In our
study, six different classifiers (Naive Bayes, base-
line SVM on words, four SVMs for the different
dimensionalities of Word2Vec embeddings) were
combined with different groupings of the labels.

3.4 Evaluation

In order to evaluate the performances of the differ-
ent classifiers first an overview of the micro and
macro overall scores will be shown. For a more
detailed look into the models, the Precision, Re-
call and F1-Scores of the classes in the best- and
worst-performing models will be presented.

3.4.1 Overview

A first test with separate categories produced very
unsatisfactory results. Table 3 shows the weighted
and unweighted average F1-Scores for each of the
models. For purposes of readability the scores have
been rounded to the third decimal place.

According to the (weighted) micro-Score, the
Naive Bayes classifier performs best at this task,
but a look on the unweighted score shows that
the small classes are classified significantly worse
than the larger classes. With the (unweighted)
macro-Score, the model that resulted in the high-
est score in our tests would be the Support Vector
Classifier based on the 100-dimensional Word2 Vec-
embeddings.

Overall, these scores are not really satisfactory.
This is not surprising due to the small size of train-
ing data per class. In the test set, the smallest class
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Name \ Category grouping
7-base RR, AR, AD, I, CI, P, NR
2-action RR+AR, AD+I+CI+P+NR
2-timecrit | RR+AR+AD, I+CI+P+NR

Table 4: Keywords assigned to groupings

only had seven occurrences. So, the idea arose to
group the categories in order to get more training
and testing examples for each class.

A more detailed look into the performances of
the models with the base task will follow in section
3.4.2, where the best- and worst-performing models
will be discussed in detail.

For an overview of the performances, tables
5 and 6 compare the micro and macro scores
for each grouping in each of the models. The
weighted micro scores take into account the size
of the groups. The unweighted macro-scores do
not do that. While usually one would think that
the weighted performance of a model would give
more insight into the performance of a model, we
decided to add the unweighted scores since the cat-
egory containing CI shows the highest F1-Scores
due to the size of the corresponding data set but is
one of the lesser important categories, and as such
the weighted scores tend to skew the performances
in favor of the bigger and less important categories.

We now discuss two further groupings of the
labels we experimented with. Category groupings
are assigned a name, leading with the number of
classes the grouping results in, followed by a short
keyword for the way criteria they are grouped for.
In table 4 you can see these names with their re-
spective assigned grouping.

For reasons of readability, again the scores were
rounded to the third decimal places and the model
names have been abbreviated: nb for Naive Bayes,
sve bl for baseline Support Vector Classifier, wy for
the SVC using the self-trained Word2Vec embed-
dings. Also, for reasons of clarity, the table 5 will
refer to the micro-scores (weighted), while table 6
will refer to the macro-scores (unweighted). For
each grouping the best weighted and unweighted
scores are underlined. The highest weighted and
unweighted F1-Scores across all models are shown
in bold.

As one would expect, the best performing group-
ings are those that contain only two classes and
the grouping with each label on its own performs
the worst. Also, as expected, the unweighted



| 7-base | 2-action | 2-timecrit

nb | 0583 | 0.725 0.656
svebl | 0538 | 0757 | 0.725
wv50 | 0551 | 0729 | 0.676
wv100 | 0571 | 0.696 | 0.709
wv200 | 0.543 | 0.721 0.692
wv300 | 0.575 | 0.741 0.700

Table 5: Comparison of micro-Scores

‘ 7-base \ 2-action \ 2-timecrit ‘

nb | 0426 | 0574 | 0616
svebl | 0321 | 0612 | 0.641
wv50 | 0.501 | 0.611 0.630
wv100 | 0489 | 0.580 | 0.667
wv200 | 0473 | 0.622 | 0.646
wv300 | 0499 | 0.652 | 0.658

Table 6: Comparison of macro-Scores

scores are almost consistently lower than the micro
scores while the pre-trained embeddings have an
almost consistently worse average F1-Score than
the Word2Vec embeddings. While the differences
especially in those scores that are very close to each
other cannot be considered statistically significant,
this paper only strives to discuss the possibility of
the task and possibly provide scores for comparison
with similar future tasks.

It is noteworthy that, when comparing the micro
scores for one grouping, the scores are surprisingly
uniform with at best a difference of 0.081 between
the worst and best performing models and even
only 0.061 in the 2-action-grouping. This can be
attributed to the class sizes. In the micro score
the larger a class the higher the influence on the
resulting average score. A look on the respective
precision and recall scores of the classes shows con-
sistently good performance on these larger classes
in all the models.

In order to see how a model improves when
being trained on fewer classes with more training
examples, you can compare horizontally and see
a mostly consistent increase in performance from
seven classes to two classes.

When looking at the two binary groupings, with
micro averaged scores, it seems as though the
switch of the AD-class from the larger class to the
smaller group actually decreased the overall per-
formance. But in table 6, you can see that there,
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p r f1

<ve bl AD+I+CI+P+NR 0.77 0.95 0.85
RR+AR 0.67 0.26 0.38

2100 [+CI+P+NR 0.77 0.80 0.78

wev RR+AR+AD 057 053 0.55

Table 7: Scores of the best-performing models

Actual

RR|AR|AD |1 | CI | P | NR

RR 16 | 4 2 | -] 15 1 2

AR 1 2 - -1 5 - -

AD 2 - 7 |- 4 - -

I - - 1 |4] 1 - -

CI 29 | 12 4 13] 80| 4 4

P 3 - -1 3 13| 5
NR - - - -1 5 1 14
Total 51 18 14 7 113 19 25

Table 8: Confusion matrix for Word2Vec50 based
SVM on base task 7-each

too, is an improvement. This leads to the conclu-
sion that the performance of the larger class drops,
while the performance of the smaller class - which
would be considered more important in a business
environment - improves.

When looking at the micro averaged scores,
the comparison of higher dimensionalities of the
Word2Vec embeddings with the baseline SVC also
seems notable. While with more classes the higher
dimensionalities seem to add to the performance,
with the binary classifiers, the higher dimensionali-
ties perform even worse than the baseline.

With the macro averaged scores, this effect van-
ishes and the Word2Vec-models perform consis-
tently better than the baseline model, again indicat-
ing that the baseline SVM has a bias towards larger
classes.

3.4.2 Detailed discussion of best- and
worst-performing models

For a detailed analysis of the best- and worst-
performing models, table 7 shows the precision,
recall and f-scores for each class. For the model
performing best regarding a weighted calculation
of the average value - the SVC baseline model with
the 2-action-grouping (5:2) -, the recall is very
high for the larger group containing the less impor-
tant categories while the recall with the important
categories is very low with only about 0.26. Using



the best model by macro score, you have a lot less
variability within the scores.

The worst-performing model with both, the mi-
cro scores as well as the macro scores, was the
SVM with the 50-dimensional GloVe-embeddings
in the “7-base” task - where there were no groups,
but each label for its own. In fact the labels RR,
AR and I were not classified at all - with 0.00000-
scores, resulting in the low macro scores. We do
not present results on pre-trained GloVe embed-
dings in detail, leaving a study of how to adapt
pre-trained embeddings to the Enron corpus for
future work.

3.4.3 Evaluation and Error Analysis -
Word2Vec50 with the 7-each grouping

With the 7-each “grouping” being the base task of
this project, the best performing model of this task
will be discussed here.

In order to get a better look on the distribution
of the actual and predicted classes, in the follow-
ing the confusion matrix for the 50-dimensional
word2vec model (see table 8) will be presented.

3.4.4 Evaluation and Error Analysis - SVC
baseline model with 2-action

In order to get more detail on the performance of
the model, and to get an idea of where the per-
formance issues arise from, a detailed confusion
matrix for the svc baseline model with the category
2-action grouping is presented in table 9.

For readability the larger group
(AD+1+CI+P+NR) will be shortened to Other and
for reasons of space-usage, the confusion matrix
will have the actual categories on the X-axis and
the predicted categories on the Y-axis.

While the performance here is significantly bet-
ter than with the GloVe-models and at least % of the
mails labeled with Action also really require said
action, still 51 of the 69 mails will be lost - that’s
almost %.

If you look at the distribution of the RR and AR
emails you can see that with 0.28 the share of cor-
rectly classified emails in the AR category is only
slightly bigger than the 0.26 in the RR category.
But if you consider that the AR category is sig-
nificantly smaller than the RR category, with only
one additional misclassified email, that percentage
would have dropped to 0.22. So, it is safe to assume
that both labels are classified with a comparable
performance.

What is interesting to see, though, is, that within
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Actual

RR|AR|AD | I | CI | P | NR

AR+RR | 13 5 - -1 6 3 -
Other 38 | 13 | 13 | 7| 108 | 16 | 25
Total 51 18 13 7 114 19 25

Table 9: Confusion matrix for svc baseline model
with 2-action

RR|AR|AD | 1| CI | P | NR

AR+RR | 23 6 2 |- 21 - 1
Other 28 | 12 | 11 | 7] 93 | 19| 24
Total 51 18 13 7 114 19 25

Table 10: Confusion matrix for Word2Vec300
model with 2-action

the group of emails that were wrongly classified as
AR + RR, these emails originally stem only from
the CI and P categories. All other categories were
classified correctly. But here with three of the nine
wrongly classified emails being P category emails,
the misclassification of P emails is significantly
higher (0.16) than of the CI emails (0.05). This
might be traced to the fact that often private emails
also contain requests for an action or a reaction.

For comparison, consider the confusion matrix
of the Word2Vec300 model trained with this group-
ing that performed second best to the baseline svc -
best with the macro Score, see table 10.

This confusion matrix produces a very different
picture than the baseline svc. Here already 23 +
6 =29 of the 51 + 18 = 69 actual action requiring
emails are found - which is already over 40 % -,
there are a lot more misclassifications towards the
smaller class.

3.4.5 Evaluation and Error Analysis -
Word2Vec100 model with the 2-timecrit
grouping

In order to again get a better look at the perfor-

mance of the Word2Vec100 model in the 2-timecrit

grouping, see table 11.

With this SVC and grouping - while here, too,
there are a lot more misclassifications toward the
smaller class, instead of % of the action requiring
mails being “lost”, of the total 82 mails regarded
as ActionRequiring, only 38 are missed. With that
being less than the half, that’s already a lot less
than with the baseline svc in grouping 5.

It is interesting to see that with the AD emails
there is an unusually high recall with 10 of 13 being
classified into the action requiring group.



For comparison, here, too, shall be presented the
confusion matrix for the baseline svc model which
performed second-best in the 2-timecrit grouping
(table 12).

Here, again, the AD category - while having
only eight of the thirteen emails classified correctly
- performs surprisingly well. Again, the misclassifi-
cation counts towards the smaller class are smaller,
while those towards the larger class are stronger.

This leads to the conclusion that overall the vec-
tors produced by the CountVectorizer lead to a
tendency of classifying in support of the larger
class and the vectors produced, while the average
document vectors resulting from the Word2Vec-
embeddings lead to a tendency of classifying in
support of the smaller class.

In an everyday office life the latter would prob-
ably be preferable. Consider an email account
containing different folders for each class and the
user - running from one appointment to another -
only wanting to see the action-relevant emails when
looking into the respective folder. While having
emails there that don’t belong would be considered
a nuisance, missing emails might prove to be a
problem of a lot bigger scale.

4 Outlook

In this section, an outlook on possible improve-
ments that can be made on and with the existing
models, as well as ideas for future work - i.e. pos-
sible variations of the tasks - will follow.

While none of the models implemented yet
proved to be adequate for an everyday use in a
work environment, there are several possibilities
to improve the performance and ideas that might
prove to be worth looking into.

A larger annotated data set should help greatly
in the training of the used models. Language is too
complex to grasp meanings just from a little over a
thousand emails. With larger annotated data sets,
more features can be accounted for and so the non-
binary models’ performance might also improve.
Possible ways to achieve a larger data set include:
more time, more personnel and using distant su-
pervision. Although the annotation with distant
supervision produces annotations of a relatively
bad quality, it might still be better than only work-
ing with a small data set. In contrast to that, the
usage of more personnel would help in ensuring a
high quality of annotation. So a good compromise
between the two could possibly be found, where
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RR|AR | AD | I | CI | P | NR
AR+RR+AD | 26 8 10 {3 24 | 2 4
Other 25 | 10 3 (49 |17 21
Total 51 18 13 7 114 19 25
Table 11: Confusion matrix for Word2Vec100
model with 2-timecrit grouping
RR|AR | AD | I | CI | P | NR
AR+RR+AD | 18 3 8 - 12 1
Other 33 | 15 71102 | 16 | 24
Total 51 18 13 7 114 19 25

Table 12: Confusion matrix for svc baseline model
with 2-timecrit grouping

a semi-large set of high quality annotations would
be combined with a large set of low quality data
and where good results might be achieved by hav-
ing several training iterations with only the first
iteration on the combined data set and the other
iterations on only the high quality data set.

Another possibility to get larger annotated data
sets would be to use active learning and let users
help with annotating emails in a run-time environ-
ment and therefore improve the used classifier ac-
cording to the user’s needs. This would also have
the advantage of having the models trained on more
contemporary business emails being adapted re-
garding the respective business area of the user and
to the change of their vocabulary in the past years.

With larger data sets the application of deep
learning models would become possible. With
the Support Vector Machines much information
is lost during the reduction of the embeddings to
an average document vector, so a model that is able
to properly grasp the multiple dimensions of the
embeddings could possibly find more and better
relations between the features and the correspond-
ing classes of the documents and thus make better
classifying decisions.

In addition, one possibility to improve the per-
formance could be found by including the subject
lines as well as info about the sender and the re-
cipient/s of the emails into the models since these
already provided relevant information about the
context of the mail during the annotation process.

In emails you often have the former emails from
the exchange appended to the latest email. While in
the annotation process these old emails sometimes
provided necessary information on the context of
the email, in a bag-of-words model, that is used in




Naive Bayes as well as in Support Vector Machines,
would give these old mails too much weight. Espe-
cially in long email exchanges, with five and more
emails and possibly only a short question in the
latest mail. A weighting of the words depending on
their occurrence location might prove to be useful.

The Enron data set has often been used for train-
ing classifiers for spam mail. Instead for this
project the obvious spam mail has simply been
categorized as Non-Relevant. The implementation
of a spam filter based on a larger spam-specific
training set that is run before our classifier to elimi-
nate obvious spam might also improve the results
(and/or help with future annotation of new data).

Several of the produced errors might have their
origin in the hierarchical nature of the categories.
This problem might be evaded by allowing the an-
notation with more than one category per email
and/or by using classifiers that produce more than
one label per email and then tweaking these classi-
fiers by weighing those categories in favor of the
action-inducing categories.

5 Conclusion

For this paper, a classification task was set up from
scratch. The goal was to build a classifier that could
distinguish between emails regarding whether a
response or other action was required from the
recipient. Without suitable annotated data being
accessible and possibly even existent, first, a data
set had to be annotated by hand.

Being probably the biggest open source data set
for business emails, the Enron data set was selected
as a foundation for this self-annotated data set. The
annotation produced an annotated data set of 1240
emails. Due to the nature of the Enron data set, the
distribution of the categories was rather imbalanced
leading to very different sizes of learning and test
sets for each of the categories.

For the task of building a classifier, it was de-
cided to compare six different models: one Naive
Bayes classifier, a baseline Support Vector Classi-
fier as well as four Support Vector Classifiers based
on Word2Vec embeddings of different dimension-
alities.

Since the performance of these classifiers on the
base task with a class for each of the categories
was not satisfying, the categories were grouped in
different ways with the goal of finding a grouping
that would perform better and still be of practical
use in an everyday work environment.
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As was to be expected, the two groupings lead-
ing to binary classifiers performed far better than
the multi-class classifier. With a binary classifier,
the training and test data sets were both bigger and
much more balanced. Also, with a binary clas-
sifier, there are far less classes that can be taken
for misclassification. Also, it was interesting to
see, how the performance of the embeddings-based
models changed with additional dimensions. While
the Word2Vec embeddings would produce varying
micro and macro scores, we noticed that the pre-
trained GloVe embeddings - while over all having
a worse performance than the Word2Vec based
models - showed constant improvement of perfor-
mance with additional dimensionalities on each
of the tasks (but we omit these detailed results).
Another interesting result was that the two base-
line models had a surprisingly good performance
overall.

In the detailed error analysis of the best- and
worst-performing models, it was implicated that
additionally to the small size of the data set, the hi-
erarchical order of the categories might have been
one of the major origins of misclassifications, since
this led to fewer distinguishable features of said
categories. The most improvement could possibly
be achieved by improving the used data set regard-
ing its size and quality. But also with the used
classifying models, there are many possible tweaks
and changes that could be tested and that might
prove to have quite an impact on the classifying
performance.

In conclusion - while at least on the binary tasks
promising results could be achieved - none of the
presented models has a performance that would be
good enough for practical use. Too many misclas-
sifications would make a tool based on the models
used here very frustrating to work with. Also, this
would probably even lead to financial risks when
an email that requires a time-sensitive action by the
recipient, would not be recognized as such by the
classifier. But even with these not yet satisfactory
results, it was shown, that this task is not impos-
sible to achieve but rather a question of obtaining
bigger data sets. Using the annotation guidelines
and initial data set that we have created in this work
(and make available with the publication of this pa-
per), it will be possible for interested researchers
with access to more resources to create a much
larger training corpus than we were able to create.
In addition, we plan to study how to incorporate



active learning to learn from the user as they iden-
tify mis-categorizations as an additional way to
obtain further supervision for this important task,
see, e.g., the work of Tong and Koller (2002), as
well as more recent work. Finally, once we have
further supervision available for this task, we will
study (data-hungry) classification models based on
neural networks, from which we expect to obtain
further improvements in performance.
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Abstract

We present a comparative evaluation study
for splitting German compounds which be-
long to general language or to a specific
domain. For the domain, we focus on DIY
(’do-it-yourself”). The study consists of
two parts: First, we evaluate three tools for
compound splitting in German, one based
on lexicons and corpus frequencies and two
based on language-independent statistical
processing. We introduce the tools, dis-
cuss the data and the construction of a gold
standard, and show first results for binary
and ternary noun compounds, as well as
for the handling of non-splittable items. In
a second experiment, we post-train one of
the splitters with text data from the DIY-
domain, and evaluate the splitting perfor-
mance on domain-specific compounds.

1 Introduction

German is a highly compounding language, which
means that several simple words like Akku “bat-
tery”, bohren “to drill” and Hammer “hammer”
are combined to form a complex word like
Akkubohrhammer “cordless hammer drill”. As a
result, these complex compounds can be rather in-
frequent. In order to automatically process them,
it is often useful to split them into their (usually
more frequent) components, by using a compound
splitter. However, compound splitting is a com-
plex task, because there are often several splitting
options possible. Splitting compounds which origi-
nate from specific domains further aggravates the
problem: Both compounds and components might
be even more infrequent, and a splitter might not
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have seen such data in the training stage, because
it was trained on general language data.

For those reasons, we establish two evaluation set-
tings to get a better insight into compound splitting
for general language and for specific domains: (i)
we compare several splitters with respect to their
performance on both general language and domain-
specific compounds and (ii) we post-train a splitter
with domain data and evaluate the effect on domain-
specific compounds.

In the first setting, we report on the compara-
tive evaluation of three published tools. As a basis
we use data from a specialized corpus, a general
language corpus and the word formation literature.
As the application domain is do-it-yourself instruc-
tions (DIY) from online forums, and we targeted
the extraction and semi-automatic description of
terminology candidates from the forum texts, com-
pound splitting was mainly addressed with ontol-
ogy building in mind; typically, heads of deter-
minative noun compounds are hypernyms of such
compounds. By splitting a noun like Bandssdge
(’bandsaw”) into Bandesdge, the noun Sdge can
be identified as a hypernym of Bandsdge. Conse-
quently, we only worked on noun compounds so
far, even though adjective compounds would be
equally interesting and even less covered by state
of the art analyses of compound splitting. While
split points are the main issue when it comes to the
quality of the analysis of binary compounds, struc-
ture plays a major role for ternary compounds and
items composed of more than three morphemes.
Thus, for tri-morphemic compounds, we assessed
both morpheme decomposition and structure as-
signment.

In the second setting, we post-train one of the
compound splitters on a DIY text corpus. We then
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split all noun compounds in the corpus using the
original and the modified splitter, and compare the
results.

The paper is organized as following: In section 2
we will give an overview about the related work
and in section 3, we introduce the three compound
splitters. Section 4 describes the data that were
used for the first experiment; additionally it gives
details about how to create the compound gold stan-
dard, and how it can be used for evaluation. Section
5 describes the settings of the second experiment,
how to post-train a splitter and which data were
used. In section 6, we perform a detailed evalua-
tion of the experiments. In section 7, we present
and discuss aspects of the outcome of our evalu-
ation, and in section 8, we conclude and point to
needs with regard to future actions.

2 Related work

There exist a variety of compound splitters, which
rely on different methodologies. There are linguisti-
cally motivated splitters, that rely on word frequen-
cies (Koehn and Knight, 2003; Cap, 2014; Weller-
Di Marco, 2017). CharSplit (Tuggener, 2016) how-
ever relies on a character-based method. A recent
trend is to exploit distributional semantics to find
the correct components (Ziering et al., 2016; Riedl
and Biemann, 2016). Similarly, another splitter
relies on semantic analogies (Daiber et al., 2015).
Beside using different methodologies, the splitters
return different splittings. For example, the Simple
Compound Splitter by Weller-di Marco (2017) can
return a binary or an n-ary split, lemmatize and
POS-tag the components. CharSplit, however, does
only a binary splitting. The output might depend
on the application the splitter was designed for;
for example, CharSplit was designed to find the
compound heads in order to facilitate coreference
resolution.

To our knowledge, no huge compound splitter com-
parison exists; Escartin (2014) conducts a small
comparative study with two compound splitters. In
addition, there is little work on domain adaptation
of compound splitters. Macken and Tezcan (2018)
perform Dutch compound splitting, and adapt the
splitter to the automotive and the medical domain.
They find that only using general language data
performs better than only using domain-specific
data, but a combination of both leads to the best
results.
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3 Tools for splitting German compounds
and their evaluation

While a number of well-known and some upcom-
ing tools for splitting German compounds exist, we
are not aware of recent activities towards the com-
parative evaluation of the output quality of such
tools. An older landmark for word formation evalu-
ation of German as a whole is the Morpholympics
contest, held in 1994 (Hauser, 1994). We briefly
report about both, tools and evaluation.

3.1 Tools for compound splitting

In a general way, and especially with a view to
the kind of evaluation we carried out, tools for
compound analysis may be subclassified according
to the kind of output they provide:

e tools only providing morpheme decomposi-
tion;

e tools providing morpheme decomposition and
one or more structure proposals.

In addition, one may consider further types of tool
output, e.g. category values of the morphemes
identified. While this classification is based on the
kinds of output produced by the tools, one may also
distinguish symbolic vs. hybrid vs. purely statisti-
cal, machine learning based tools, according to the
approach. In the following, we briefly describe the
tools we analyzed, and we mention a few more that
may be used in a second round of the evaluation.

3.2 SECOS: Unsupervised Compound
Splitting With Distributional Semantics

Unlike most systems that rely on dictionaries or
are trained in a supervised fashion, SECOS (Riedl
and Biemann, 2016) relies entirely on distributional
semantics. The hypothesis investigated by the re-
searchers postulates that compounds are similar
to their constituting word units. Their method is
based on a distributional thesaurus that is computed
using a tokenized monolingual background corpus
without any additional linguistic processing. The
first step is the extraction of a candidate word list
that defines the possible word units of compounds.
The second step is splitting the compounds. The
last step is a ranking of the splits and returning
the top-ranked ones. The method is proven to be
language independent: several experiments were
conducted on German and on Dutch, they produced
equally good results. The tool is freely available.!

https://github.com/riedlma/SECOS.



3.3 Compound splitting tool from Tiibingen
University

The authors (Ma et al., 2016) introduced a letter
sequence labelling approach, which can utilize rich
word form features to build discriminative learn-
ing models that are optimized for splitting. The
prediction of labels is achieved by training con-
ditional random fields. The method is language-
independent and does not require any linguistical
preprocessing. Splitting is conducted at the surface
form level. The current system, available for test-
ing, is trained to split multi-constituent compounds
at the boundaries of all the constituent words, in-
stead of only splitting at the top level (complete
morpheme decomposition).

3.4 CompoST: Compound Splitting Tool

The tool splits compounds into their morphemes
using morphological rules and corpus frequencies.
The underlying method (Cap, 2014) involves us-
ing the geometric mean of subword frequencies
to disambiguate possible splits. CompoST was
developed for compound processing in statistical
machine translation, but it can equally be used as
an independent module for morphological analy-
sis. It requires frequency counts derived from a
corpus; candidate items are analysed by SMOR
(a rule based morphological analyser for German)
(Schmid et al., 2004). CompoST allows to set dif-
ferent parameters and therefore to gain different
versions of output. For instance, it can split a word
even when frequency scores suggest that the word
can not or should not be split (forced splitting), or
it can split only nouns. One of the drawbacks of
the tool is that words unknown to SMOR cannot be
split, as well as disambiguation of possible splits is
entirely based on frequency, and this might lead to
inconsistencies on a non-lemmatized word list.

4 Gold standard for compound splitting

A gold standard evaluation was carried out, in the
framework of our project on term candidate extrac-
tion from do-it-yourself instructions (DIY). While
the focus of the evaluation was on the coverage of
the data from the DIY-corpus, and on the quality of
the respective analyses, we also wanted to explore
the performance of the tools on general language
data. We created a database that contains the gold
standard, as well as the output of individual tools.
In this way, all elements of the evaluation can later
be enhanced: more gold data can be added, and the
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results of further tools can be compared.

4.1 Sources and selection criteria

For both, specialized and general language, corpus
data were used, but with different objectives. For
specialized language, we used a corpus of 11 mil-
lion running words, composed of expert texts and
user generated content (=UGC) from the domain of
DIY instructions. The relationship between expert
and UGC texts was roughly 1:5. For the gold stan-
dard, we extracted noun compounds (by means of
TreeTagger-assigned pos=“NN"" annotations) from
three frequency bands: top, medium and low fre-
quency items. Given the overall frequency distribu-
tion of nouns, the distribution of candidate items
shown in Table 1 was achieved.

We are aware that the “medium” frequency band
is as yet underpopulated. Additional sampling may
be needed to provide roughly the same quantities of
data as for the two other frequency bands. However,
this would not even out the relationship between bi-
nary and trimorphemic candidates, which is uneven
as well but likely relatively close to the distribu-
tion to be expected in the texts under analysis. To
counterbalance the almost proportional sampling
from the specialized corpus, we added data from
general language materials. In this part of the gold
standard, we did not aim at replicating frequency
distributions from a given corpus, but we rather
targeted a collection of all cases that are discussed
as relevant in the literature on German compound-
ing. This approach is similar to part of Hauser’s
(1994) sampling method. Thus ca. 200 items were
taken from the standard handbook on German mor-
phology by Fleischer and Barz (1995). We cross-
checked however the chosen items against 200 M
words of news texts and against the SdeWaC cor-
pus (Faal3 and Eckart, 2013), and only used items
present in at least one of them. These items pro-
vide a wide range of possible issues for compound
splitting, e.g. adjectival non-heads that are not in
the positive form (Mehrarbeit “additional work™;
Reinststoff “ultrapure substances”, lit.: “ultrapurest
substances”) or compounds with phrasal non-heads
(Heifwasserspeicher “boiler”, It.: “hotwater stor-

age”).
4.2 Annotation of the gold standard

The annotation was carried out manually, by one
linguist. The reason why we consider this suffi-
cient is that the underlying guidelines are based
on standard analyses from morphological theory



frequency range | frequency | non-split | binary | trimorph. | total
top f> 100 44 329 67 440
medium 41 > f > 37 6 113 29 148
low f=12 21 312 100 433
total 71 754 196 | 1,021

Table 1: Frequency-based sampling of noun compounds from an 11 M word corpus of DIY forum texts.

(Ortner et al., 1991; Piimpel-Mader et al., 1992;
Fleischer and Barz, 1995; Donalies, 2011; Don-
alies, 2014); for items which, according to these
sources, can receive more than one analysis, all
valid analyses were included in the gold standard,
such that tools providing one of them were not pun-
ished. The annotated data were stored in a database.
The following features were annotated:

e split points on the form level - in the sense of
Koehn and Knight (2003) - and lemma forms
of the morphemes;

e pos categories of the non-head morphemes;

e structure of tri-morphemic compounds (left
vs. right branching).

In addition, the following documentary data
were annotated by automatic means:

e number of split points (for easy counting of
over- and undersplitting cases);

e lemma frequency of the item tested, as well
as of its components in 200 M words of news
text and in SdeWaC.

The following is a simplified example of the
linguistic representation of the items in the gold
standard database; the first feature is the POS com-
bination of the non-head morphemes; it is followed
by the lemma from the corpus, its decomposition
into morphemes at the level of surface forms, its
topmost split at the level of surface forms, as well
as the morpheme decomposition and the structure
proposal (=topmost split) on the level of lemmas.

adj-v Kleinstlebewesen

— kleinst lebe wesen + kleinst
Lebewesen

— klein leben Wesen + klein
Lebewesen

The double annotation, at both lemma and sur-
face level, ensures compatibility with most types
of tool outputs and thus eases the comparison.
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4.3 Data annotated

As mentioned above, we included noun com-
pounds of three kinds in the database: bi-
nary and tri-morphemic compounds, but also
items that cannot be split, e.g. because they
are derivation products.  We also included
ca. 30 items which allow for two structural
analyses, e.g.
vs. MeerwassereEntsalzungsanlage (“‘desalination
plant”, lit.: “sea water desalination plant”). The
distribution over the full data set is given in table 2.

MeerwasserentsalzungseAnlage

frequency range #
non-splittable 86
binary

- N+N, Adj+N 715
- V4N 118
tri-morphemic 294
total 1,239

Table 2: Distribution of compounds over the full
data set.

5 Post-training with domain-specific text
data

Adapting a compound splitter to a certain domain
of interest, as DIY in our case, might improve
the compound splitting for two reasons: First, the
domain-specific components of a compound might
be infrequent in general language, and that is why
the correct split or base form of the component
cannot be found. For example, the compound
Eloxierverfahren (“anodizing procedure”) should
be splitted and lemmatized to eloxierene Verfahren
(“to anodizeeprocedure”). Secondly, splitting prob-
abilities might be skewed because a certain split
is more likely in general language, while another
one is more likely within the domain. For ex-
ample, the compound Rohrverbinder (“pipe con-
nector”) is likely to be split as RohreVerbelnder
(“pipeeverbelndian”) in general language, because
the three components do occur more often in gen-



eral language than the correct components Rohr
(“pipe”) and Verbinder (“‘connector”).

However, post-training of a compound splitter

on a domain-specific corpus is not always possible.
It depends on the design of the tool and if the origi-
nal training data are available for updating.
We adapt the splitter CompoST. CompoST relies
on frequency counts derived from a corpus, in the
default case a general-language corpus. To adapt
the splitter to the DIY domain, we compute all the
frequency counts for a DIY text corpus. Then we
either add the frequencies to existing token entries,
or create new ones. We use a domain-specific DI'Y
corpus with 5.6 million words. The texts were col-
lected from different sources, but all of them are
DIY-related. There are texts produced by domain
experts as well as by interested lay users, such as
encyclopedia texts, DIY-instructions and manuals.
Preprocessing has been done with SpaCy? (Honni-
bal and Johnson, 2015). Working with the German
language model of SpaCy, we make use of the tok-
enizer, the POS-tagger and the lemmatizer. While
the tagging itself is based on a convolutional neural
network, the lemmatizer still works with a conser-
vative look-up table. We use the POS-tags to select
noun compounds as candidates for compound split-
ting.

6 Evaluation

6.1 Comparison of compound splitters

6.1.1 Evaluation methods

We mainly follow Koehn and Knight’s (2003) pro-
cedures for the comparison of our gold standard
splits with the output produced by the tools. To
ease the quantitative assessment of over- and un-
dersplitting, we count the number of split points in
each gold standard item and in each tool output for
the respective item and annotate this number back
into the database. As we offer the gold analyses
both on word forms and on lemmata, we use both
versions as alternatives to match the tool output
against: the results of each tool (or of each ver-
sion of tool output) are inserted, for each gold item,
into the respective row of the database table; for
each tool output, the table is thus enlarged by one
or several complete column(s). Not all tools pro-
vide just the split points; some provide in addition
pos-features or other descriptive output. When pre-
processing the tool output we keep track of such

Zhttps://spacy.io/
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specificities. We evaluated the analyses provided
by the tools in terms of correct vs. incorrect split
points, over- and undersplitting. Later, we will in-
clude an evaluation with regard to POS categories
of the components wherever possible.

6.1.2 Results

According to the proposed methodology the first
assessment of tool quality is achieved by a simple
comparison of the output in the terms of:

e correct splits (when the splits provided by
the tool either correspond to the morpho-
logical or structural gold splits, for exam-
ple: Bienenwachslasur will result in the fol-
lowing gold splits: Bienenewachselasur and
BienenwachseLasur);

e incorrect non-splits (when the tool perceives
a word as a non-compound, a special form of
undersplitting);

e wrong split points.

In this paper we present the result of such
an analysis only for N+N type compounds
(Gerolllawine, Bombengeschdift, Tagblatt), as well
as for V+N type compounds (Isolierschlauch,
Meldeeinheit, Schleifgerdt), and also for certain
types of tri-morphemic compounds (Sperrholzrest,
Heizkorpernische, Heif3klebepistole). The results
obtained for binary compounds, N+N type (N =
626), are listed in Table 3.

Though CompoST clearly outperforms the other
tools, some nouns still remain unsplit. Neverthe-
less it also made fewer wrong splits than SECOS
or the TU-tool. The latter is almost as good as
CompoST in terms of undersplitting, though it pro-
duced almost twice as many wrong splits. While
SECOS made less mistakes with split points than
the TU-tool, it was not as good as in distinguish-
ing compounds from non-splittable items. One of
the reasons for this performance might be the spe-
cialised nature of the data, as most of the N+N type
compounds came from the domain of DIY instruc-
tions, such as: Steinbearbeitung, Bohrmaschine,
Drehzahl. The results obtained for binary com-
pounds of the V+N type (N = 118) are presented in
Table 4.

In this case CompoST produced more nonsplits
than the other tools, though its general perfor-
mance is still higher than 65%, and only one
compound was wrongly split (Wegwerfgesellschaft:



Tool correct | non-split | wrong split
CompoST | 582 (93%) | 9 (1,4%) 35 (5,6%)
TU-tool 500 (80%) | 15(2,3%) | 111 (17,7%)
Secos 496 (79%) | 50 (7,8%) | 79 (13,2%)

Table 3: Quantitative results on N+N compounds.

Tool correct | non-split | wrong split
CompoST 78 (66%) | 39 (33%) 1 (1%)
TU-tool 92 (78%) | 2 (1,7%) | 24 (20,3%)
Secos 75 (63,7%) | 19 (16%) | 24 (20,3%)

Table 4: Quantitative results on V+N compounds.

wrongly split as ??Wege WerfeGesellschaft instead
of WegwerfeGesellschaft). The undersplitting ten-
dency observed in N+N type compounds can be
detected here as well. However the TU-tool
outperforms the others with almost 78% of cor-
rect splits. The TU-tool and SECOS share the
ca. 20% of wrong splits (??EineLegeeBretter
(TU-tool) and ??EinlegebreeTter (SECOS) in-
stead of EinlegeeBretter, ??UntereLegscheibe (TU-
tool) and ??Unterelegscheibe (SECOS) instead
of UnterlegeScheibe, ??AnseAugelLeistung (TU-
tool) and ??AnsaueGleiseTung (SECOS) instead
of AnsaugeLeistung). Examples of selected ternary
compounds of different types (N = 173) are given
in the table 5.

There may not be enough candidate data to as-
sess all patterns, as A+N+N and V+N+N are rather
rare in our texts; more data may be needed in the
future to allow us to come up with a more meaning-
ful evaluation. Nevertheless, both the TU-tool and
SECOS provided consistently good results, with
low percentages of wrong splits and almost no un-
dersplitting. CompoST on the other hand exhibits
a considerable amount of undersplitting, but pro-
duces only very few wrong splits. It remains un-
clear why A+N+N compounds lead to problems
with CompoST. Our test set contained also non-
compounds (N = 86), so that we could investigate
oversplitting and the ability to distinguish com-
pounds from other word formation products. The
non-splittable candidates are mostly derivatives,
some of which are phrasal derivatives:

e Derivation products:  Moglichkeit, Ver-

schraubung;

e Phrasal derivatives: Rechtwinkligkeit

The results are presented in Table 6.

Again CompoST clearly outperforms other
tools in this task. It provides many good solutions
and only a small amount of errors. Both the
TU-tool and SECOS tend to produce erroneous
splits in almost two thirds of the cases; their
recognition capacity of non-splittable terms is
thus not particularly good yet. All the three
systems presented above were tested and their
output was analyzed. Due to the underlying
processing method the TU-tool and SECOS
more often produce oversplitting of compounds
(SECOS: ??WeArmereUckgeweInnungseAnlage
instead of WdirmeeRiickgewinnungseAnlage,

??WassereRiickgewelInnungseAnlage in-

stead of  WassereRuckgewinnungseAnlage,
and ??UneKennteLicheMachung in-
stead of Unkenntlichmachung; TU-
tool: ??VereBlendeMauereWerk in-
stead of Verblendemauerwerk, and
??ScheWersteBehinderteneBetreuung  instead
of SchwersteBehinderteneBetreuung), while

CompoST undersplits compounds from the general
language even when the parameters are set to
enforce splitting.

6.2 Post-training on domain-specific text data

For the evaluation of post-training CompoST, we
take all word types from the DIY corpus as candi-
dates for compound splitting, which are tagged
as nouns. We both run the original CompoST
(ORIG) and the version of CompoST adapted to
the DIY domain (MOD). The results are shown
in table 7. Overall, the modified version of Com-
poST finds more compounds than original Com-
poST does (first two rows of table). However, the
difference is not big (259 compounds). Further-
more, for the majority of the cases, both splitter
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Type Tool correct non-split | wrong split
N+N+N CompoST 97 (85%) | 14 (12,3%) 3(2,7%)
(114) TU-tool 105 (92%) 0 (0%) 9 (8%)
SpaneHolzePlatte Secos 92 (81%) 32,7%) | 19 (16,3%)
A+N+N CompoST | 11 (31,4%) 21 (60%) 3 (8,4%)
(35) TU-tool 31 (89%) 0 (0%) 4(11%)
Rundeholzestab Secos 30 (86%) 0 (0%) 5 (14%)
V+N+N CompoST 22 (88%) 3 (12%) 0 (0%)
(25) TU-tool 22 (88%) 0 (0%) 3(12%)
Senkekopfeschraube | Secos 21 (84%) 0 (0%) 4 (16%)
All types CompoST | 195 (66%) 91 31%) 8 (3%)
(294) TU-tool 261 (89%) 3 (1%) 30 (10%)

Secos 234 (80%) 8 (3%) 52 (17%)

Table 5: Quantitative results for selected ternary candidates.

Tool correct | wrong split
CompoST | 82 (95%) 4 (5%)
TU-tool 33 (38%) 53 (62%)
Secos 43 (50%) 43 (50%)

Table 6: Quantitative results on non-splittable
items.

versions split identically (row 3), i.e. roughly 95%
of the compounds split by MOD are split in the
same way by ORIG. Rows 4 to 9 show the cases
where the splitters do not agree, which is further
analyzed below.

feature #

all ORIG splits 59,936
all MOD splits 60,195
same split 57,145
only MOD splits 640
only ORIG splits 411
MOD more splits 232
ORIG more splits 227
different split points 127
lower/upper difference 1,793

Table 7: Comparison of the splitting results for
the original CompoST (ORIG) and CompoST post-
trained on a DIY corpus (MOD).

Only MOD splits vs. only ORIG splits. MOD
splits more compounds than ORIG. In return, it
misses compounds which were originally split
(“only ORIG splits”). This makes up roughly 2/3
of the size of the compounds only split by MOD. It
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seems likely that the missed compounds originate
from general language, and the newly split ones
are domain-specific. However, when analyzing
the compounds, this is not the case; clear DIY-
compounds like Akkuschrauber (‘“‘screwdriver’)’,
Stichsdge (“padsaw’) or Heimwerker (“DIYer”) are
not split by MOD.

Secondly, we want to analyze the impact of hy-
phenated compound candidates. An example
would be Douglasien-Bodendielen (“douglas fir-
floor boards”), where the split point is obvious
because of the hyphen. There are rare cases where
such a split would be wrong, e.g. 3-in-1 or 200-
er. We throw out all compounds where the split
point is set at the hyphen and show the result in
table 8 (columns “only X splits””). Obviously, most
compounds that MOD missed were hyphenated
compounds; for closed compounds, MOD shows a
superior performance for both binary and ternary
compounds.

only X splits X more splits

ORIG | MOD || ORIG | MOD

binary 43 600 - -
ternary 0 50 137 22
nary - - 9 0

Table 8: Difference of splitting results for the origi-
nal CompoST (ORIG) and post-trained CompoST
(MOD) with disregarding all compounds with splits
at hyphens.

MOD more splits vs. ORIG more splits. In
these cases, both splitters split the same compound
but the number of splits is different. While for



the overall results (table 7) this part seems to be
rather equally sized for the splitters, focusing on
the closed, not hyphenated compounds again (table
8, columns “X more splits”) the picture is quite dif-
ferent. MOD produces fewer splits, i.e. contracts
components within a compound. For example,
ORIG splits Schraubendreherklingen (“‘screw-
driver blades”) as SchraubeeDrehereKlingen
(“screwedrivereblades”), while MOD splits
SchraubendrehereKlingen (“screwdrivereblades”).
We conclude that MOD finds some compounds
to occur frequently and thus does not split them
anymore. This intuition also coincides with the
results from the previous paragraph, that DIY
compounds like Akkuschrauber (“screwdriver’”)
are not split anymore by MOD.

Different split points. In these cases, both split-
ters split the same compound and return the same
number of splits, but the split points are differently
set. When analyzing the compounds, we find that
in most cases the results are different because the
modifier is either lemmatized as noun or verb, e.g.
Putz/putzen (“plastering/to clean”), or the lemma is
different: Dosen — Dose/Dosis. Some errors result
from the Fugen-s (ProzessoreSteuerung “processor
controlling” vs. ??ProzessoreTeuerung, lit.: “pro-
cessor increase in prices”), or a completely wrong
split. MOD performs superiorly to ORIG because
it always selects the more likely lemma in the do-
main (e.g. Putz instead of putzen). We randomly
select 30 compounds of this category and compare
the splitting results; MOD splits 18 times correctly,
ORIG only 8 times (in the other cases, both splits
were incorrect).

Lower/upper difference. In these cases, both
splitters split the same compound, return the same
number of splits and find the same split points.
Only upper- and the lowercasing is different. When
analyzing the respective compound splits, one can
see that it is mostly again the modifier which is
different. Sometimes this is a discrepancy between
verb and nominalized verb (e.g. Sdgetisch “sawing
table” is either split as scigeneTisch “to sawetable”
or ScgeneTisch “‘sawingetable”), or upper- or low-
ercasing is just wrong (e.g. Nahtkontrolle is split as
nahteKontrolle “joint examination™). It is unclear
where this effect comes from. When again extract-
ing 30 compounds randomly, MOD lemmatizes 15
times correctly, and ORIG lemmatizes 14 times
correctly. To conclude, no splitter shows superior
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performance here.

7 Discussion

In general, it is rather difficult to compare and eval-
uate the performance of different compound split-
ters. They return diverse splittings, e.g. they ei-
ther return binary or n-ary splits, lemmatize the
results or additionally POS-tag them. For some
splitters, there even are several settings available
(as for example, restricting either to a binary split
or allowing an n-ary split). Thus, sometimes a com-
parison can be hard. For example, do we prefer a
splitter that does not lemmatize against a splitter
that lemmatizes, but sometimes returns wrong lem-
mas? Finally, the follow-up task for the compound
splitting might decide which splitter we will use.

8 Conclusion and outlook

We presented a two-part study to evaluate the per-
formance of German compound splitters on noun
compounds, for general language and for specific
domains. In a first experiment, we conducted a
gold-standard-based evaluation of three compound
splitters on general-language and domain-specific
compounds. The splitters are CompoST, SECOS
and a CRF-based tool from University of Tiibingen.
We explained data sampling from specialized cor-
pora and from an inventory of general language
phenomena in compounding. We noted that Com-
poST tends to undersplit compounds (likely due to
a lack of lexical knowledge in SMOR), while the
other two tools tend to oversplit. Consequently,
CompoST also performs best on non-splittable
items (95% correct vs. 50% for the second best
tool). Its precision is highest for N+N compounds.
TU-Tool produces more correct splits on V+N com-
pounds, but also produces more incorrect splits. It
is the best-performing tool on tri-morphemic noun
compounds, with SECOS being second and Com-
poST last (only 66% correct vs. 89% with TU-
Tool). TU-Tool produces a slightly higher amount
of wrong splits than CompoST for tri-morphemic
compounds, but therefore CompoST does not split
nearly one third of the compounds. In general,
CompoST rarely produces splits the result of which
are non-morphemic letter sequences (in contrast to
Einlegebre-Tter discussed in section 6.1.2).

In a second experiment, we post-trained Com-
poST on domain-specific DIY data, and compared
the results for splitting domain-specific compounds.
We found that for roughly 95% of the compound



candidates, the original and the modified splitter re-
turn identical splits. For the rest of the compounds,
we performed a detailed evaluation with respect to
several features, like the number of splits or a differ-
ence of the exact split points. We find that in these
cases the adapted CompoST mostly outperforms
the original one, especially for binary and ternary
closed compounds. This qualitative improvement
is quantitatively watered down by the fact that the
original CompoST more often splits hyphenated
compound candidates than the post-trained version.
The modified version more often contracts compo-
nents within an n-ary compound, presumably due
to the increased number of occurrences of a com-
plex component (e.g. Heimwerker) in the data used
for post-training.

Overall, the comparison of compound splitters
proved to be more difficult than one would expect,
as the tools come with widely diverging features:
some tools only provide one split-point, others do
not come with training data, yet others include
lemmatization of the output, which in some cases
can be a source of further errors. Against this back-
ground, we see a need for further detailed method-
ological work on the topic.
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Abstract

Operant motives are unconscious intrinsic
desires that can be measured by implicit
methods, such as the Operant Motive Test
(OMT) employs. During the OMT, par-
ticipants are asked to write freely associ-
ated texts to provided questions and im-
ages. Trained psychologists label these
textual answers with one of four motives.
The identified motives allow for psychol-
ogists to predict behavior, long-term de-
velopment, and subsequent success. We
use a long short-term memory neural net-
work (LSTM) combined with an attention
mechanism for classification of OMT tex-
tual answers and show state-of-the-art per-
formance over previous work. When inves-
tigating tokens that have high associated
attention weights with the Linguistic In-
quiry and Word Count (LIWC) tool, we
find a weak connection between LIWC cat-
egories and the OMT theory. Lastly, we au-
tomatically annotate and count motives per
participant and correlate counts with aca-
demic grades, finding a weak correlation
between certain motives and subsequent
academic success.

1 Introduction

The goal of our research is to classify psychometric
textual data. Furthermore, we aim to investigate al-
gorithmic decision making and validate automatic
annotation by predictions in accordance with the
psychometric theory. To pursue this goal, we per-
form multi-label classification on the Operant Mo-
tive Test (OMT, Section 2) with four labels. During
this OMT, participants textually answer questions
on images such as displayed in Figure 1 to provided
questions.

Recent advances in artificial neural network ar-
chitectures have established mechanisms that allow
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Figure 1: Some examples of images to be inter-
preted by participants utilized for the operant mo-
tive test (OMT). Exemplary answers given in List-
ing 1 correspond to the first picture. (Kuhl and
Scheffer, 1999).

researchers to, in a limited fashion, inspect reasons
for algorithmic decisions. One of these mecha-
nisms is called attention and was found by Young
et al. (2018) to be among the most broadly investi-
gated and adopted elements of deep neural machine
learning. We want to investigate access to algorith-
mic decision making by employing this attention
mechanism (Section 3).

Lastly, the OMT theory states that some labeled
motives allow for predictions of subsequent aca-
demic success, which we inspect by counting an-
notated labels and correlating these counts with
participant’s academic grades.

Even though there is a high demand for the au-
tomation of psychological textual data analysis
(NLPsych), comparably little research has been per-
formed on this interdisciplinary task (Johannf3en
and Biemann, 2018). Reasons for this circum-
stance include the lack of available labeled psy-
chological text data, as Husseini Orabi et al. (2018)
point out, and the mere difficulty of capturing psy-
chological traits solemnly from texts, especially
short texts. Since first, psychologists are skilled
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workers for such a labeling task and secondly, said
task is difficult, labeling such psychometric tex-
tual data is costly. Also, interpretability and trans-
parency are crucial for gaining insights into the
nature of some tasks including security, medicine,
and psychology, which is often more valuable for
researchers than reaching the highest classification
performance scores (Zhang et al., 2018).

In this work, we focus on the following research
questions: i) Do neural architectures outperform
a previous non-neural machine learning approach
and if so, which architectures perform how well?
ii) Do the attention weights matter and reveal any
insights into algorithmic decision making? iii) Is
there a correlation between automatically predicted
motives and subsequent academic success?

We describe the OMT in Section 2. Thereafter,
we will discuss related work in Section 3. Sec-
tion 4 describes the data basis of this work and its
characteristics. Our research methodology will be
described in Section 5. Results will be presented
in Section 6. Finally, a conclusion will be drawn in
Section 7.

2 Operant Motive Test

Implicit or operant motives are unconscious intrin-
sic desires, which can be measured by psychologi-
cal implicit methods, which require participants to
use introspection for the assessment of psychologi-
cal attributes (Gawronski and De Houwer, 2014).
During the testing procedure, participants are asked
to write freely associated texts to provided ques-
tions and images. The OMT is such a test and
emerged from the Thematic Apperception Test
(TAT, (Murray, 1943)).

Listing 1 displays a few of the training in-
stances that correspond to the first picture of Figure
1, which displays some examples out of several.
Those images show one or multiple persons often
in unclear scenarios and situations. Applicants are
asked to answer four questions: i) What is impor-
tant for the persons in this situation and what is
s/he doing? ii) What is the person feeling? iii)
Why does the person feel this way? iv) How does
the story end? The four answers are concatenated
to a single string. On this string, it is possible
to annotate one of the three motives a) Affiliation
(German ’Anbindung’, letter A), b) Achievement
(German ’Leistung’, letter L) and c¢) Power (Ger-
man 'Macht’, letter M). The very first observed
motive applies to the whole string, which is the
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so-called primacy rule (Kuhl and Scheffer, 1999).
Once participants express a motive, this motive is
saturated. Therefore, the following motives ought
to be ignored when analyzing the answers. If no
motive can be identified, a zero will be annotated
(the so-called zero rule).

A sie nimmt am Gesprdch nicht teil und
wendet sich ab. gelangweilt. es
interessiert sie nicht, woriber die
anderen beiden reden. schlecht.
weicht dngstlich zurulick. unterlegen.
wird zurechtgewiesen.

Gelegenheit den Fehler zu korrigieren
Translation
she does not take part in the con-
versation and turns away. bored.
She does not care what the other
two are talking about. Bad.
withdraws anxiously. Inferior.

is rebuked. Opportunity to

correct the mistake.

Listing 1: German text examples of OMT answers
with A being Affiliation and M being the power
motive. The texts correspond to the first picture of
Figure 1. Translations into English provided by the
authors.

Implicit motives allow for the prediction of clin-
ically measured non-verbal interpersonal commu-
nication such as the amount of smiling, laughing
or eye contact (McAdams et al., 1984) as well as
the job performance (Lang et al., 2012). Schef-
fer (2004) was able to show a significant (p < 0.02)
multiple regression correlation with a negative beta
slope (hence the lower the German grade, the better
with 1 being very good and 5 having failed) be-
tween the achievement motive and z-standardized
average grades of students from different depart-
ments.

3 Related Work

Previous approaches to predicting psychologi-
cal traits. So far, approaches to psychological
traits identification from texts often examined the
connection between language and mental diseases.
Current research mostly focuses on e.g. the detec-
tion of dementia (Masrani et al., 2017), crises (De-
masi et al., 2019), suicide risks (Matero et al.,
2019), mental illnesses (Zomick et al., 2019) or
anxiety (Shen and Rudzicz, 2017) by the use of
some form of natural language processing.
Nonetheless, some findings focus on motivation,
success or characteristics. Tomasello (2002) de-
scribes the psychology of language as the method
of focusing on the way people express themselves



rather than to focus on what meaning is conveyed.

Linguistic Inquiry and Word Count (LIWC) is
a tool developed by Pennebaker et al. (1999) for
text analysis, that utilizes previously validated cat-
egories containing word lists for which the mem-
bership ratio of an input sequence is being asserted.
Furthermore, the tool calculates statistical values
e.g. the average word length, the average count
of word per sentence or the frequency of words
longer than 6 characters. LIWC can be considered
to be a standard tool for the analysis of texts from
the psychological domain due to its broad utiliza-
tion among researchers (JohannBen and Biemann,
2018). The German version of LIWC has been
developed by Wolf et al. (2008).

So-called closed-class words are by far more
informative than open-class words in terms of psy-
chological language research. Closed-class words
are words that tend to not change over centuries,
which can be e.g. pronouns, prepositions or ad-
verbs. Open-class words, on the other hand, are
words that are strongly influenced by the time be-
ing, such as historical events or names. Pennebaker
et al. (2014) found a link between the usage of
closed-class words and academic success. During
the study, which used the LIWC tool on written
essays of college applicants and connected these to
subsequent academic success, the authors showed
that the rate of closed-class words are significantly
(p < 0.01) positively correlated to subsequent aca-
demic success, regardless of the chosen essay topic
or sought major.

In (JohannBen et al., 2019) we engineered hand-
crafted features to train a logistic model tree (LMT,
Landwehr et al. (2005)) for classifying the operant
motives. An LMT is a decision tree, which per-
forms logistic regressions at its leaves. The LMT
model reached an F-score of 80.1. The perplexities
of language models for each motive, closed-class
words, and ratios (words per sentence ratio, type-
token ratio) were the main features for classifica-
tion decisions.

Deep learning. Since assessing psychological
traits solemnly from language is a challenging task,
many researchers circumvent this bottleneck by in-
cluding further personal information e.g. from so-
cial media platforms (Souri et al., 2018). Husseini
Orabi et al. (2018) adapted this approach when they
employed convolutional neural networks (CNN, Le-
Cun et al. (1998)) and recurrent neural networks
(RNN) in combination with further information
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from social media as labels such as average age,
gender or posting frequency to enhance the detec-
tion of mental disorders.

In order to detect crises, Kshirsagar et al. (2017)
combined neural and non-neural techniques. The
data was obtained from the anonymous emotional
support network Koko!, which is available through
multiple messaging applications.

A long short-term memory neural network
(LSTM, (Hochreiter and Schmidhuber, 1997)) is a
type of RNN which, in turn, is a deep neural net-
work architecture, that allows for the neural cells to
access other cells of the same recurrent layer with
a time delay and thus develop a so-called memory.
An LSTM furthermore employs memory cells that
allow storing information of an arbitrary time hori-
zon. Forget and update gates allow for these cells
to purposely omit information and control, how
the memory is altered. LSTMs have successfully
solved the issues of vanishing or exploding gradi-
ents present in general RNNs (Hochreiter, 1998)
and have been utilized for classifying short texts.

Lai et al. (2015) designed a recurrent convolu-
tional neural network (RCNN) for text classifica-
tion with promising results. An RCNN is an RNN
with a max-pooling layer as its output. The main
advantages of an RCNN in comparison with RNNs
is the enhanced selection of targets or regions to
have an impact on algorithmic decision making.

Young et al. (2018) found attention mecha-
nisms as part of decoder-encoder-architectures to
be amongst these recent advancements in their
survey. Accordingly, attention mechanisms al-
low for decoders to assess their memory by re-
ferring back to their input sequence, which can
enhance the network’s performance. The idea
of employing attention to a sequence-to-sequence
(Seq2Seq) encoder-decoder system originated from
Bahadanau et al. (2015).

With a sequence of annotations #h; being
(hl,...,h(Tx)), a context vector ¢; represents the
weighted sum of the annotations via:

T,
Ci = Z aijhj (1)
j=1
The weights @;; are computed as:
exp(ejj

Z;{Ql exp(eik)

Uhttps://itskoko.com/



whilst e;; = a(s;—1,h;), with a(...) being a
score function describing how well two words are
aligned.

In other words, the system encodes an input se-
quence (this could be e.g. a certain language or a
whole text to be summarized) into a context vec-
tor. This context vector together with hidden states
functions as input for the attention mechanism,
which computes attention weights and passes this
context vector together with the attention weights
on to the output layer. This process is illustrated in
Figure 2.

Context c; M

Attention a;

AN

hg —» hy —» hy —» hy —> hy

[

X X Xg X4

—>

listen amused story <EOS>

Figure 2: Illustration of the LSTM with attention
mechanism. The LSTM receives hidden states and
attention weights as inputs in order to output a
corresponding context vector, which thereafter gets
fed to a softmax output layer.

Attention mechanisms were successfully em-
ployed for various tasks. Gupta et al. (2018) uti-
lized a CNN on group images for learning the
global representation of the image and employed
an attention mechanism for merging faces in or-
der to learn local representations of only the faces,
thus leading to a network capable of detecting emo-
tions from entire groups of people. For this, the
authors employed a Seq2Seq system with attention
mechanism (the additional attention mechanism
was proposed by Vaswani et al. (2017)). Images
received automated descriptions by using a CNN
encoder, an attention layer, and an LSTM decoder
by Xu et al. (2015). Furthermore, the authors were
able to project the attention weights onto the im-
ages, visualizing the gaze of the network. Speech
has been analyzed for detecting emotions utilizing
an attention mechanism by Ramet et al. (2018).
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On textual data, attention mechanisms have en-
hanced the performance of classification and com-
prehension tasks. Hermann et al. (2015) advanced
automated reading comprehension and question an-
swering for texts with minimal prior knowledge.
So-called self-attention was the enabler of seman-
tic role labeling (SRL) for Tan et al. (2018). Self-
attention is a special case of an attention mech-
anism, that only requires a single sequence to
compute its representation. Vinyals et al. (2015)
showed that a Seq2Seq model with attention mecha-
nism could enhance syntactic constituency parsing
to state-of-the-art performance.

A small subset of this data was annotated by uti-
lizing attention over words. The authors were able
to find the explanation of depressions from texts
with a performance as well as human annotators
had, which the authors refer to as gold explanation.

On the contrary, recent studies have questioned
the interpretability of attention weights and sug-
gested not to equate attention with explanation
(Jain and Wallace, 2019). The authors found that
if attention weights contribute to algorithmic deci-
sion making, the shuffling of these weights should
significantly worsen results.

4 Data

The available data set has been collected and hand-
labeled by researchers of the University of Trier.
More than 14,600 volunteers participated in an-
swering the OMT questions described in Section
2 to 15 provided images such as displayed in Fig-
ure 1. These participants produced 220,859 unique
answers. Each answer was labeled by psycholo-
gists, which were trained with the OMT manual
by Kuhl and Scheffer (1999). After pre-processing
and cleaning the data, 209,716 text instances re-
main. The test and development set both constitute
10% of the available data, which is 20,960 instances
each. The amount of motives in the available data
is unbalanced with power (M) being by far the most
frequent with 59%, achievement (L) constituting
19% of the data, affiliation (A) 17% and zero 5%
(shown in Table 2 and in Figure 3). The pairwise
annotator intraclass correlation was r = .85 on the
Winter scale (Winter, 1994).

5 Methodology

Our methodology can be divided into two parts:
the first is a natural language processing (NLP)
task, which addresses research questions i) and ii)
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Figure 3: Graphical representation of the unevenly
distributed motive labels amongst the data set.
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and the second task answers research question iii)
by counting classified motives per participant and
correlating this count to academic grades.

In order to test whether an LSTM with an at-
tention mechanism succeeds in outperforming the
former best model for classifying the OMT, we
employ the approach by Xu et al. (2015) on an
already existing code basis for multiple text classi-
fiers, which is utilized for further benchmarks as
well.?

As for the word representations, we employed
pre-trained fastText word embeddings for Ger-
man (Bojanowski et al., 2017), provided by the
developers.? In contrast to Word2Vec word em-
beddings by Mikolov et al. (2013), fastText has
the capability of representing tokens not included
in the embedded words on the basis of character
n-grams. The OMT data (described in Section 4) is
noisy, has many spelling mistakes and would prob-
ably not sufficiently be represented by word-based
embeddings.

5.1 Benchmarking systems

To our knowledge, psychometrics closely related
to the TAT have not been classified with neural
methods yet. The only classification on the OMT
has been performed by utilizing an LMT model
in our previous work (2019), which we compare
to our neural approach. In order to put different
architectures into perspective and to explore the
relationship of our proposed LSTM system with at-
tention mechanism, we performed multiple bench-
marking experiments on the task of automatically
assigning the four classes of operant motives de-
scribed in Section 2 and thus aim to answer the
second research question of how well other neural

Zhttps://github.com/prakashpandey9/Text-Classification-
Pytorch/tree/master/
3Facebook’s Al Research, https://fasttext.cc
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approaches perform in comparison.

For this, we employed the following neural ar-
chitectures, as reviewed in Section 3: LSTM, CNN,
RNN, RCNN, Bi-LSTM with self-attention, LSTM
with attention and Seq2One (a Seq2Seq variant
with only one label as output) with attention. Since
neural approaches are non-deterministic (Lai et al.,
2015), we trained each model three times and aver-
aged the F-scores for a stable assessment of results.

Three modifications of the LSTM with attention
mechanism are employed: Firstly, we shuffled the
attention weights before they got applied to the
hidden states. Secondly, we reversed the direction
of the input sequence to honor the OMT primacy
rule. If this rule is followed and processing or-
der has an influence, processing from right-to-left
and classifying on the entire representation could
improve results since the most influential signal
(the first motive in the text) is accumulated last
into the representation. Thirdly, we add compa-
rable hand-crafted features as a fully connected
input to the final classification softmax layer (e.g.
part-of-speech (POS) tags, LIWC categories or the
perplexities of trained language models per target
motive), following Johannfen et al. (2019) to inves-
tigate in how far neural feature induction subsumes
these features.

5.2 Psychometric predictions

After benchmarking, we utilize the most promising
system for predictions in accordance with the OMT
theory. 103 participating students answered the
questions to 15 images, resulting in 1,545 answer
sequences. Further, the data collection includes the
grade of their bachelor’s thesis, which was com-
pleted a few years after the OMT was taken. We
employ the experimental design of our previous
work (JohannBen et al., 2019) to ensure a fair com-
parison. For this, we predict the motives of each
of the 15 answers given per participant, count the
appearances per motive and correlate these to the
bachelor’s thesis grade.

5.3

All parameters of the models were tuned on a de-
velopment set. Different fixed input sizes were
considered for every architecture: Firstly we con-
sidered a fixed input length of 81 since the longest
answer contains 81 words. Secondly, the average
answer contains 20 words, which we considered
as fixed input size in order to take the primacy
rule (Section 2) into account. Shorter answers than

Model training



the fixed input length receive the padding token
(<pad>), longer ones were truncated. Human an-
notators are asked to ignore the rest of a sequence
after a very first motive could be identified. Terms
not observed in the training vocabulary were re-
placed by an out-of-vocab (OOV) token. Dropouts
of 0.3, 0.5 and 0.8 were evaluated, whereas 0.5 has
shown to perform best for the RNNs and has also
been suggested by Hinton et al. (2012). The num-
ber of iterations was set to 3,600 in 32 batches and
two epochs. The models received word embedded
fastText inputs with 100 and 300 dimensions, of
which the 300-dimensional embeddings reached
better results, and had two hidden layers with 256
cells each. Learning rates were set to 0.0001, 0.001
and 0.01 for each model, with 0.001 performing
best. All results are displayed in Table 1 and were
achieved with these unified best-performing param-
eters.

As for the LSTM with attention mechanism,
which has shown to perform best, the model con-
verged quickly to a loss of approx. 0.4 and oscil-
lates thereafter.

5.4 Attention weights assessment

As shown by Vaswani et al. (2017), the attention
mechanism (described in Section 3) has broadly
been believed to contribute to explainable artificial
intelligence by shedding light on algorithmic de-
cision making. Many authors have followed the
initial idea and e.g. applied heat maps according to
attention weights for input sequences and investi-
gated algorithmic decision making. Other studies
find contrary evidence that attention weights do
not necessarily reflect true meaning (Jain and Wal-
lace, 2019). Even though we are aware of these
controversies and limitations, we follow the critic’s
suggestion to investigate whether attention weights
make a difference in the performance of a system.
For this, we measure on which index the most atten-
tion weight mass is accumulated. We hypothesized
that this might often be the last token since atten-
tion weights usually traverse a sequence in search
(metaphorically speaking) for suiting candidates
and mostly does not find any of such, applying
the most of the available attention weight to the
last possible candidate — the last token. We will
further collect sequences that do not show this be-
havior and thus have the largest attention weight
mass assigned to other tokens than the last one.
These tokens will be evaluated with the LIWC tool.
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We would expect the motives to be reflected in
the LIWC categories if they meant anything at all.
We automatically assembled all classified instances,
whose highest attention weight did not assemble on
the very last token, exceeded 0.3 and was classified
correctly.

6 Results

6.1 Model performance

Table 1 shows classification performance of the
different approaches on the test set. We were
able to improve over our previous classifier (Jo-
hannflen et al., 2019). Even though neural ap-
proaches often perform better than earlier ma-
chine learning (Zhang et al., 2018), only the re-
sults of the best-performing model, the LSTM with
an attention mechanism, outperforms the feature-
engineered LMT classification model by an F-score
of 81.55 (the LMT scored 81.10 and thus only
slightly worse) with a fixed input size of 20 to-
kens. The same model with the fixed size of the
longest answer of 81 tokens performed worse with
an F-score of 80.71 (not shown in Table 1). The
other approaches, also with a fixed input size of
20 tokens, performed worse, mostly around a 79
F-score except for the CNN. Including 129 hand-
crafted features, reversing the reading direction and
shuffling attention weights did not improve the re-
sults, thus indicating that firstly, attention matters,
secondly, the direction of classification is not as
important and thirdly, the LSTM attention model
learns the features (POS, LIWC categories, per-
plexity) incidentally. The confusion matrix of the
best-performing model is displayed in Table 2. The
same LSTM with attention mechanism enriched
by similar hand-crafted features does not improve
results further, indicating that the information from
these features is subsumed by the induced repre-
sentations. The inversion of the input sequence
resulted in lower scores, indicating that either the
model cannot make use of seeing earlier tokens
later to account for the primacy rule, or that the pri-
macy rule has not been followed consequently dur-
ing annotation. Shuffling of the attention weights
worsens the results, indicating that these weights
matter for the classification task.

6.2 Assessment of the attention weights

Table 1 shows that the LSTM with attention mech-
anism scored significantly lower when its attention
weights were shuffled compared to the one with



Model & Accuracy | & Precision | @ Recall | @ F-score | F o
CNN 63.26 59.34 63.62 61.41 2.36
RNN 68.73 73.10 68.73 70.85 1.59
LSTM 77.84 78.05 77.84 77.92 0.65
Sequence to One (Seq20ne) with attention 77.34 76.81 77.43 77.12 1.53
LSTM Attn with shuffled attention weights 79.03 78.05 79.03 78.54 0.13
RCNN 79.70 79.35 79.81 79.58 0.77
Bi-LSTM with self-attention 81.16 80.35 81.16 80.75 0.31
LSTM Attn with 129 addit. handcrafted features 80.85 79.86 80.86 80.35 1.23
LSTM Attn with a reversed direction 80.87 80.05 80.87 80.46 0.99
LSTM with an attention mechanism (LSTM Attn) | 81.94 81.15 81.96 81.55 0.09
LMT with 129 handcrafted features (baseline) 81.56 80.90 81.60 81.10 0.00

Table 1: Performance comparison between the LMT and neural systems.

All models classified with a

fixed input size of 20 tokens. The only system overcoming the strong baseline of the feature-based LMT
is an LSTM with attention mechanism. This system was also tested in reversed direction, with shuffled
attention weights and with 129 additional handcrafted features, all of which performed worse than the best
model. We averaged all scores (&) from three trained models each, and provide the standard deviation

across runs (o).

Predicted

0 A L M x

5% | 17% | 19% 59% | 100%

—=| 0283 102 150 478 1,013
é A | 292,739 112 646 | 3,526
<|L| 9 91 | 3,079 872 | 4,132
M | 126 657 404 | 11,102 | 12,289
Y | 528 | 3,589 | 3,745 | 13,098 | 20,960

Table 2: The relative motive amounts and confu-
sion matrix of the best performing system (LSTM
Attn).

properly trained attention and assigned weights.
Jain and Wallace (2019) stated that this case had
occurred only rarely in their experiments, but that
if this circumstance holds true, they would assume
that attention weights could be considered for in-
terpretation and explanation.

We can observe that on average, 79.85% of the
available attention weight mass was assigned to the
very last token of each instance. It appears that the
mechanism considered one token at a time from left
to right and determines whether attention weight
mass should be assigned to the token in question.
If this is not the case, the attention weight mass is
being kept and the successor token is considered.
When the mechanism reaches the end of the se-
quence, it assigns whatever attention weight mass
is left to the very last token. The second and third
index with the highest following attention weight
masses are the second last and third last tokens re-
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spectively. According to the OMT theory, the last
tokens of a sequence, in general, should not provide
the main information for encoding the whole se-
quence due to the primacy rule, this high attention
weight mass on the last token indicates, that for
the majority of classified instances, the attention
weights do not serve as a widely applicable means
to interpret the reasons for classification decisions
in this setup.

Besides these last tokens, we aimed to investi-
gate the mechanism further and compare these non-
concluding tokens to all tokens by automatically
assembling instances and attention weights.

Table 3 compares the four most prominent psy-
chologically validated LIWC category member-
ships in percent per motive of all tokes versus
non-final tokens with high attention weight masses.
Most of the LIWC category names appear to be
representative for the wordlists that they consist of.
E.g. positive emotion consists of e.g. love, nice and
sweet.

According to the OMT theory, people with a
strong achievement motive desire intrinsic excel-
lence. They tend to analyze problems thoroughly
and focus on tasks. This description is reflected by
cognitive mechanism that is almost twice as present
for high attention mass tokens as it is for all tokens
(27.39% compared to 14.11%). The categories oc-
cuptation (e.g. observe, conduct, advancing) with
24.66% and achieve — already with the same name
as the OMT motive — with 23.28% are high in
presence as well. Compared to rather low social,



\ High attention weight mass [ All tokens

| LIWC [percent| words | LIWC [ percent [ words |
2| COEMIVe | 5939 | intense social 15.17
“é mechanism
S concentrated Coemitive
ﬁ occupation | 24.66 motivated Bt 14.11
S s mechanism
< capabilities other
achieve 23.28 . 11.44
references
insight 10.96 affect 10.49
_E affect 12.12 important social 19.76
= poslt'lve 12.12 secure other 12.04
&£ | emotion partner references
< humans 9.09 interested affect 10.31
social 9.09 cognitive | g 4g
mechanism
§ affect 33.95 can social 18.99
z — —
L cogmtl_ve 28.91 fe_els cognm_ve 11.46
mechanism dominant mechanism
pomt}ve 24.93 humiliated other 11.25
emotion references
insight 20.16 affect 9.91

Table 3: LIWC analysis of tokens that received
the most attention weight mass on the left with all
tokens on the right separated by predicted labels
(left) versus manually annotated labels (right).

affect and other references, the OMT theory for
the achievement motive appears to be better repre-
sented by tokens with high attention. Single words
include intense, concentrated, motivated and capa-
bilities.

Similarly, the LIWC categories for the affilia-
tion motive are affect, positive emotion, humans
and social for the left columns and apparently
reflect the description of a desire to solve prob-
lems cooperatively, whilst avoiding conflicts. How-
ever, scores for LIWC categories are rather low at
12.12% and 9.09%. The social LIWC category is
strongly present on the right column for all tokens
with 19.76%, as well as affect with 12.04%. The
other two LIWC categories of the right columns
other references and cognitive mechanism do not
appear to align well with the affiliation motive.

Even though the desire to influence and alter
one’s surrounding and fellow beings, the power
motive can be identified by positive expressions as
well as rather harsh ones. All LIWC categories of
these columns on the left appear to align with the
power motive, which are affect (33.95%), cognitive
mechanism (28.91%), positive emotion (24.93%)
and insight (20.16%). The corresponding LIWC
categories for all tokens on the right columns cor-
respond with the exception of other references but
are comparably weaker.

This comparison shows that tokens with high
attention mass per motive correspond to the OMT
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theory e.g. occupation and insight for achievement,
whilst all tokens do show some correspondence
(e.g. social and affiliation), but in general, do not
align well with the OMT theory. Interestingly,
when removing the tokens (besides the last ones)
that received the most attention weight mass and re-
evaluating the answers with the LIWC tool to test
the counterhypothesis that high-attention tokens do
not reflect the classes, the categories shift to ones
that do not correspond to the OMT theory.

gelangweilt weil sie jeden tag 0
bored because she every day
geborgen weil die andere person |
protected because the other person
gefordert will das ziel erreichen L
challenged wants the goal to reach

zu mafregeln | dominant die andere
R . M
to disciplin | dominant the other

Table 4: Heatmap according to the attention
weights displayed on four example snippets of
OMT answers in German with their glossed trans-
lations and targets (A for affiliation, M for power
and L for achievement).

Examples are given in Table 4, which displays
some tokens highlighted, according to the token’s
attention weight masses. These examples do not
reflect the whole data basis but illustrate a possible
aid for understanding the task at hand and might
help develop tool support for this task or related
psychometrics.

6.3 Correlation with bachelor’s thesis grades

As described in Section 5, in order to analyze the
predictive power of motives, we count predicted
motives and correlate these counts to academic
grades. While we previously found a weak correla-
tion of r = —0.2 between power motive counts and
the bachelor’s thesis grade, the experiment in this
work revealed a a correlation of r = —0.25 between
the bachelor’s thesis grade and the achievement
motive in this work, i.e. the higher the achieve-
ment motive count, the better the German grade
value (1 equals good, 5 equals having failed). The
power motive is positively correlated with a small
r=0.14, i.e. the higher the power motive count,
the worse the German grade. Figure 4 shows scat-
ter plot displaying the counts of the power and
achievement motives and the achieved bachelor’s
thesis grade.

This discrepancy of both model’s predictions
is anomalous. If both models performed compa-
rably well on the same type of data, both mod-



els should reveal comparable correlations between
counted motives and grades. The investigation of
each model’s motive predictions per student shows
that the LSTM with attention mechanism often as-
signs the power motive but never zero, whilst the
LMT model assigns zero on 17.76% of all cases,
indicating that the LMT model often did not predict
any motive. Thus, even though the models behave
comparably well on test data of the same origin as
the training data, they differ in their algorithmic
decision making on data from a different origin.
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Thesis Grade (1 - very good, 4 - sufficient)
5 5

Counts of classified achievement motives per particpant

® Achievement - Thesis grades
Power - Thesis grades
--------- Linear (Achievement - Thesis grades)

Linear (Power - Thesis grades)

Figure 4: After predicting motives, the four motives
per participants were counted. The power motive
has the highest frequency. By counting predicted
motives and correlating them to academic grades,
a weak correlation of r = —0.25 could be observed
between the achievement motive (blue dots) and
the bachelor’s thesis grade (in Germany, the best
grade is 1, reading: the higher the achievement
motive count, the better the grade). In contrast, the
plots shows that the higher the power motive counts
(orange dots), the worse the grade with r = 0.14.

7 Conclusion and outlook

We were able to outperform prior classification
of the OMT by employing an LSTM with an at-
tention mechanism achieving an F-score of 81.55
and thus can positively answer research question
1), asking whether our proposed model could out-
perform our former approach. Other architectures
such as the RNN, LSTM, Bi-LSTM or the RCNN
mostly reached an F-score of approx. 79. Atten-
tion weights only matter in thus far that the shuf-
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fling of these weights worsens the results, asked by
research question ii). The attention weight mass
mostly accumulates on the very last token and thus
does not allow for insights in the general case. For
these cases where the attention weight mass was
distributed among other tokens than the last one
of a sequence, an analysis with the LIWC tool
showed conformity of LIWC categories with the
corresponding operant motives compared to these
of all words. This indicates an overlap between
the memberships per word of both linguistic assess-
ments. This behavior of the highest attention mass
on last tokens could be canceled out by employing
a Bi-LSTM with attention mechanism and concate-
nating the attention weights of both systems, which
we consider for future experiments. When remov-
ing these tokens and re-evaluating the sequence
with the LIWC tool, the results shift, which has
to be investigated further. Research question iii)
questioned a correlation between identified motives
and subsequent academic success as prior research
has shown. This correlation could slightly be out-
performed with r = —0.25 between the counted
achievement motives and bachelor’s thesis grade,
which is a weak correlation much different to for-
mer predictions of the LMT model that assigned
zeros more often than the LSTM model with atten-
tion mechanism. Since zero marks indecisiveness,
it can be assumed that the LMT model does not
generalize as well as the LSTM — though this as-
sumption would have to be further examined by e.g.
having trained psychologists assess the outputs of
both models. Furthermore, direct predictions from
language to grades could be investigated, hence
losing information at the intermediate step of auto-
matically annotated motives.

Nonetheless, further validation is appropriate
due to recent debates upon attention weights as
indicators of interpretation. One approach for val-
idation would be to provide trained psychologists
for labeling the OMT with tokens that received
comparably much attention weight mass and with
tokens that did not to measure how many cases
would have been identified by said psychologists.
Furthermore, we aim to provide annotators with
a tool with attention-based highlighting for possi-
bly saving time and expenses during the labeling
process. Further numerical improvements could
result from using contextualized embeddings, e.g.
Bidirectional Encoder Representations from Trans-
formers (BERT, Devlin et al. (2019)).



References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR, San
Diego, CA, USA.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135—-146.

Orianna Demasi, Marti A. Hearst, and Benjamin Recht.
2019. Towards augmenting crisis counselor train-
ing by improving message retrieval. In Proceedings
of the Sixth Workshop on Computational Linguistics
and Clinical Psychology, pages 1-11, Minneapolis,
MN, USA.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, MN, USA.

Bertram Gawronski and Jan De Houwer. 2014. Im-
plicit measures in social and personality psychology.
Handbook of research methods in social and person-
ality psychology, 2:283-310.

Aarush Gupta, Dakshit Agrawal, Hardik Chauhan, Jose
Dolz, and Marco Pedersoli. 2018. An attention
model for group-level emotion recognition. In Pro-
ceedings of the 20th ACM International Conference
on Multimodal Interaction, ICMI 18, pages 611—
615, New York, NY, USA.

Karl M. Hermann, Toma$ Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Proceedings of the 28th Inter-
national Conference on Neural Information Process-
ing Systems - Volume I, NIPS’15, pages 1693—-1701,
Cambridge, MA, USA.

Geoffrey E. Hinton, Nitish Srivastava, Alex
Krizhevsky, Ilya Sutskever, and Ruslan R. Salakhut-
dinov. 2012. Improving neural networks by
preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580.

Sepp Hochreiter and Jiirgen Schmidhuber.  1997.
Long Short-term Memory. Neural computation,
9(8):1735-1780.

Sepp Hochreiter. 1998.  The vanishing gradient
problem during learning recurrent neural nets and
problem solutions. International Journal of Un-
certainty, Fuzziness and Knowledge-Based Systems,
6(02):107-116.

77

Ahmed Husseini Orabi, Prasadith Buddhitha, Mah-
moud Husseini Orabi, and Diana Inkpen. 2018.
Deep learning for depression detection of Twitter
users. In Proceedings of the Fifth Workshop on
Computational Linguistics and Clinical Psychology:
From Keyboard to Clinic, pages 88-97, New Or-
leans, LA, USA.

Sarthak Jain and Byron C. Wallace. 2019. Attention
is not Explanation. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3543-3556, Minneapolis, MN, USA.

Dirk Johannflen and Chris Biemann. 2018. Be-
tween the Lines: Machine Learning for Prediction
of Psychological Traits - A Survey. In International
Cross-Domain Conference, CD-MAKE, pages 192—
211. Hamburg, Germany.

Dirk JohannB3en, Chris Biemann, and David Scheffer.
2019. Reviving a psychometric measure: Classifica-
tion of the Operant Motive Test. In Proceedings of
the Sixth Annual Workshop on Computational Lin-
guistics and Clinical Psychology (CLPsych), pages
121-125, Minneapolis, MN, USA.

Rohan Kshirsagar, Robert Morris, and Samuel Bow-
man. 2017. Detecting and explaining crisis. In
Proceedings of the Fourth Workshop on Computa-
tional Linguistics and Clinical Psychology — From
Linguistic Signal to Clinical Reality, pages 6673,
Vancouver, BC, Canada.

Julius Kuhl and David Scheffer. 1999. Der oper-
ante Multi-Motiv-Test (OMT): Manual [The oper-
ant multi-motive-test (OMT): Manual]. Impart, Os-
nabriick, Germany: University of Osnabriick.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text
classification. In Twenty-ninth AAAI conference on
artificial intelligence, pages 2267-2273, Austin, TX,
USA.

Niels Landwehr, Mark A. Hall,
2005. Logistic Model Trees.
59(1):161-205.

and Eibe Frank.
Machine Learning,

Jonas W. B. Lang, Ingo Zettler, Christian Ewen, and
Ute R. Hiilsheger. 2012. Implicit motives, explicit
traits, and task and contextual performance at work.
The Journal of Applied Psychology, 97(6):1201—
1217.

Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied
to document recognition. Proceedings of the IEEE,
86(11):2278-2324.

Vaden Masrani, Gabriel Murray, Thalia Field, and
Giuseppe Carenini. 2017. Detecting dementia
through retrospective analysis of routine blog posts
by bloggers with dementia. In Proceedings of



the 16th Workshop on Biomedical Natural Lan-
guage Processing, pages 232-237, Vancouver, BC,
Canada.

Matthew Matero, Akash Idnani, Youngseo Son, Sal
Giorgi, Huy Vu, Mohammad Zamani, Parth Lim-
bachiya, Sharath C. Guntuku, and H. Andrew
Schwartz. 2019. Suicide risk assessment with multi-
level dual-context language and BERT. In Proceed-
ings of the Sixth Workshop on Computational Lin-
guistics and Clinical Psychology, pages 39-44, Min-
neapolis, MN, USA.

Dan P. McAdams, R. Jeffrey Jackson, and Carol
Kirshnit. 1984. Looking, laughing, and smiling in
dyads as a function of intimacy motivation and reci-
procity. Journal of Personality, 52(3):261-273.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In Advances in Neural Information Process-
ing Systems 26, pages 3111-3119. Lake Tahoe, NV,
USA.

Henry A. Murray. 1943. Thematic Apperception Test.
Harvard University Press.

James W. Pennebaker, Martha E. Francis, and
Roger J. Booth. 1999. Linguistic inquiry
and word count (LIWC). Software manual.
http://liwc.wpengine.com.

James W. Pennebaker, Cindy K. Chung, Joey Frazee,
Gary M. Lavergne, and David 1. Beaver. 2014.
When small words foretell academic success: The
case of college admissions essays. PLOS ONE,
9(12):e115844.

Gaetan Ramet, Philip N. Garner, Michael Baeriswyl,
and Alexandros Lazaridis. 2018. Context-aware at-
tention mechanism for speech emotion recognition.
In 2018 IEEE Spoken Language Technology Work-
shop (SLT), pages 126—131, Athens, Greece.

David Scheffer. 2004. Implizite Motive: Entwicklung,
Struktur und Messung [Implicit Motives: Develop-
ment, Structure and Measurement]. Hogrefe Verlag,
Gottingen, Germany, 1st edition.

Judy H. Shen and Frank Rudzicz. 2017. Detecting anx-
iety on Reddit. In Proceedings of the Fourth Work-
shop on Computational Linguistics and Clinical Psy-
chology — From Linguistic Signal to Clinical Real-
ity, pages 58—65, Vancouver, BC, Canada.

Alireza Souri, Shafigheh Hosseinpour, and Amir M.
Rahmani. 2018. Personality classification based
on profiles of social networks’ users and the five-
factor model of personality. Human-centric Com-
puting and Information Sciences, 8(1):24.

Zhixing Tan, Mingxuan Wang, Jun Xie, Yidong Chen,
and Xiaodong Shi. 2018. Deep semantic role label-
ing with self-attention. In Thirty-Second AAAI Con-
ference on Artificial Intelligence, pages 4929-4936,
New Orleans, LA, USA.

78

Michael Tomasello. 2002. The New Psychology of
Language: Cognitive and Functional Approaches to
Language Structure. Psychology Press, 2nd edition.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30, pages 5998-6008. Long Beach,
CA, USA.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey E. Hinton. 2015.
Grammar as a foreign language. In Proceedings
of the 28th International Conference on Neural In-
formation Processing Systems - Volume 2, NIPS’15,
pages 2773-2781, Cambridge, MA, USA.

David Winter. 1994. Manual for scoring motive im-
agery in running text. Dept. of Psychology, Univer-
sity of Michigan (unpublished).

Markus Wolf, Andrea B. Horn, Matthias R. Mehl, Sev-
erin Haug, James W. Pennebaker, and Hans Kordy.
2008. Computergestiitzte quantitative Textanalyse:
Aquivalenz und Robustheit der deutschen Version
des Linguistic Inquiry and Word Count. Diagnos-
tica, 54(2):85-98.

Kelvin Xu, Jimmy L. Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhutdinov, Richard S.
Zemel, and Yoshua Bengio. 2015. Show, attend
and tell: Neural image caption generation with vi-
sual attention. In Proceedings of the 32Nd Interna-
tional Conference on International Conference on
Machine Learning - Volume 37, ICML’15, pages
2048-2057, Lille, France.

Tom Young, Devamanyu Hazarika, Soujanya Poria,
and Erik Cambria. 2018. Recent Trends in Deep
Learning Based Natural Language Processing [Re-
view Article]. [IEEE Computational Intelligence
Magazine, 13:55-75.

Xinyang Zhang, Ningfei Wang, Shouling Ji, Hua Shen,
and Ting Wang. 2018. Interpretable deep learning
under fire. CoRR, abs/1812.00891.

Jonathan Zomick, Sarah I. Levitan, and Mark Serper.
2019. Linguistic analysis of schizophrenia in Red-
dit posts. In Proceedings of the Sixth Workshop on
Computational Linguistics and Clinical Psychology,
pages 74-83, Minneapolis, MN, USA.



Proceedings of the 15th Conference on Natural Language Processing (KONVENS 2019)
Distributed under a CC BY-NC-SA 4.0 license.

Towards Multimodal Emotion Recognition in
German Speech Events in Cars using Transfer Learning

Deniz Cevher!?; Sebastian Zepf'* and Roman Klinger?

! Mercedes-Benz Research & Development, Daimler AG, Sindelfingen, Germany
2 Institut fiir Maschinelle Sprachverarbeitung, University of Stuttgart, Germany
{firstname.lastname}@daimler.com
{firstname.lastname}@ims.uni-stuttgart.de

Abstract

The recognition of emotions by humans is
a complex process which considers mul-
tiple interacting signals such as facial ex-
pressions and both prosody and semantic
content of utterances. Commonly, research
on automatic recognition of emotions is,
with few exceptions, limited to one modal-
ity. We describe an in-car experiment for
emotion recognition from speech interac-
tions for three modalities: the audio signal
of a spoken interaction, the visual signal
of the driver’s face, and the manually tran-
scribed content of utterances of the driver.
We use off-the-shelf tools for emotion de-
tection in audio and face and compare that
to a neural transfer learning approach for
emotion recognition from text which uti-
lizes existing resources from other domains.
We see that transfer learning enables mod-
els based on out-of-domain corpora to per-
form well. This method contributes up to
10 percentage points in F;, with up to 76
micro-average F| across the emotions joy,
annoyance and insecurity. Our findings
also indicate that off-the-shelf-tools ana-
lyzing face and audio are not ready yet for
emotion detection in in-car speech interac-
tions without further adjustments.

1 Introduction

Automatic emotion recognition is commonly under-
stood as the task of assigning an emotion to a pre-
defined instance, for example an utterance (as au-
dio signal), an image (for instance with a depicted
face), or a textual unit (e.g., a transcribed utterance,
a sentence, or a Tweet). The set of emotions is often
following the original definition by Ekman (1992),
which includes anger, fear, disgust, sadness, joy,

*The first two authors contributed equally.
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and surprise, or the extension by Plutchik (1980)
who adds trust and anticipation.

Most work in emotion detection is limited to one
modality. Exceptions include Busso et al. (2004)
and Sebe et al. (2005), who investigate multimodal
approaches combining speech with facial informa-
tion. Emotion recognition in speech can utilize
semantic features as well (Anagnostopoulos et al.,
2015). Note that the term “multimodal” is also
used beyond the combination of vision, audio, and
text. For example, Soleymani et al. (2012) use it to
refer to the combination of electroencephalogram,
pupillary response and gaze distance.

In this paper, we deal with the specific situation
of car environments as a testbed for multimodal
emotion recognition. This is an interesting environ-
ment since it is, to some degree, a controlled en-
vironment: Dialogue partners are limited in move-
ment, the degrees of freedom for occurring events
are limited, and several sensors which are useful
for emotion recognition are already integrated in
this setting. More specifically, we focus on emo-
tion recognition from speech events in a dialogue
with a human partner and with an intelligent agent.

Also from the application point of view, the do-
main is a relevant choice: Past research has shown
that emotional intelligence is beneficial for human
computer interaction. Properly processing emo-
tions in interactions increases the engagement of
users and can improve performance when a specific
task is to be fulfilled (Klein et al., 2002; Coplan and
Goldie, 2011; Partala and Surakka, 2004; Pantic et
al., 2005). This is mostly based on the aspect that
machines communicating with humans appear to
be more trustworthy when they show empathy and
are perceived as being natural (Partala and Surakka,
2004; Brave et al., 2005; Pantic et al., 2005).

Virtual agents play an increasingly important
role in the automotive context and the speech
modality is increasingly being used in cars due to
its potential to limit distraction. It has been shown
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that adapting the in-car speech interaction system
according to the drivers’ emotional state can help to
enhance security, performance as well as the over-
all driving experience (Nass et al., 2005; Harris and
Nass, 2011).

With this paper, we investigate how each of the
three considered modalitites, namely facial expres-
sions, utterances of a driver as an audio signal, and
transcribed text contributes to the task of emotion
recognition in in-car speech interactions. We focus
on the five emotions of joy, insecurity, annoyance,
relaxation, and boredom since terms corresponding
to so-called fundamental emotions like fear have
been shown to be associated to too strong emo-
tional states than being appropriate for the in-car
context (Dittrich and Zepf, 2019). Our first contri-
bution is the description of the experimental setup
for our data collection. Aiming to provoke spe-
cific emotions with situations which can occur in
real-world driving scenarios and to induce speech
interactions, the study was conducted in a driving
simulator. Based on the collected data, we pro-
vide baseline predictions with off-the-shelf tools
for face and speech emotion recognition and com-
pare them to a neural network-based approach for
emotion recognition from text. Our second con-
tribution is the introduction of transfer learning to
adapt models trained on established out-of-domain
corpora to our use case. We work on German lan-
guage, therefore the transfer consists of a domain
and a language transfer.

2 Related Work

2.1 Facial Expressions

A common approach to encode emotions for fa-
cial expressions is the facial action coding sys-
tem FACS (Ekman and Friesen, 1978; Sujono and
Gunawan, 2015; Lien et al., 1998). As the reli-
ability and reproducability of findings with this
method have been critically discussed (Mesman et
al., 2012), the trend has increasingly shifted to per-
form the recognition directly on images and videos,
especially with deep learning. For instance, Jung et
al. (2015) developed a model which considers tem-
poral geometry features and temporal appearance
features from image sequences. Kim et al. (2016)
propose an ensemble of convolutional neural net-
works which outperforms isolated networks.

In the automotive domain, FACS is still popular.
Ma et al. (2017) use support vector machines to
distinguish happy, bothered, confused, and con-
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centrated based on data from a natural driving
environment. They found that bothered and con-
fused are difficult to distinguish, while happy and
concentrated are well identified. Aiming to re-
duce computational cost, Tews et al. (2011) ap-
ply a simple feature extraction using four dots in
the face defining three facial areas. They analyze
the variance of the three facial areas for the recog-
nition of happy, anger and neutral. Thme et al.
(2018) aim at detecting frustration in a simulator
environment. They induce the emotion with spe-
cific scenarios and a demanding secondary task
and are able to associate specific face movements
according to FACS. Paschero et al. (2012) use
OpenCV (https://opencv.org/) to detect the eyes
and the mouth region and track facial movements.
They simulate different lightning conditions and
apply a multilayer perceptron for the classification
task of Ekman’s set of fundamental emotions.

Overall, we found that studies using facial fea-
tures usually focus on continuous driver monitor-
ing, often in driver-only scenarios. In contrast, our
work investigates the potential of emotion recogni-
tion during speech interactions.

2.2 Acoustic

Past research on emotion recognition from acous-
tics mainly concentrates on either feature selection
or the development of appropriate classifiers. Rao
et al. (2013) as well as Ververidis et al. (2004) com-
pare local and global features in support vector
machines. Next to such discriminative approaches,
hidden Markov models are well-studied, however,
there is no agreement on which feature-based clas-
sifier is most suitable (El Ayadi et al., 2011). Simi-
lar to the facial expression modality, recent efforts
on applying deep learning have been increased for
acoustic speech processing. For instance, Lee and
Tashev (2015) use a recurrent neural network and
Palaz et al. (2015) apply a convolutional neural net-
work to the raw speech signal. Neumann and Vu
(2017) as well as Trigeorgis et al. (2016) analyze
the importance of features in the context of deep
learning-based emotion recognition.

In the automotive sector, Boril et al. (2011) ap-
proach the detection of negative emotional states
within interactions between driver and co-driver as
well as in calls of the driver towards the automated
spoken dialogue system. Using real-world driving
data, they find that the combination of acoustic fea-
tures and their respective Gaussian mixture model



scores performs best. Schuller et al. (2006) collects
2,000 dialog turns directed towards an automotive
user interface and investigate the classification of
anger, confusion, and neutral. They show that au-
tomatic feature generation and feature selection
boost the performance of an SVM-based classifier.
Further, they analyze the performance under sys-
tematically added noise and develop methods to
mitigate negative effects. For more details, we re-
fer the reader to the survey by Schuller (2018). In
this work, we explore the straight-forward applica-
tion of domain independent software to an in-car
scenario without domain-specific adaptations.

2.3 Text

Previous work on emotion analysis in natural lan-
guage processing focuses either on resource cre-
ation or on emotion classification for a specific
task and domain. On the side of resource creation,
the early and influential work of Pennebaker et al.
(2015) is a dictionary of words being associated
with different psychologically relevant categories,
including a subset of emotions. Another popular
resource is the NRC dictionary by Mohammad and
Turney (2012). It contains more than 10000 words
for a set of discrete emotion classes. Other re-
sources include WordNet Affect (Strapparava and
Valitutti, 2004) which distinguishes particular word
classes. Further, annotated corpora have been cre-
ated for a set of different domains, for instance
fairy tales (Alm et al., 2005), Blogs (Aman and Sz-
pakowicz, 2007), Twitter (Mohammad et al., 2017;
Schuff et al., 2017; Mohammad, 2012; Mohammad
and Bravo-Marquez, 2017a; Klinger et al., 2018),
Facebook (Preotiuc-Pietro et al., 2016), news head-
lines (Strapparava and Mihalcea, 2007), dialogues
(Li et al., 2017), literature (Kim et al., 2017), or
self reports on emotion events (Scherer, 1997) (see
(Bostan and Klinger, 2018) for an overview).

To automatically assign emotions to textual units,
the application of dictionaries has been a popu-
lar approach and still is, particularly in domains
without annotated corpora. Another approach to
overcome the lack of huge amounts of annotated
training data in a particular domain or for a spe-
cific topic is to exploit distant supervision: use the
signal of occurrences of emoticons or specific hash-
tags or words to automatically label the data. This
is sometimes referred to as self-labeling (Klinger
et al., 2018; Pool and Nissim, 2016; Felbo et al.,
2017; Wang et al., 2012).
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Figure 1: The setup of the driving simulator.

A variety of classification approaches have been
tested, including SNoW (Alm et al., 2005), support
vector machines (Aman and Szpakowicz, 2007),
maximum entropy classification, long short-term
memory network, and convolutional neural net-
work models (Schuff et al., 2017, i.a.). More re-
cently, the state of the art is the use of transfer
learning from noisy annotations to more specific
predictions (Felbo et al., 2017). Still, it has been
shown that transferring from one domain to another
is challenging, as the way emotions are expressed
varies between areas (Bostan and Klinger, 2018).
The approach by Felbo et al. (2017) is different to
our work as they use a huge noisy data set for pre-
training the model while we use small high quality
data sets instead.

Recently, the state of the art has also been pushed
forward with a set of shared tasks, in which the
participants with top results mostly exploit deep
learning methods for prediction based on pretrained
structures like embeddings or language models
(Klinger et al., 2018; Mohammad et al., 2018; Mo-
hammad and Bravo-Marquez, 2017a).

Our work follows this approach and builds up on
embeddings with deep learning. Furthermore, we
approach the application and adaption of text-based
classifiers to the automotive domain with transfer
learning.

3 Data set Collection

The first contribution of this paper is the construc-
tion of the AMMER data set which we describe in
the following. We focus on the drivers’ interactions
with both a virtual agent as well as a co-driver. To
collect the data in a safe and controlled environ-
ment and to be able to consider a variety of prede-
fined driving situations, the study was conducted
in a driving simulator.



Type Example

D-A, be- Wie geht es dir gerade und wie sind

ginning deine Gedanken zur bevorstehenden
Fahrt? How are you doing right now?
What are your thoughts about the up-
coming drive?
D-A, Bei iiber 50 Teilnehmern hast du die
reaching zweitschnellste Zeit erreicht. Was
destina- glaubst du? Wie hast du es geschafft
tion so schnell zu sein? Among more than
50 participants you achieved the sec-
ond best result. What do you think?
How did you manage to achieve that?
D-A, Du hast im letzten Streckenabschnitt
after ein paar Mal stark gebremst. Was ist
driving  da passiert? In the last section, you
slowed down multiple times. What hap-
pened?
D—Co, Erinnern Sie sich an Ihren letzten
low- Urlaub. Bitte beschreiben Sie, wie
demand dieser Urlaub fiir Sie war? Remember
section  your last vacation. Please describe

how it was.

Table 1: Examples for triggered interactions with
translations to English. (D: Driver, A: Agent, Co:
Co-Driver)

3.1 Study Setup and Design

The study environment consists of a fixed-base driv-
ing simulator running Vires’s VID (Virtual Test
Drive, v2.2.0) simulation software (https://vires.
com/vtd-vires-virtual-test-drive/). The vehicle has
an automatic transmission, a steering wheel and
gas and brake pedals. We collect data from video,
speech and biosignals (Empatica E4 to record heart
rate, electrodermal activity, skin temperature, not
further used in this paper) and questionnaires. Two
RGB cameras are fixed in the vehicle to capture
the drivers face, one at the sun shield above the
drivers seat and one in the middle of the dashboard.
A microphone is placed on the center console. One
experimenter sits next to the driver, the other be-
hind the simulator. The virtual agent accompany-
ing the drive is realized as Wizard-of-Oz prototype
which enables the experimenter to manually trigger
prerecorded voice samples playing trough the in-
car speakers and to bring new content to the center
screen. Figure 1 shows the driving simulator.

The experimental setting is comparable to an
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everyday driving task. Participants are told that
the goal of the study is to evaluate and to improve
an intelligent driving assistant. To increase the
probability of emotions to arise, participants are in-
structed to reach the destination of the route as fast
as possible while following traffic rules and speed
limits. They are informed that the time needed
for the task would be compared to other partici-
pants. The route comprises highways, rural roads,
and city streets. A navigation system with voice
commands and information on the screen keeps the
participants on the predefined track.

To trigger emotion changes in the participant, we
use the following events: (i) a car on the right lane
cutting off to the left lane when participants try to
overtake followed by trucks blocking both lanes
with a slow overtaking maneuver (ii) a skateboarder
who appears unexpectedly on the street and (iii)
participants are praised for reaching the destination
unexpectedly quickly in comparison to previous
participants.

Based on these events, we trigger three inter-
actions (Table 1 provides examples) with the in-
telligent agent (Driver-Agent Interactions, D-A).
Pretending to be aware of the current situation,
e. ., to recognize unusual driving behavior such
as strong braking, the agent asks the driver to ex-
plain his subjective perception of these events in
detail. Additionally, we trigger two more interac-
tions with the intelligent agent at the beginning and
at the end of the drive, where participants are asked
to describe their mood and thoughts regarding the
(upcoming) drive. This results in five interactions
between the driver and the virtual agent.

Furthermore, the co-driver asks three different
questions during sessions with light traffic and low
cognitive demand (Driver-Co-Driver Interactions,
D—Co). These questions are more general and non-
traffic-related and aim at triggering the participants’
memory and fantasy. Participants are asked to de-
scribe their last vacation, their dream house and
their idea of the perfect job. In sum, there are eight
interactions per participant (5 D-A, 3 D—Co).

3.2 Procedure

At the beginning of the study, participants were
welcomed and the upcoming study procedure was
explained. Subsequently, participants signed a con-
sent form and completed a questionnaire to pro-
vide demographic information. After that, the co-
driving experimenter started with the instruction
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Example

Ich glaube, weil ich ziemlich schnell auf Situationen reagieren kann, weil ich eine ziemlich gute Reaktion
habe. Und ich wiirde auch behaupten, dass ich relativ vorausschauend fahre, weil ich schon einiges an
Fahrerfahrung mitbringe. I think because I can respond to situations very quickly because my reaction is
very good. And I would say that I drive foresightful because I have a lot of driving experience.

Letzter Urlaub war im September 2018. Singapur und Bali. War sehr schon. Erholung, andere Kultur,
andere Linder. War sehr gut und ist zu wiederholen. Last vacation was in September 2018. Singapore
and Bali. It was beautiful. Recreation, different culture, different countries. It was very good and needs
repetition.

Zwei bis drei Mal Fahrzeuge, die Kolonne fuhren. Und das letzte Fahrzeug hat, fiir mein Gefiihl, sehr
ruckartig und mit wenig nach hinten zu schauen, die Spur gewechselt und mich dazu gezwungen, dann
doch noch meine Geschwindigkeit zu reduzieren. Two or three times vehicles were driving behind each
other. The last vehicle cut off my lane, in my opinion very quickly and without looking back and forced me
to slow down.

Mir geht es nicht besonders gut. Die Fahrt war sehr stressig. Ich schwitze ziemlich. I’'m not feeling well.
The ride was stressful. I am sweating.

Letzter Urlaub war nicht so gut fiir mich. Obwohl. Naja doch. Der letzte war schon wieder gut. Das war im
Sommer. Da war es nimlich so abartig warm dieses Jahr. Und wir haben bei uns daheim. Also ich komme
ja vom Land. Wir haben bei uns daheim auf dem Land unseren Wohnwagen ausgebaut. Last vacation was
not so good for me. Although. Well, yes. The last one was good. It was in summer. It was very warm this
year. And we have at home. I come from the countryside. We have furnished our mobile home.

Ein Mensch ist iiber die Strale gelaufen und ich habe ihn zuerst nicht gesehen. A human crossed the street
and I haven’t seen him in the first moment.

Ich habe mich immer an die Richtgeschwindigkeit gehalten. Und ja. Ich weil auch nicht. I always followed
the recommended velocity. And, well. I don’t know.

Ja. Nicht viel arbeiten und viel Geld verdienen. Yes. Not working much and earning a lot of money.

Mir geht es gut und ich bin gespannt auf die Fahrt. Ich denke, es macht SpaB. I am fine and I am looking
forward to the ride. I think it will be fun.

Ja, ich erinnere mich an den letzten Urlaub und der war schon, war erholsam und war warm. Yes, I remember
the last vacation. It was nice, recreative and warm.

Es sind Autos von der rechten Spur auf meine Spur gezogen, welche davor deutlich langsamer waren. Cars
were changing into my lane, which were slower before.

Ein Haus, das relativ alleine fiir sich steht. Am besten am Meer und mit einem griinen Garten. Und ja. Viel
Platz fiir sich. A house with space around. In the best case at the sea and with a green garden. And yes. A
lot of space for us.

Table 2: Examples from the collected data set (with translation to English). E: Emotion, IT: interaction
type with agent (A) and with Codriver (C). J: Joy, A: Annoyance, I: Insecurity, B: Boredom, R: Relaxation,
N: No emotion.

in the simulator which was followed by a familiar-
ization drive consisting of highway and city driv-
ing and covering different driving maneuvers such
as tight corners, lane changing and strong brak-
ing. Subsequently, participants started with the
main driving task. The drive had a duration of
20 minutes containing the eight previously men-
tioned speech interactions. After the completion of
the drive, the actual goal of improving automatic
emotional recognition was revealed and a stan-
dard emotional intelligence questionnaire, namely
the TEIQue-SF (Cooper and Petrides, 2010), was
handed to the participants. Finally, a retrospec-
tive interview was conducted, in which participants
were played recordings of their in-car interactions
and asked to give discrete (annoyance, insecurity,
joy, relaxation, boredom, none, following (Dittrich
and Zepf, 2019)) was well as dimensional (valence,
arousal, dominance (Posner et al., 2005) on a 11-
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point scale) emotion ratings for the interactions and
the according situations. We only use the discrete
class annotations in this paper.

3.3 Data Analysis

Overall, 36 participants aged 18 to 64 years
(u=28.89, 0=12.58) completed the experiment.
This leads to 288 interactions, 180 between driver
and the agent and 108 between driver and co-
driver. The emotion self-ratings from the partic-
ipants yielded 90 utterances labeled with joy, 26
with annoyance, 49 with insecurity, 9 with bore-
dom, 111 with relaxation and 3 with no emotion.
One example interaction per interaction type and
emotion is shown in Table 2. For further experi-
ments, we only use joy, annoyance/anger, and in-
security/fear due to the small sample size for bore-
dom and no emotion and under the assumption that
relaxation brings little expressivity.
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Figure 2: Model for Transfer Learning from Text.
Grey boxes contain frozen parameters in the corre-
sponding learning step.

4 Methods

4.1 Emotion Recognition from Facial
Expressions

We preprocess the visual data by extracting the
sequence of images for each interaction from the
point where the agent’s or the co-driver’s question
was completely uttered until the driver’s response
stops. The average length is 16.3 seconds, with
the minimum at 2.2s and the maximum at 54.7s.
We apply an off-the-shelf tool for emotion recogni-
tion (the manufacturer cannot be disclosed due to
licensing restrictions). It delivers frame-by-frame
scores (€ [0;100]) for discrete emotional states of
Jjoy, anger and fear. While joy corresponds directly
to our annotation, we map anger to our label annoy-
ance and fear to our label insecurity. The maximal
average score across all frames constitutes the over-
all classification for the video sequence. Frames
where the software is not able to detect the face are
ignored.

4.2 Emotion Recognition from Audio Signal

We extract the audio signal for the same sequence
as described for facial expressions and apply an
off-the-shelf tool for emotion recognition. The
software delivers single classification scores for a
set of 24 discrete emotions for the entire utterance.
We consider the outputs for the states of joy, anger,
and fear, mapping analogously to our classes as for
facial expressions. Low-confidence predictions are
interpreted as “no emotion”. We accept the emotion
with the highest score as the discrete prediction
otherwise.
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4.3 Emotion Recognition from Transcribed
Utterances

For the emotion recognition from text, we manu-
ally transcribe all utterances of our AMMER study.
To exploit existing and available data sets which
are larger than the AMMER data set, we develop
a transfer learning approach. We use a neural net-
work with an embedding layer (frozen weights, pre-
trained on Common Crawl and Wikipedia (Grave
et al., 2018)), a bidirectional LSTM (Schuster and
Paliwal, 1997), and two dense layers followed by
a soft max output layer. This setup is inspired
by (Andryushechkin et al., 2017). We use a dropout
rate of 0.3 in all layers and optimize with Adam
(Kingma and Ba, 2015) with a learning rate of 107>
(These parameters are the same for all further ex-
periments). We build on top of the Keras library
with the TensorFlow backend. We consider this
setup our baseline model.

We train models on a variety of corpora, namely
the common format published by (Bostan and
Klinger, 2018) of the FigureEight (formally known
as Crowdflower) data set of social media, the
ISEAR data (Scherer and Wallbott, 1994) (self-
reported emotional events), and, the Twitter Emo-
tion Corpus (TEC, weakly annotated Tweets with
#anger, #disgust, #fear, #happy, #sadness, and #sur-
prise, Mohammad (2012)). From all corpora, we
use instances with labels fear, anger, or joy. These
corpora are English, however, we do predictions
on German utterances. Therefore, each corpus is
preprocessed to German with Google Translate!.
We remove URLs, user tags (“@Username”), punc-
tuation and hash signs. The distributions of the
data sets are shown in Table 3.

To adapt models trained on these data, we ap-
ply transfer learning as follows: The model is first
trained until convergence on one out-of-domain
corpus (only on classes fear, joy, anger for com-
patibility reasons). Then, the parameters of the
bi-LSTM layer are frozen and the remaining layers
are further trained on AMMER. This procedure is
illustrated in Figure 2

5 Results

5.1 Facial Expressions and Audio

Table 4 shows the confusion matrices for facial
and audio emotion recognition on our complete
AMMER data set and Table 5 shows the re-

Uhttp://translate.google.com, performed on January 4, 2019



Data set Fear Anger Joy Total
Figure8 8,419 1,419 9,179 19,017
Emolnt 2,252 1,701 1,616 5,569
ISEAR 1,095 1,096 1,094 3,285
TEC 2,782 1,534 8,132 12,448
AMMER 49 26 90 165

Table 3: Class distribution of the used data sets for the considered emotional states (Figure8 (Figure Eight,
2016), Emolnt (Mohammad and Bravo-Marquez, 2017b), ISEAR, (Scherer, 1997), TEC (Mohammad,

2012), AMMER (this paper)).

Vision
5 —
oh s
- E
Insecurity 11 17 21 49
Annoyance 10 7 9 26
Joy 24 27 39 90
Total 45 51 69 165
Audio

5 —
= 1) S
g 2 & 2 &
Insecurity 17 14 1 17 49
Annoyance 12 7 0 7 26
Joy 27 26 4 33 90
Total 56 47 5 57 165

Transfer Learning Text
5 —_
oh s
:Fz g @
Insecurity 33 0 16 49
Annoyance 7 4 15 26
Joy 1 1 88 90
Total 41 5 119 165

Table 4: Confusion Matrix for Face Classification
and Audio Classification (on full AMMER data)
and for transfer learning from text (training set
of Emolnt and test set of AMMER). Insecurity,
annoyance and joy are the gold labels. Fear, anger
and joy are predictions.

sults per class for each method, including facial
and audio data and micro and macro averages.
The classification from facial expressions yields
a macro-averaged F score of 33 % across the three
emotions joy, insecurity, and annoyance (P=0.31,
R=0.35). While the classification results for joy
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are promising (R=43 %, P=57 %), the distinction
of insecurity and annoyance from the other classes
appears to be more challenging.

Regarding the audio signal, we observe a macro
F; score of 29 % (P=42 %, R=22 %). There is a
bias towards negative emotions, which results in a
small number of detected joy predictions (R=4 %).
Insecurity and annoyance are frequently confused.

5.2 Text from Transcribed Utterances

The experimental setting for the evaluation of emo-
tion recognition from text is as follows: We eval-
uate the BiLSTM model in three different exper-
iments: (1) in-domain, (2) out-of-domain and (3)
transfer learning. For all experiments we train on
the classes anger/annoyance, fearlinsecurity and
joy. Table 6 shows all results for the comparison of
these experimental settings.

5.2.1 Experiment 1: In-Domain application

We first set a baseline by validating our models on
established corpora. We train the baseline model on
60 % of each data set listed in Table 3 and evaluate
that model with 40 % of the data from the same do-
main (results shown in the column “In-Domain” in
Table 6). Excluding AMMER, we achieve an aver-
age micro F; of 68 %, with best results of F1=73 %
on TEC. The model trained on our AMMER cor-
pus achieves an F1 score of 57%. This is most
probably due to the small size of this data set and
the class bias towards joy, which makes up more
than half of the data set. These results are mostly
in line with Bostan and Klinger (2018).

5.2.2 Experiment 2: Simple Out-Of-Domain
application

Now we analyze how well the models trained in
Experiment 1 perform when applied to our data set.
The results are shown in column “Simple” in Ta-
ble 6. We observe a clear drop in performance, with



Vision Audio Text (TL)
P R Fy P R Fy P R Fy
Insecurity 24 22 23 31 35 33 80 67 73
Annoyance 14 39 21 15 27 19 80 15 26
Joy 57 43 49 80 4 8 74 98 84
Macro-avg 32 35 33 42 22 29 78 60 68
Micro-avg 34 34 34 26 17 21 76 76 76

Table 5: Performance for classification from vision, audio, and transfer learning from text (training set of

Emolnt).

Out-of-domain

;
5 2 Y9 2
2 & E B
Train Corpus A= % A4 =
Figure8 66 55 59 76
Emolnt 62 48 56 76
TEC 73 55 58 76
ISEAR 70 35 59 72
AMMER 57 — — —

Table 6: Results in micro F; for Experiment 1 (in-
domain), Experiment 2 and 3 (out-of-domain with
and without transfer learning).

an average of F1=48 %. The best performing model
is again the one trained on TEC, en par with the
one trained on the Figure8 data. The model trained
on ISEAR performs second best in Experiment 1,
it performs worst in Experiment 2.

5.2.3 Experiment 3: Transfer Learning
application

To adapt models trained on previously existing data
sets to our particular application, the AMMER cor-
pus, we apply transfer learning. Here, we perform
leave-one-out cross validation. As pre-trained mod-
els we use each model from Experiment 1 and
further optimize with the training subset of each
crossvalidation iteration of AMMER. The results
are shown in the column “Transfer L.” in Table 6.
The confusion matrix is also depicted in Table 4.
With this procedure we achieve an average per-
formance of F;=75 %, being better than the results
from the in-domain Experiment 1. The best per-
formance of F1=76 % is achieved with the model
pre-trained on each data set, except for ISEAR. All
transfer learning models clearly outperform their
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simple out-of-domain counterpart.

To ensure that this performance increase is not
only due to the larger data set, we compare these
results to training the model without transfer on
a corpus consisting of each corpus together with
AMMER (again, in leave-one-out crossvalidation).
These results are depicted in column “Joint C.”.
Thus, both settings, “transfer learning” and “‘joint
corpus’” have access to the same information.

The results show an increase in performance in
contrast to not using AMMER for training, how-
ever, the transfer approach based on partial retrain-
ing the model shows a clear improvement for all
models (by 7pp for Figure8, 10pp for Emolnt, 8pp
for TEC, 13pp for ISEAR) compared to the ”Joint”
setup.

6 Summary & Future Work

We described the creation of the multimodal AM-
MER data with emotional speech interactions be-
tween a driver and both a virtual agent and a co-
driver. We analyzed the modalities of facial expres-
sions, acoustics, and transcribed utterances regard-
ing their potential for emotion recognition during
in-car speech interactions. We applied off-the-shelf
emotion recognition tools for facial expressions and
acoustics. For transcribed text, we developed a neu-
ral network-based classifier with transfer learning
exploiting existing annotated corpora. We find that
analyzing transcribed utterances is most promising
for classification of the three emotional states of
joy, annoyance and insecurity.

Our results for facial expressions indicate that
there is potential for the classification of joy, how-
ever, the states of annoyance and insecurity are
not well recognized. Future work needs to investi-
gate more sophisticated approaches to map frame
predictions to sequence predictions. Furthermore,
movements of the mouth region during speech inter-



actions might negatively influence the classification
from facial expressions. Therefore, the question
remains how facial expressions can best contribute
to multimodal detection in speech interactions.

Regarding the classification from the acoustic
signal, the application of off-the-shelf classifiers
without further adjustments seems to be challeng-
ing. We find a strong bias towards negative emo-
tional states for our experimental setting. For in-
stance, the personalization of the recognition al-
gorithm (e. g., mean and standard deviation nor-
malization) could help to adapt the classification
for specific speakers and thus to reduce this bias.
Further, the acoustic environment in the vehicle
interior has special properties and the recognition
software might need further adaptations.

Our transfer learning-based text classifier shows
considerably better results. This is a substantial
result in its own, as only one previous method
for transfer learning in emotion recognition has
been proposed, in which a sentiment/emotion spe-
cific source for labels in pre-training has been used,
to the best of our knowledge (Felbo et al., 2017).
Other applications of transfer learning from gen-
eral language models include (Rozental et al., 2018;
Chronopoulou et al., 2018, i.a.). Our approach is
substantially different, not being trained on a huge
amount of noisy data, but on smaller out-of-domain
sets of higher quality. This result suggests that
emotion classification systems which work across
domains can be developed with reasonable effort.

For a productive application of emotion detec-
tion in the context of speech events we conclude
that a deployed system might perform best with a
speech-to-text module followed by an analysis of
the text. Further, in this work, we did not explore
an ensemble model or the interaction of different
modalities. Thus, future work should investigate
the fusion of multiple modalities in a single classi-
fier.
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Abstract

A tool that enables the use of active learn-
ing, as well as the incorporation of word
embeddings, was evaluated for its abil-
ity to decrease the training data set size
required for a named entity recognition
model. Uncertainty-based active learning
and the use of word embeddings led to very
large performance improvements on small
data sets for the entity categories PERSON
and LOCATION. In contrast, the embedding
features used were shown to be unsuitable
for detecting entities belonging to the OR-
GANISATION category. The tool was also
extended with functionality for visualising
the usefulness of the active learning process
and of the word embeddings used. The vi-
sualisations provided were able to indicate
the performance differences between the
entities, as well as differences with regards
to usefulness of the embedding features.

1 Introduction

To acquire large training data sets by the use of
low-cost crowdsourcing is not a universal solution
for all annotation tasks. The ethical aspect could
be one concern, as the concept of low-cost crowd
annotations implies low-paid annotators (Martin
et al.,, 2017). Other obstacles might be data pri-
vacy restrictions (e.g., when annotating clinical
health records), or a lack of specialised competence
among crowd workers, e.g., competence in the an-
notation task or in a specific language. Strategies
for facilitating annotation are therefore important,
also in the age of crowdsourcing.

A possible strategy for facilitating annotation is
to minimise the amount of manually annotated data
required, e.g., data required for the task of training
a machine learning model. This could be achieved
by (i) using active learning to actively select train-
ing samples useful to the model and (ii) training
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the model on information that has been derived in
an unsupervised fashion. There is a large body of
research that has shown the effectiveness of using
each one of these strategies individually, and there
are also annotation tools/annotation tool extensions
that incorporate these two strategies (Skeppstedt et
al., 2016; Kucher et al., 2017). However, to the best
of our knowledge, there are no studies that evaluate
the effectiveness of this combined data reducing
strategy provided by the tools. The first aim of
this study is therefore to evaluate the effectiveness
of one such tool, i.e., to evaluate whether using
the tool leads to the expected decrease in data size
required to train a machine learning model.

Also the annotation of a smaller data set can
however be a time-consuming, and potentially bor-
ing, task. Gamification of the task is one previously
explored strategy for solving this problem (Dumi-
trache et al., 2013; Venhuizen et al., 2013).

Another potential strategy for increasing the in-
trinsic motivation for the annotation task, is to
make the annotator aware of the usefulness of the
data that is being annotated. The second aim of
this study is to take a first step towards exploring
this strategy in the context of an active learning
process. We aim to provide a suggestion for a vi-
sualisation of how the increasingly larger training
data set, which results from the manual annotation
effort, changes the model that is trained on this
annotated data set. That is, a visualisation that has
the potential to increase the human understanding
of the active learning-based annotation process.

2 Background

The tool whose performance we have evaluated,
and whose active learning process we have visu-
alised, is the tool “PAL — a tool for Pre-annotation
and Active Learning” (Skeppstedt et al., 2016).
PAL is meant to be used as an extension to an-
other annotation tool, e.g., BRAT (Stenetorp et al.,
2012), for annotating data to be used for training
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a named entity recognition (NER) model. While
high performance is often reported for the NER
task, e.g., for newswire texts (Sang and Meulder,
2003), the task is more difficult for noisy texts
and when small training data sets are used. For in-
stance, the best system on the ACL 2015 Workshop
on Noisy User-generated Text achieved an F-score
of 0.74 for PERSON, 0.50 for COMPANY, and 0.66
for GEO-LOCATION when using a training set of
2,950 tweets (Baldwin et al., 2015; Yamada et al.,
2015).

PAL provides functionality for active data se-
lection, as well as for incorporating unsupervised
data in the form of word embeddings when training
the models that are used for active data selection.
The tool also offers annotation support in the form
of pre-annotations. This is achieved by repeatedly
retraining a NER model on the data that the anno-
tator produces in BRAT and on information incor-
porated from word embeddings. The trained model
can then be used for two purposes: (i) to actively
import new annotation data into BRAT, i.e., to ac-
tively select data useful for improving the model,
and (ii) to simplify the annotation by providing the
annotator with pre-annotations in BRAT format.
To allow the annotator to add, delete or change
the span length of pre-annotated entities — instead
of annotating from scratch — has been shown to
reduce annotation time (Lingren et al., 2014).

PAL could, for instance, be used according to
the annotation process suggested by Olsson (2008).
That is, to first annotate an actively selected sub-
set of a corpus to achieve a model that can per-
form pre-annotations with acceptable accuracy, and
thereafter use this model for providing the anno-
tator with pre-annotations when a larger corpus
is annotated. Such a corpus might, for instance,
be used for training a model that requires a large
training data set to perform well. The current study
focuses on the first part of such a use case, that is on
the process of actively selecting training samples
to achieve a model that recognises named entities
with acceptable performance.

2.1 Approaches for minimising training data

To use active learning, instead of a random sam-
pling of training data, has led to a reduction of the
number of samples needed to train classifiers to
recognise different entity types (Shen et al., 2004;
Tomanek et al., 2007). The technique builds on
the following idea: Data samples estimated to be
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useful to a machine learning model are actively se-
lected from a pool of unlabelled data. The selected
samples are presented to an annotator for manual
annotation, and the newly annotated data is then
added to the set of labelled data that is available
for training the model. This expanded training data
set is then used to retrain the model, which in turn
is applied in the next iteration in the process of
actively selecting data. The estimate of a sample’s
usefulness can, for instance, be based on the level
of disagreement among different classifiers (Ols-
son, 2008, pp. 25-29), or on properties specific to
the type of model used, e.g., a confidence measure
provided by the model (Settles, 2009).

The other technique included in PAL for reduc-
ing the training data size is to incorporate features
gathered in an unsupervised fashion, through the
use of text distributional properties of word types.
There is a large body of research that shows this
technique to be effective for named entity recogni-
tion, e.g., the use of features in the form of Brown
clusters (Miller et al., 2004) and more recently in
the form of different types of word vectors automat-
ically derived from large corpora (Sahlgren, 2006;
Mikolov et al., 2013). Word vectors have for in-
stance been incorporated in the feature set when
using conditional random fields classifiers (Turian
et al., 2010; Guo et al., 2014; Henriksson, 2015;
Copara et al., 2016), or used as input to different
types of neural network-based classifiers (Godin et
al., 2015; dos Santos and Guimaraes, 2015; Yang
et al., 2016; Lample et al., 2016; Reimers and
Gurevych, 2017). There is, however, less research
that investigates the effects of using the two strate-
gies of unsupervised features and active learning
in tandem; in particular their effects on small data
sets, i.e., the use case that we explore here.

2.2 Functionality of PAL

Each iteration in PAL is run in two steps. First,
data positioned in PAL’s “folder for labelled data”
is used for training a machine learning model;
a model which is then used for selecting new
data samples from PAL’s “folder for unlabelled
data.” The model also provides BRAT-format pre-
annotations for the selected data, enabling it to
be directly imported into BRAT (Figure 3b). In
the second step, which takes place after the data
has been manually annotated, the data annotated
in BRAT is moved into PAL’s “folder for labelled
data”, to enable the next active learning iteration.



A basic feature vector for training the model, x;,,
is constructed through representing each token by
a concatenation of (i) the one-hot encoding for the
token with (ii) the one-hot encoding for a config-
urable number of neighbours to the token.

The functionality of incorporating features de-
rived in an unsupervised fashion is provided in PAL
through an extension of the basic vector by a vector
derived from pre-trained word embeddings. This is
achieved by concatenating the basic feature vector
with the word embedding vector that represents the
token, as well as with the word embedding vectors
that represent the neighbours of the token.

Information from gazetteers or information on
which words were capitalised were not included in
the feature set, to focus the experiment on the ef-
fects of the different strategies compared. This also
makes the results somewhat more generalisable,
e.g., to entity types that are not typically capitalised
or for which gazetteers do not typically exist, or to
languages that do not use an initial capital letter as
a signal for names.

With the focus on making the data selection and
model training process as comprehensible as pos-
sible for a human, we used the main classification
method included in PAL, which is a token-level
logistic regression classifier. That is, a classifier
for which a human-interpretable confidence mea-
sure can be returned for each token in the pool of
unlabelled data. The output of this unstructured
predictor, is then post-processed into B/I-labels for
tokens classified as an entity.

The confidence is then used for carrying out un-
certainty sampling from the pool of unlabelled data
(Settles, 2009). More specifically, the measure used
is the difference in certainty level between the two
most probable classifications for each of the tokens
in the data pool. Given c;; as the most probable
classification and c; as the second most probable
classification for the observation x;,, the uncertainty
measure would be:

M, = P(cpi|xn) — P(cpa|xn) (D

The smaller M,,, the higher is the uncertainty of the
classifier and the higher is the sample ranked in the
active selection process (Schein and Ungar, 2007).

PAL represents each training sample by the low-
est M among the tokens it includes. For each
iteration in the active selection process, samples
that contain tokens with the lowest M-values are
thereby selected. To achieve a variation among the
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samples selected, PAL also imposes the constraint
of not allowing the selected texts to include the
same word twice, if this word is predicted by the
model to be included in a named entity.

PAL accesses embeddings through Gensim
(ﬁehﬁfck and Sojka, 2010) and uses Scikit-learn’s
(Pedregosa et al., 2011) logistic regression clas-
sifier with a regularisation strength determined
through cross-fold validation.

3 Method

The evaluation of PAL was carried out using the
Broad Twitter Corpus (Derczynski et al., 2016),
which consists of English tweets annotated for the
three entities PERSON, LOCATION, and ORGANI-
SATION. The corpus is sampled across different
regions, temporal periods, and from different types
of Twitter users, to ensure a large diversity of the
entities included. Each of the three entity types was
annotated separately.

We removed metadata in the form of hashtags
and usernames starting with @, to make the task
more similar to most previous NER tasks, where
entities are mentioned in a textual context. The
corpus is divided into six segments, each of them
with a different signifying property, e.g., tweets
from popular individuals, tweets from mainstream
news, or tweets focused on one specific event. For
performing the experiments we, however, sampled
randomly from the corpus (as described below),
without taking this structure into account.

3.1 Simulation of active learning

The active learning process in PAL was used in
simulated mode as follows: the machine learning
model was first trained on a small labelled data set
consisting of 200 randomly selected tweets, i.e., a
set representing an initial seed set. The task of the
active learning algorithm would then be to select
the most informative data points from the pool of
unlabelled data. In the experiment, the “pool of
unlabelled data” was simulated by the texts from
the pre-labelled tweets in the Broad Twitter Corpus,
and the corpus labels were used to simulate input
in the form of manual annotations performed by
the annotator.

For the experiment performed, we selected 20
tweets in each iteration. These 20 tweets and their
corresponding labels were thus added to the set of
labelled data, to simulate the process of them being
manually annotated. The model was, thereafter,



retrained, and a new iteration in the process of
actively selecting tweets was then carried out, until
the set of labelled data contained 1,000 tweets.

A context window of the two most immediate
neighbours was used, with a frequency cut-off of
three occurrences for a neighbour to be included.
Word embeddings from a word2vec skip-gram
model, which had been pre-trained by Godin et
al. (2015) on 400 million tweets, were used as un-
supervised features.

3.2 Evaluating the active learning simulation

The strategies used in PAL for decreasing the train-
ing data size required were compared to a baseline
strategy. A total of four different strategies were
thus evaluated for their performance on a small
training data set: (i) the baseline, with random data
selection and a basic feature vector, (ii) data selec-
tion through active learning and the basic feature
vector, (iii) random data selection and the feature
vector extended with word2vec features, and finally
(iv) data selection through active learning and the
feature vector extended with word2vec features.

4,000 tweets were randomly selected from the
Broad Twitter Corpus to simulate the pool of unla-
belled data, and 2,000 other tweets were randomly
selected to be used as evaluation data. From the
simulated pool of data were then 200 tweets ran-
domly selected to form the seed set.

Starting with this seed set, an evaluation was
carried out of the four different strategies investi-
gated. For one of the active learning strategies, the
basic feature vector was used, and for the other, the
word2vec extension. For every step in the itera-
tion, the performance of the model was evaluated
against the 2,000 tweets that formed the evaluation
data, i.e., after 20 new training data samples had
been actively added to the training data set.

For the two strategies that did not include ac-
tive learning, each iteration instead consisted of a
random selection of 20 new tweets from the simu-
lated data pool. A new model was trained on data
including these newly selected tweets, and then
evaluated against the 2,000 tweets in the evaluation
set. The same randomly selected data sets were
used both for the setting with word2vec features
and the setting without these features.

As results of the study were heavily dependent
on the random selection of a number of small data
sets, it was particularly important to make sure that
results achieved were not due to chance. The entire
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experiment was therefore repeated 10 times, each
time with a new random selection of data pool,
evaluation and seed set, as well as training data
for the strategies not using active data selection. A
separate experiment was carried out for each one of
the three entity types LOCATION, ORGANISATION
and PERSON, i.e., matching the manner in which
the evaluation corpus had been annotated. Entities
were represented by the BIO-encoding, and the
classifications were evaluated using the CoNLL
2000 NER script (Tjong Kim Sang and Buchholz,
2000).

Person

Location Organisation

Active,
Word2Vec

Random,
Word2Vec

Active
Random

0.6

0.5 A

0.4

F-score

0.3 A

0.2

0.1 A

0.0 T — T — | T T
200 500 800200 500 800200 500 800

Training data size

Figure 1: Average F-score for the ten experiment re-
runs. The error bars show the interval between the min-
imum and maximum of the F-scores measured, and the
x-axes show the number of training samples.

3.3 Visualising the active learning process

We extended PAL by enabling it to record statistics
for the pool of unlabelled data for each iteration
of active data selection. We also extended the tool
by adding a command which allows the user to
generate a visualisation of this recorded data. The
visualisation aimed to increase the human under-
standing of the active learning and classifier train-
ing by (i) showing why a particular set of samples
are chosen for manual annotation in each iteration,
(i1) showing an indication of the usefulness of the
embedding features used, through visualising how
clusters formed by the embeddings correspond to
the entity categories investigated, and (iii) showing
how the classification uncertainty for the pool of
unlabelled data changes when more data is anno-
tated and used for training the model.



Loc model trained on 500 samples h Loc model trained on 1000 samples

a R . b . .
Location, 500 training samples Classification uncertainty for the Location, 1,000 training samples Classification uncertainty for the
most uncertain tokens in data pool: most uncertain tokens in data pool:

O

1:100% road i 1:100%

—— —
2:100% —— osborne H 2:99%  —— i mt
3:100% — st . 3:98%  e—— canada
. 4:99%  e—— memorial ) N s 4:97%  —— council
4 5:99%  e— 3 <l 5:95%  e—— wa
o 6:99%  ——— limbo 2O 6:95%  —— airways
7 7:09%  e— lax : ) : s 7:04%  w— ) munich
S 8:99%  — israel ¥ KX - 8:94%  — anfield
-4 9:99%  ——— ontario L S 9:94%  e—— i
b 10:99%  ——— cambridge . N 10: 93%  e— joan
11:99% ee—— der 2 ° ¥ 11: 93% e—— cdn
12: 99% ———— derry o L 12:91% e——— maidstone
13:99%  e—— houston v 13:91% e—— Ima
4:99% ee—— eas 3 » € 14:90% ee—— s
%  — {orkshire : — 1945
%  — 0 o8 : — 2012
%  — me. — 2015
%  — bullion — 90210
19:98% — at nonpr — aaaaaaaagge
20: 98% e——— eu — ) mysterior
Data pool 5% mean uncertainty left i X Data pool: 4% mean uncertainty left
Training set: [N 43% incorrect classifications N ¥ 6 (n Training set: [N 48% incorrect classifications
Red: Tokens classified as Loc = e Red: Tokens classified as Loc
Blue: Other tokens. Blue: Other tokens.
0Org model trained on 500 samples d Org model trained on 1000 samples
Classification uncertainty for the Orgamsatlon, 1,000 training Samples Classification uncertainty for the
most uncertain tokens in data pool: most uncertain tokens in data pool:
1:100% ——— tosca 1:100% e—— our
2:100% e—— s 2:100%  ee— voters
3:100% —— manitoba 3: — town
4:100% —— labour 4: — canada
5:100% — international 5: — sd
6:100% —— college 6 — dartford
7:100% e—— clan 7: — meter
8:100% e—— of 8: — mill
9:99%  e— miliband o8 9: — isis
: — senate : — e.) australian
1 — bus 2 — ukraine
— darwin TR A L e — patriot
13:99% e—— iphone R § 35 LT — abortion
14:99% — orces AR s I 23 — isis
15:99% ee—— police Y - - S — gaming
16:99%  n—— nigerian — chiefs
17:99% e— devils — kremlin
18:99% ee—— — O troi
10:90% —e— liverpool 19:98%  — new
20:99% ee———— investigation 20: 98% —— npr
Data pool 6% mean uncertainty left 2 Data pool: 6% mean uncertainty left
Training set: MM 72% incorrect classifications L Ciaa Training set: M 71% incorrect classifications
Red: Tokens classified as Org e % Red: Tokens classified as Org
Blue: Other tokens. . Blue: Other tokens.
Per model trained on 500 samples f Per model trained on 1000 samples
Classification uncertainty for the P Classification uncertainty for the
most uncertain tokens in data pool: Person, 1,000 training samples most uncertain tokens in data pool:
1:100% —— balotelli 1:100% ee— loulou
— malik 2:99%  e—— Jjack
— nana 20 3:98%  ee—— oore
. — 's q 3 4:95%  e— florence
16 — hasan 5:95%  e——— bbo
" — bmth 6:93%  ——— barton
: i — ottawa 7:93%  e—— najib
LAl — official_flo 8:93%  —— ms
' —_— rofhelenstor . 9:92%  —— dit
— ouchard 10: 90%  — suarez
— ferguson & ., ¥ 11: 90% e—— gavin
— joddard B 15 ° ? . oy 12:89% e— tds
— thomson 2 K N 13:89% ee—— trudeau
— princess TR 12 - Y 14:88% e— Jjake
. — . TNl . 15: 88% e—— good
3 — psni o 3 : . . 16: 87% —— ruby
P — miliband 3 T Sa & 17:87% e— katy
- — ]Iﬁpa . 10, 18: 86% —— 's
: — thanks T ) 19:85% —— 1
is 20: 99% T— mira 4 . d 20:85% — bill
4 Data pool 4% mean uncertainty left Data pool: 3% mean uncertainty left
i Training set 33% incorrect classifications Training set 28% incorrect classifications.
o Red: Tokens classified as Per T . Red: Tokens classified as Per
Blue: Other tokens. . Blue: Other tokens.

Figure 2: (a-f) Six subplots, two for each of the three entity categories. (g) The left-hand column: The model’s
uncertainty for classifying tokens in the pool of unlabelled data when 500 samples have been removed from the
pool, labelled, and then used as training data for the model. (h) The right-hand column: Same as g, but with a
training data size of 7,000 samples. (i) A t-SNE plot is displayed to the left in each of the six subplots, showing
word embeddings that correspond to words included in the pool of unlabelled data. Words that occur in similar con-
texts are positioned close to each other in the plot. (j) The 20 most uncertain tokens in the pool of unlabelled data,
together with a bar chart showing their level of uncertainty, is displayed to the right in each subplot. That is, the 20
tokens for which the machine learning model, trained on the set of labelled data available, is most uncertain. (The
two closest neighbouring tokens are shown in parenthesis.) (k-I) The colour red is used for signifying that a token
has been classified by the model as belonging to the entity category in question (i.e., classified as a LOCATION,
ORGANISATION or PERSON entity). (m-n) The colour blue is used for signifying that a token is not classified as
belonging to the entity category in question. (0-p) The t-SNE plot and the bar chart use the same colour-coding for
signifying the output of the machine learning model. The larger the uncertainty with which a token is classified by
the model, the darker (i.e., closer to black) is the red or blue in which it is displayed. (q) In contrast, tokens that
the model classifies with a low uncertainty are displayed in a bright colour with low saturation. (r) The numbers
can be used for locating the position in the t-SNE plot for those among the most uncertain tokens that occurred at
least twice in the pool of unlabelled data. (s) Bar chart indicating mean model uncertainty for all words left in the
pool of unlabelled data. (t) Bar chart indicating the proportion of incorrectly classified tokens when conducting
cross-fold validation on the training set.

The advantage of applying the functionality in ~ based on their most uncertain token, is that the se-
PAL that uses a token-level, logistic regression clas-  lection process is easily explainable. That is, the
sifier for the data selection, and that selects samples  first of the visualisation goals can be met by con-
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veying a list of these tokens, for which the model
was most uncertain, together with the model’s clas-
sification uncertainty for these tokens.

The second visualisation goal can be met by plot-
ting a t-distributed stochastic neighbour embedding
plot, t-SNE (van der Maaten and Hinton, 2008), of
the word embeddings that were used as features.
Plotted word embeddings can then be colour-coded
according to how the word which they represent
most often is classified. Thereby, a comparison
between classifications by the trained model and
clusters of word embeddings, as shown by the t-
SNE plot, can be carried out.

To show the classification uncertainty of the
most uncertain tokens also helps meeting the third
visualisation goal. That is, changes in uncertainty
for these most uncertain tokens indicate changes
in model performance when the training data size
increases. In addition, the colour-coding of the t-
SNE plot can also be used for indicating whether
the classification uncertainty for the tokens in the
pool of unlabelled data changes when more data is
labelled and used as training data.

3.4 Visualisations for another corpus

To verify that the visualisation also functions on an-
other corpus than the English corpus that we used
during development and for simulation of the pro-
cess, we performed a small annotation experiment
on a corpus of Japanese microblogs.!

As white space is not normally used in Japanese
text, we first performed a pre-processing using
the MeCab tool (Kudo, 2006). That is, the text
segments generated by MeCab was used, and
white space was inserted between these segments.
Thereby, the white space-based tokenisation in-
cluded in Scikit-learn could be used as-is. As un-
supervised features, we used word embedding vec-
tors from a word2vec model that had been trained
on Japanese texts, which had been segmented by
MeCab and merged with the help of a dictionary?.

For this corpus, we did not perform a simulation,
but instead applied PAL for the authentic use case
of annotating raw text data. That is, we used the
facilities of active learning and pre-annotation that
are available in PAL for annotating text, and gen-

Thttp://www.cs.cmu.edu/ lingwang/microtopia/#twittergold
Microblogs collected with the criterium that they should
contain the same content written in Japanese and in English
(Ling et al., 2014), from which we used the Japanese parts.

Zhttps://github.com/shiroyagicorp/
japanese-word2vec-model-builder
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erated a visualisation after each iteration. We im-
ported the pre-annotations generated by PAL into
the BRAT annotation tool, as shown in Figure 3, to
modify or delete incorrect annotations and to add
omitted ones. We used annotation guidelines for
entity detection and tracking (EDT)3.

4 Results

Evaluation results in the form of an F-score mea-
surement when evaluating against an external evalu-
ation set are shown in Figure 1, while Figures 2 and
3 show the output of the proposed visualisations
for the active learning process.

4.1 Evaluation results

The main lines in Figure 1 show the average F-
scores for the ten re-runs for each training data size
included in the experiment. The error bars show
the minimum and maximum F-scores for the ten
re-runs, i.e., giving an indication of the variation in
the results achieved.

For the entity categories LOCATION and PER-
SON, average F-scores for the four different strate-
gies produce four well-separated lines. Results are
often separated, or close to separated, also when
taking the lowest/highest value measured for the
ten folds into account. Active data selection gives
better results than random selection, and incorporat-
ing unsupervised features gives better results than
not using them. The incorporation of unsupervised
features is a more useful strategy than active data
selection, and, more importantly, combining the
two strategies is the overall most useful method.

Figure 1 further shows that while active learning
was useful also for the category ORGANISATION,
the use of word embeddings instead had a small
negative impact on this category for a data set con-
taining more than 600 samples.

4.2 Visualisation output

The visualisation functionality, with which we ex-
tended the PAL tool in this study, provides one
visualisation of the unlabelled data pool for each
iteration in the active learning process. The left-
hand column in Figure 2 shows three visualisations,
one for each of the three entity categories investi-
gated. Each of them was generated in an active
learning iteration when the training data set con-
tained 500 samples. The right-hand column in the

3www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/
english-edt-v4.2.6.pdf



figure shows visualisations for the three categories,
that instead were generated when the training data
set contained 1,000 data samples. All six subplots
visualise the state of the pool when using active
learning and the word2vec features.

Each subplot shows the state of the pool of un-
labelled data. That is, each subplot contains an
uncertainty colour-coded t-SNE visualisation of
word embeddings that correspond to tokens present
in the data pool, as well as a bar chart display-
ing the classification uncertainty for the 20 most
uncertain tokens in the pool. Red colours in the
t-SNE plot and the bar chart signify tokens that the
model, trained on the currently available labelled
data, classifies as belonging to the entity category
in question, whereas blue colours indicate that this
model classifies the token as outside of an entity.
Darker colours in the t-SNE plot and the bar chart
signify higher uncertainty for the classification.

In particular, the colours and lengths of the bars
for PERSON and LOCATION show that there is a
higher uncertainty for a model trained on 500 data
samples than for a model trained on 1,000 samples.
Also the colour coding of the t-SNE plot gives a
slight indication of this difference in uncertainty.
In contrast, for the ORGANISATION entity, there
is a large uncertainty also for a training data set
containing 1,000 samples. The bars that indicate
mean uncertainty left in the data pool corroborate
this difference.

The visualised differences in model uncertainty
for different entities correspond to differences
found in the evaluations against the gold standard,
as shown in Figure 1. That is, the model trained
to recognise ORGANISATION, which is visualised
as uncertain, still yields a very low F-score when
trained on 1,000 training samples. Similarly, that
better results were achieved for PERSON and LO-
CATION when evaluating against the gold standard,
is reflected by a visualisation that indicates a lower
uncertainty for models trained on 1,000 training
samples to detect these entity categories.

Conversely, the percentage of incorrect classifi-
cations increases when the training data set for the
entity LOCATION increases. Thereby, the standard
measurement, in the form of incorrect classifica-
tions when performing a cross-validation on the
labelled data, fails to indicate changes in model
performance.*

4This measure is equivalent to inverse accuracy. Inverse
accuracy is used to match the uncertainty measure used, i.e.,
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The spatial information in the t-SNE plot of word
embeddings correspond well to differences with
regards to the usefulness of embedding features
between the three entity categories evaluated. That
is, tokens classified as belonging to the categories
PERSON and LOCATION, for which word embed-
dings were useful, are shown as clusters of red dots
in the t-SNE plots. In contrast, tokens classified
as belonging to ORGANISATION, for which word
embeddings were shown not to be useful, mainly
occur as scattered dots in the plot.

The output of experiments on the Japanese data,
for a model trained on 138 manually labelled mi-
croblogs, is shown in Figure 3. Figure 3a visualises
the state of the pool with regards to the LOCATION
category, and Figure 3b shows pre-annotations re-
sulting from this model.’

LOC model trained on 138 samples

a Classification uncertainty for the
most uncertain tokens in data pool:
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Figure 3: (a) The state for the LOCATION entity in the
pool of unlabelled data, when the NER model has been
trained on 138 manually labelled Japanese microblogs.
Two potential entity clusters are shown in the t-SNE
plot (close to 8, Turkey, and 20, Hokkaido). Which
iteration is shown can be changed through the slider
provided. (b) Pre-annotations for two samples selected
for manual annotation, as they contain the two most
uncertain tokens in the data pool, i.e., the tokens shown
as the first two elements in the list of uncertain tokens.

the aim for both should be to reach 0%.

5The code for PAL, as well as for the experiments re-
ported here, can be found at: https://github.com/mariask2/
PAL- A-tool-for-Pre-annotation-and- Active-Learning. There,
a link can also be found to a video showing how the state of
the pool changes with an increasing training data size.



5 Discussion

Results for the LOCATION and PERSON entities
yield that the combined functionality of active
learning and incorporation of unsupervised features
has the potential to lead to large increases in re-
sults on small data sets. This, in turn, shows that
these techniques form useful components for the
use case on which we focused here, i.e., to achieve
models that can give acceptable performance on
small data sets and that can be applied for provid-
ing pre-annotations when annotating larger data
sets.

The categories LOCATION and PERSON seem
to be relatively coherent in terms of the contexts
in which they occur, as shown by the large model
performance increases achieved when word em-
bedding features were incorporated. In contrast,
that slightly better results were achieved for OR-
GANISATION without word embedding features,
indicates that entities belonging to this category
occur in semantically diverse contexts.

These differences in context coherence between
different entity categories were also shown by the t-
SNE plot functionality, which we provided to meet
one of the visualisation goals of the PAL tool exten-
sion of this study, i.e., the goal of showing whether
the word embeddings used as features formed clus-
ters corresponding to manually annotated entity
categories. Thereby, the annotator is provided with
a possibility to estimate the effect of these word
embedding features in the active learning process.

The t-SNE plot and the bar charts of the extended
version of the PAL tool also meet the visualisation
goals of showing why a particular set of samples
were chosen for annotation, and of showing how
the increased size of the training data set affects the
performance of the trained model. An increased
training data size led to that two of the classifiers
achieved an F-score that might be high enough
to be acceptable for pre-annotation, while the F-
score remained low for the ORGANISATION cate-
gory, also when the data size was increased. These
differences were reflected in the visualisations of
the effects of the increased training data size.

We believe that visualisations that aim to in-
crease the human understanding of the active learn-
ing process and of the features used, and that show
how the state of the data pool changes as more
data is manually annotated, have the potential to
increase the intrinsic motivation for the annota-
tion task. Future work will therefore include user
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studies to determine how annotators perceive these
visualisations that were added to the PAL tool, and
how the visualisations affect the motivation for the
annotation work. Such user studies should also in-
clude investigations of how the performance level
of the machine learning model correlates with the
perceived usefulness of the pre-annotations pro-
vided by the model.

6 Conclusion

We evaluated the ability of the PAL tool to reduce
the training data size required through the use of
active selection of data and through the incorpora-
tion of unsupervised features in the form of word
embeddings. Results achieved for the categories
LOCATION and PERSON showed that the combined
functionality of active learning and incorporation of
word embeddings has the potential to lead to large
increases in results on small data sets. In contrast,
word embeddings did not lead to any improvements
in the performance for detecting the ORGANISA-
TION entity, and low F-scores were achieved for
this entity category, also when 1,000 samples were
used for training the model.

The PAL tool was also extended with visualisa-
tion functionality, with the aim of increasing the
human understanding of the active learning pro-
cess and of the features used. The visualisations
provided were able to indicate performance differ-
ences between the entities, as well as differences
with regards to the usefulness of the embedding
features. That is, the same differences that were
shown in the formal evaluations against the gold
standard annotations.

We hope that this study will inspire annotation
projects to facilitate the annotation process by prac-
tically applying the methods that we have evaluated
here. In particular, we hope that the application of
PAL, and other tools that provide annotation sup-
port, will lead to that more annotation projects are
being conducted on corpora for which crowdsourc-
ing is not appropriate. For instance, corpora for
specialised domains or smaller languages.
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Abstract

In this work, we propose the Image
Captioning-Retrieval (ICR) problem that
states the objective of language genera-
tion as information exchange. To solve
the ICR problem, we design and imple-
ment an end-to-end neural network archi-
tecture that describes the content of im-
ages in natural language, and retrieves them
solely based on these generated descrip-
tions. The main goal is to be able to gen-
erate information-maximizing natural lan-
guage messages. We experimentally show
a strong increase in message information
content while losing some grammatical cor-
rectness in the generated descriptions in a
semi-supervised setting where caption gen-
eration is trained towards retrieval quality.

1 Introduction

Human thinking and reasoning are deeply con-
nected to words and language. Turing (1950) fa-
mously defined the ability to hold a complex con-
versation as artificial intelligence. While this no-
tion is debated (Searle, 1980), it is widely accepted
that it is language that makes us human. An artifi-
cial system capable of producing human language
will be received by us as human-like.

Current conversational and language produc-
ing systems can broadly be categorized into three
classes: rule-based systems, supervised learning
systems, and Reinforcement Learning (RL) mod-
els. Rule-based systems produce outputs by a set
of conditionals and rules of varying complexity.
This approach works well for expert systems and
the understanding of simple commands. Due to
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the predictability and traceability, rule-based lan-
guage systems dominate commercial applications.
Supervised learning systems apply supervised opti-
mization strategies to predict appropriate language
outputs for given inputs (Vinyals and Le, 2015).
A prerequisite is a corpus of conversational train-
ing examples containing input sentences and cor-
responding output sentences. RL-based conversa-
tional systems (English and Heeman, 2005; Li et
al., 2016) seek to learn a dialog policy that guides
how the artificial agent should follow when inter-
acting with a user.

While current state-of-the-art systems are ar-
guably able to produce language that seems human-
like, their objective is stated as mere production
of well-sounding sentences. However, production
of grammatically correct sentences as an end goal
falls short of the motivation humans have for lan-
guage production, namely the exchange of infor-
mation (Kirby, 2007). In Mathur and Singh (2018)
it is noted that especially sequence-to-sequence
models cannot solve the language modelling prob-
lem, since “the objective function that is being
optimized does not capture the actual objective
achieved through human communication, which is
typically longer term and based on exchange of
information rather than next step prediction”. The
main driver of a conversational system should not
be the direct production of sentences in a human-
readable language, but the optimal amount of infor-
mation exchange between agents (Steels, 2015).

In this work, we examine language generation
through an alternative objective of maximum infor-
mation exchange. We propose to train a language
production system directly with the motivation of
maximizing information content, rather than using
language modelling objectives. To achieve this,
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Figure 1: The Image Captioning-Retrieval (ICR) problem simulates a natural language message passed
from one agent to another, and is composed of Image Captioning (IC) and Natural Language Image Search

(NLIS).

we propose the Image Captioning-Retrieval (ICR)
problem. The ICR problem simulates a message
passed from one agent to another, and is composed
of two parts: Image captioning (IC) and natural
language image search (NLIS) as illustrated in Fig-
ure 1. IC describes or captions a given image with
a sentence in natural language. NLIS takes the
caption as an input and retrieves the closest image
out of a set of candidate images. By combining IC
and NLIS, we can train our language production
system directly with the motivation of information
exchange. The constraint that the communication
takes place in human-understandable language is
ensured by producing captions in natural language.
For this, we first pre-train the IC system in a super-
vised fashion using pairs of images and captions,
and subsequently continue to train the overall sys-
tem on the retrieval task. This can be viewed as
a semi-supervised setting since captions are im-
proved not through direct supervision on gold cap-
tions, but on indirect supervision on discriminating
between pictures in the retrieval task.

Our contribution is two-fold. Firstly, we show
that solving the ICR problem gives rise to natural
language messages, while experimentally showing
a strong increase in message information content.
Secondly, we qualitatively present that the descrip-
tions generated by our model capture more details
of images as compared to plain IC systems.

The remainder of the paper is organized as fol-
lows. In Section 2, we review relevant related
works in image captioning, natural language image

102

search and neural learning architectures. Section
3 describes our overall approach, detailing the re-
spective subsystems and their combination. The
experimental setup is laid out in Section 4, before
reporting quantitative evaluation results in Section
5. Qualitative observations are discussed in Section
6, Section 7 draws conclusions and provides direc-
tions for further work in natural language learning
through conversations.

2 Related Work

State-of-the-art natural language production sys-
tems apply supervised learning, in particular the
sequence-to-sequence model of Vinyals and Le
(2015). This approach was inspired by machine
translation (Sutskever et al., 2014), and has since
been replicated multiple times. While an in-depth
survey of natural language generating systems is
beyond the scope of the present paper, we direct
the interested reader to the recent survey of Gatt
and Krahmer (2018). In our subsequent review, we
discuss the two key subtasks of our ICR problem
(Fig. 1), IC and NLIS, and the interplay of systems
solving these two tasks.

Given an input image, an IC system outputs a de-
scription of the image in natural language. In turn,
given as input a textual description of an image, an
NLIS system finds the image that best matches the
input description among a set of candidate images.
We review techniques and ideas most closely re-
lated to our focus on the information exchange mo-



tivation for language generation. These approaches
typically combine an IC network and an NLIS net-
work and train them jointly. For a recent general
survey of deep learning techniques applied to IC,
we refer the reader to Hossain et al. (2019).

Most related to our work, the idea of scoring im-
age descriptions based on the amount of informa-
tion carried in the sentence is proposed in Hodosh
et al. (2013). Instead of using traditional n-gram
based evaluation measures like the BLEU (Pap-
ineni et al., 2002) or the CIDEr score (Vedantam
et al., 2015), Hodosh et al. (2013) propose to use
an NLIS system, pre-trained on human-annotated
image-caption-pairs, to score the created image cap-
tions. The idea is widely used in other recent works
in IC (Devlin et al., 2015; Vinyals et al., 2017;
Karpathy and Fei-Fei, 2017; Donahue et al., 2017).
The general architecture of these models contains
an IC encoder-decoder model that encodes image
information into textual form, and an image scor-
ing system that evaluates the created captions using
an NLIS system. The IC model is often a combina-
tion of a convolutional neural network (CNN) and
a long-short-term memory network (LSTM).

Adpversarial training is employed by several state-
of-the-art works in IC (Dai et al., 2017; Liang et
al., 2017; Liu et al., 2018). An NLIS network
is applied to discriminate between generated and
real samples. In Shetty et al. (2017), the objective
is altered from merely reproducing ground truth
captions to matching a distribution of human gener-
ated captions by applying an approximate Gumbel
sampler.

RL is employed in some recent approaches such
as the method by Ren et al. (2017b). A reward
function is derived by considering visual-semantic
embedding similarities: input images and captions
both are mapped into a embedding space, and their
similarity in this space is measured by an appropri-
ate metric.

In contrast to the reviewed work we explicitly de-
fine information exchange as the primary objective
for IC and NLIS. Through this we clearly sepa-
rate us from related studies that use information
exchange merely as a performance indicator or a
general guidance.

3 Image Captioning Retrieval Network

Our ICR network is an IC network and an NLIS
network, combined by a Gumbel softmax layer.
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3.1 Image Captioning

The IC model receives an image and returns multi-
ple probability distributions over a vocabulary.

The input for the model is an image x™ €
RP>wxe where h,w,c are the height, width and
color dimension, together with a sequence of words.
The model output is a probability distribution over
a fixed vocabulary V. Each word is thus assigned a
likelihood of being the next word.

The input image is resized to a fixed size and
fed through an image encoder (e.g. CNN) with
the parameters 6, that extract the most important
image features in a vector ¢ (x™, 0y) € R, where
k is the length of the feature vector.

The respective image annotation is embedded
in a dense word embedding, yielding the second
model input x*¢ € R4, where ¢ is the number of
words in a sentence and d is the dimensionality
of the dense word embedding. The embedded
sentence is fed through a sentence encoder (e.g.
LSTM) resulting in a ¢ x [ tensor, where / is the
length of the feature vector.

Now x™ is replicated ¢ times and concatenated
with the sentence features. This results in a
t X (I 4+ k) tensor, which is fed through a block
of fully connected layers and a final softmax layer,
squeezing the model output into ¢ probability distri-
butions with P(y,|x},, |,¢(x™,6;)), where y; is
the probability over the vocabulary V at timestep ¢,
x*¢ is the information from the previous words and
¢ (x™, 6, ) is the image vector.

At training time, x*¢ and the target y € R"*¢, with
the same shape as x*, are representations of the
same ground truth sentence. This training tech-
nique is called teacher forcing. x*¢ is shifted one
time-step into the future by adding a start-symbol
at its beginning. This way, word y; equals x;¢ | and
the model is trained to predict the next word of the
same sentence x*. An end-symbol is appended to
¥, so input and output have the same length and the
model is trained on how to end the sentence. The
loss is calculated through the cross-entropy of the
predicted probability distribution and the ground
truth distribution. This allows a quick and stable
learning process but also leads to the so-called ex-
posure bias (Ranzato et al., 2016).

At inference, only the image vector ¢ (x™,6,)
is available. The model starts with £*¢, containing
only the start-symbol, as first input and generates
P(J). Depending on the selection mode, one word
y: from P(¥;) is selected and appended to the pre-
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3.2 Natural Language Image Search

Our NLIS model is realized through an image and a
sentence encoder that are trained on the triplet rank-
ing loss (Karpathy et al., 2014; Ren et al., 2017a;
Karpathy and Fei-Fei, 2017; Wang et al., 2017;
Faghri et al., 2018; Liu et al., 2018).

Both encoders are similar to the ones used in
our IC model. Images x" are transformed into
feature representations ¢ (x™, 0y) € R%, where ¢
is the image encoder (e.g. CNN), with model pa-
rameters 6y. Correspondingly, sentences x** are
embedded and transformed into a feature represen-
tation through a model y(x**, 6,) € R%, where y
is the sentence encoder (e.g. LSTM) with model
parameters Oy,.

fim (xima VVima ed) )
fse (xse’ Wsev 9'4/)

=||Wiho (™, 65)[, (D)
:“WSEW()‘S@79W)||2 (2)

Both feature representations are mapped into a
shared embedding space of size e by linear pro-
jection with weight matrices W, € R *¢ and
W, € R%*¢_ The resulting projections are nor-
malized with the L2 norm to lie on the unit hyper-
sphere.

s(im, se) = i (X, Wi, 0p) - Fse (X, Wee, By) (3)

The similarity between an image-sentence pair
is defined as the inner product between the two

normalized vectors, resulting in the cosine similar-
ity (Subhashini and Kumar, 2010).

| LA
g(evBimyBse) = N Z L(lmnyseanimHBse’)
n=1

4)
For a batch of images, B;,, = {xim Q’Zl , and corre-
sponding sentences, By, = {x* flV: 1» the batch loss

is calculated by comparing every image against
every sentence and vice versa. In every iteration,
one image-sentence pair is selected as true pair,
marked as (im,,se,). The similarity of this pair
is compared to the similarities between the image
and all other sentences or the sentence and all other
images respectively. A batch of sentences, without
the correct sentence, is denoted as By, and a batch
of images without the correct image as Bj;,,.

All possible parameters to be optimized are de-
fined by 8 = {6y, 0y, Wi, Wy, }. Depending on the
experimental setup, however, 6, and/or W;,, are not
optimized or finetuned.

Lsu(im, se,im, se) =
Y o —s(im, se) +s(im, se)] + 5
Z[Oc —s(im, se) +s(im,se)] +

im

Ly is defined as the sum of hinges and describes
the classic triplet ranking loss. Let o be the mar-
gin that the similarity of all wrong image-sentence
pairs should be smaller than the similarity of the
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correct image-sentence pair. s(im,se) describes
the similarity of the correct image-sentence pair
while s(im, se) describes the similarity between an
incorrect image-sentence pair. In order to avoid
negative losses, we use positive values only, as
defined by the notation [x]; = max(0,x). The sec-
ond term is symmetrical to the first term. In the
first term, an image is fixed and the similarity with
different candidate sentences is calculated and re-
turned. In the second term, a sentence is fixed
and all other images are iterated over to calculate
the similarities. Faghri et al. (2018) report a steep
increase in accuracy on the NLIS task when us-
ing triplet ranking loss with the max of hinges,
Lyu. This refers to selecting the one (negative)
sample with the highest loss in every mini-batch.
The only difference between Lyg and Lgy is the
selection of the biggest error, maxg [ — s(im, se) +
s(im,se)|+, instead of the summation of errors,
Y [0t —s(im,se) + s(im, se)] ;.

3.3 Image Captioning-Retrieval

Our ICR network is a combination of the two mod-
els described above. In order to overcome the prob-
lem of discrete word representations being not dif-
ferentiable, the Gumbel softmax trick (Jang et al.,
2016) is used to transform one-hot probability dis-
tributions into pseudo-one-hot-representations.

The original Gumbel-Max trick (Gumbel, 1954)
is a simple and efficient way to draw samples from
a categorical distribution with class probabilities 7.
g €(0,1) is called the Gumbel distribution and is
calculated from u, drawn from a uniform distribu-
tion between 0 and 1.

g = —log(—log(Uniform(0,1))) (6)

z = onehot <argmaX[gi + log(n)]) @)

1

Since argmax is non-differentiable, the continu-
ous softmax function is used as an approximation.
7T is the temperature of the softmax. The smaller 7
is, the closer the distribution is to a one-hot encod-
ing. y; is the resulting k-dimensional word distribu-
tion.

__ exp((log(m) +8i)/7)
Y- exp((log(m) +:)/7)

fori,....k

i

®)

A second challenge is the sampling of novel sen-
tences. Our ICR model needs a complete input
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sentence x*¢ to be able to determine the probabil-
ity for every sub-sentence x;°,.. This can either be
achieved by creating complete and novel sentences
with our IC model in a pre-step or by directly using
the Gumbel softmax trick in this phase. Since the
Gumbel softmax activation function introduces ran-
domness into the selection process, unseen word
combinations can occur, from which the model will
not be able to recover. For this reason we decided
to use the first-mentioned approach.

When feeding the novel image annotation
through our ICR model, it will be fed through the
IC model again and reproduce the output y. The
output is transformed with the Gumbel softmax ac-
tivation function, which selects one word randomly
based on its probability and transforms it into a
value close to one. All other words will receive a
very low probability, close to 0. Let y(§) be the
Gumbel softmax output.

Together the original image vector ¢ (x™, 05)
and () are fed into the NLIS network to output a
similarity matrix, containing similarities between
every image and every sentence. From this simi-
larity matrix, either the sum or the max of hinges
loss (Section 3.2) can be calculated and used for
training.

4 Experimental Setup

Our experiments are designed to optimize informa-
tion exchange between the IC and the NLIS system.
Information exchange is measured by the image
retrieval score, which is reported in the percentage
of images ranked within the best 1, 5 or 10 ranked
images (r@1, r@5, r@10). The Consensus-based
Image Description Evaluation (CIDEr) (Vedantam
et al., 2015) score for the generated annotations
is presented alongside. CIDEr is an n-gram based
evaluation metric especially created for image an-
notation.

We use MSCOCO dataset with 2017 split (Lin
et al., 2014; Chen et al., 2015) for training and
validation. The dataset contains 118,287 training
and 5,000 validation images, all of them annotated
with five ground truth sentences.

In preprocessing, all annotations are cut or
padded to contain exactly 16 tokens. Tokens ap-
pearing less than 10 times are replaced with the un-
known word token. Every word is embedded with
a pre-trained English fasttext model (Bojanowski
et al.,, 2017). All images were encoded by ex-
tracting the last fully connected layer of ResNet50



Table 1: Performance of our IC and NLIS model af-
ter stand-alone pre-training on their respective task
(*Our), compared to VSA (Karpathy and Fei-Fei,
2017), UVS (Kiros et al., 2014), VSE++ (Faghri
et al., 2018), sm-LSTM (Huang et al., 2017), m-
RNN (Mao et al., 2014) and LRCN (Donahue et al.,
2017) on different measures as reported in the liter-
ature. NLIS results refer to 1,000 test images and
5,000 respective descriptions from MSCOCO 2017.
r@n shows the percentage of sentences/images
ranked under the top n ranks. BLEU4 and CIDEr
are received from the C40 test set of the official
2015 COCO Caption Challenge Competition. Re-
sults with most similar architectures are listed if
available.

Image captioning Image retrieval
System r@el r@5 r@10 | r@l r@5 r@10
VSA 384 699 805 | 274 602 748
*Our 399 698 80.1 | 320 663 80.8
UVvs 434 757 858 | 33.0 672 806
VSE++ 43.6 748 84.6 | 337 68.8 820
sm-LSTM | 532 83.1 915 | 40.7 758 874

Image captioning

System | BLEU4 CIDEr

VSA 0.446 0.692

*Our 0472 0.753

Uvs 0.517 0.752

m-RNN | 0.578 0.896

LRCN 0.585 0.934

(2,048 nodes), pre-trained on ImageNet (Deng et
al., 2009).

IC and NLIS network are separately pre-trained
until they yield optimal annotation and ranking
results. Multiple hyperparameters (model archi-
tecture, number of epochs, learning rate, etc.) of
both models were empirically optimized to yield re-
sults close to state-of-the-art performance for their
respective task. For both models, sentences are en-
coded by 1,024 LSTM cells. Images are projected
onto vectors of the same size with a dense layer.
In our NLIS network, encoded sentence features
are also projected onto a 1,024 dimensional space
by a fully connected layer. In our IC model, sen-
tence and image features are concatenated and fed
through two dense layers (1,024 and 2,048 nodes),
before the final softmax layer. Between every layer
we added dropout layers with 0.4 dropout to pre-
vent the model from overfitting. When training
our NLIS model we used sum of hinges for one
epoch before switching to max of hinges loss. This
was necessary for a stable training. In all later ICR
experiments we used max of hinges loss.

Table 1 shows the performance of our models
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after pre-training compared to related studies that
used similar techniques with similar network ar-
chitectures. The performance of our NLIS model
builds the baseline for further training with our
complete ICR model. In order to combine IC
and NLIS model in our final model, we imple-
mented both models in the same framework. Sim-
ply reusing models from related work was not pos-
sible due to the incompatibility of different neural
network frameworks.

In our main training loop, 20,000 images are
randomly selected per epoch and fed through our
ICR network. A loss is calculated for the generated
annotation and for the retrieved image. Mini-batch
size is set to 128 for all experiments. The model
was trained for 40 epochs with Adam as optimizer.
The learning rate is set to 0.0002 for the first 20
epochs and then decreased to 0.00002 for the rest
of the training process.

Optimizing all weights in the ICR network leads
to an unstable training process and often resulted in
sudden drops in performance. Freezing the weights
of the image projection layer from the beginning
of training (IP=F) or at a certain epoch (IP=17) sta-
bilized the training process. Freezing the weights
of the sentence encoder (SE=F) had a similar sta-
bilizing effect on the training. Training with only
self-generated sentences right from the start leads
to an instant decrease in performance since the
model has no time to adjust to flawed input sen-
tences. To counter this issue, novel self-generated
annotations are slowly added to existing ground
truth sentences. This is implemented by randomly
selecting an annotation from a list of both ground
truth annotations and generated ones. In the begin-
ning, this list contains only ground truth samples.
At every epoch, novel annotations are added. When
the list reaches a defined size (INF=5, 10, 15), a
random sentence is dropped from the list. This way,
novel sentences are slowly infused into the training
process.

To increase ranking performance, true image-
sentence pairs were added to the output from the IC
network. In this case, one mini-batch contains 64
image-sentence pairs generated by our IC network
and 64 true image-sentence pairs directly from the
dataset (TP=T). Otherwise the whole mini-batch
contains only self-generated samples (TP=F). Both
methods result in a 128 x 128 similarity matrix for
one mini-batch. After the training phase, 1,000
validation images are captioned and retrieved to



Table 2: Ranking retrieval results for different experimental settings on 1000 validation images from
MSCOCO 2017. TP=True Pairs, SE=Sentence encoders trainable, IP=Image Projection layer trainable
or trained until which epoch, INF=Infusion list size, NLIS sum=Sum over all image scores, C=CIDEr

Sentence Retrieval Image retrieval

TP SE IP INF | r@]l r@5 r@10 | r@]1 r@5 r@10 | NLIS sum C
F T F 10 | 347 721 869 |332 69.7 837 186.6 0.061
F F F 10 |408 77.8 899 |38.8 763 889 204.0 0.101
T T 17 10 |444 799 905 |408 79.1 89.7 209.6 0.049
T F T 10 |476 842 93.6 |43.1 81.8 925 217.4 0.094
T F T 15 |462 864 936 | 460 83.0 930 222.0 0.083
Pre-training Baseline | 39.9 69.8 80.1 | 32.0 66.3 80.8 179.1 0.753

determine the performance of our model.

5 Results

Table 2 shows various experimental settings and
their resulting ranking and CIDEr score. In the
last row, the baseline ranking and annotation per-
formance is reported. It represents our best per-
formance of the two models when trained on their
respective tasks alone.

The table shows that the usage of true image
pairs (TP) generally increases the ranking perfor-
mance of the network. The best experimental re-
sults were observed when freezing the sentence
encoder weights for the ICR training (SE=F) but
not the image projection layer (IP=T). An infusion
list size of 10 (INF=10) yields optimal sentence
retrieval scores while an infusion list size of 15
(INF=15) results in a 3 percent-point increase in
the r@1 for the NLIS score and the best overall
retrieval score (NLIS sum). Training runs with no
infusion list (not mentioned in Table 2) were aban-
doned early in the experimental phase, for they
resulted in unstable training and worse ranking
scores than our baseline.

Compared to the ranking performance of our
baseline (Table 1), we observe improvements for
all reported experiments. Under the same evalua-
tion set (1000 validation images), our best model
improves image r@]1 results by 14.0 percentage
points resulting in 46.0% correctly retrieved im-
ages through our self-generated image descrip-
tions. 80.0% of all described images were retrieved
within the 10 top ranks. Not only could we in-
crease our retrieval performance immensely com-
pared to our baseline, but we also outperform all
related studies using similar image encoders. This
indicates that our self-generated sentences contain
more image information than the ground-truth an-
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notations, created by human annotators. CIDEr
scores, however, decrease from our baseline perfor-
mance of 0.72 to around 0.10.

The increase in retrieval scores and the decrease
in CIDEr can be observed in Figure 3 as well. It
shows a selection of images and different annota-
tions. The first annotation is the annotation gener-
ated by our IC system, after pre-training (PT). GT
shows one of the ground truth captions for compar-
ison. The last sentence is the generated description
from our best performing (ICR) model. Word repe-
titions, missing of stop-words and the selection of
more specific and precise words (e.g. locomotive
instead of train) are at the same time responsible
for higher retrieval scores and lower CIDEr score.
Since n-gram based evaluation metrics use direct
comparison between prediction and ground-truth
sentence, using often occurring words (e.g. stop-
words) and general terminology (e.g. train) nor-
mally yields better results. Ironically, these words
often carry the least amount of information.

6 Discussion

A comparison between the images in Figure 3 and
their descriptions after the pre-training phase and
after the ICR training phase shows that the increase
in information exchange is not only visible in the
ranking scores, but also leads to arguably better
generated descriptions.

The sentences created after the pre-training are
almost exclusively grammatically correct and de-
scribe the image content more or less accurately.
Generated descriptions show less grammatical
structure after the IC system was trained to maxi-
mize the ranking performance, but the content of
the sentence describes the image in much more
detail and correctness.

The generated sentences after ICR training often



A8 buildings on train tracks.
8 ICR: an old locomotive train caboose on
an railroad train tracks wires wires wires
wires overpass overpass

PT: a man is holding a frisbee in his
hand .

GT: A woman wearing glasses holding a
tennis racket.

M ICR: this man holding his tennis racket
! wearing his neck shirt shirt shirt sleeve
sleeve wrist wrist

PT: a man is playing tennis on a court .
GT: Two men shaking hands while
| standing on a tennis court.

9 ICR: two men man standing on an tennis
court on an tennis court net courts courts
courts

'PT: a man riding on the back of an
* elephant .

GT: Man riding an elephant up a hill near
a field.

2 ICR: two man riding on elephant
-~ elephant walking through some river
river saddle a river stream river

Figure 3: Next to every image, the description gen-
erated by the pre-trained IC model (PT), one of the
ground truth descriptions (GT) and the descriptions,
generated after training the ICR model.

contain repeating words, and they do not contain
the end-symbol anymore. Both of these effects are
likely due to the pre-training of the system. During
the pre-training phase, only correct sentences were
used as input for the model. In the ICR training
phase, new sentences are generated and used for
training. Additionally, since the Gumbel softmax
trick is a statistical sampling method, the word with
the highest probability is not always picked, as it
has been before with greedy picking. This means
the system encounters new situations that it has
to deal with. Since it was trained with teacher-
forcing, it has developed little robustness against
these novel situations. Interestingly, the ICR sys-
tem tries to fully use the maximum length of 16
tokens, possibly conveying the importance of im-
age elements with word repetition.

It is important to mention that the grounding be-
tween words and entities in the images stays intact
during the training. This means, the network keeps
using the same words for certain scenes or objects,
learned in the pre-training phase. This is highly rel-
evant for a system trying to learn language without
explicit targets. It means that the system keeps con-
nections between image entities and words, even
when trained on a different task. This allows us
to focus on a more implicit goal like information
exchange.

Regarding the first image in Figure 3, one can
see, that the description after the ICR training in-
cludes “an old locomotive” instead of only "a
train”. The description also contains “wires over-
pass”, describing the electrical wires over the train,
even though this information was not present in any
of the 5 human annotated sentences. This shows
that the model is no longer explicitly trained on the
true sentences, but has a much more implicit objec-
tive. In order to optimize the ranking performance,
additionally, highly distinct image information is
reflected in the wording. The fourth image in Fig-
ure 3 shows similar increases in content and detail
description. The information that the elephant is

“walking through some river” is crucial to distinctly
rank this image higher than other elephant images.

In the third picture, the new description is less
general. The pre-trained system is producing a
generic sentence, more or less fitting to any tennis
scene. The description, generated after the ICR
training is more accurate in its context. The same
is true for images 2 and 3. In general, the image
content is described in more detail and in more
accuracy. The sentences are less grammatical than
before, however.

These findings are satisfying and show that our
objective trains our system to transfer information
while still creating human-readable sentences. The
fact that the created sentences are still grounded
show that our language system, once pre-trained,
keeps its relations between objects and words in-
tact. Our main goal of increasing the amount of
exchanged information is clearly reached. Our sec-
ondary goal of insuring the human-readability of
the generated language is partly satisfied and could
be addressed with future work.

7 Conclusion

We clearly show how training an IC network with
a more implicit objective like the ranking results
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from our NLIS network can improve the amount
of information captured in the generated sentences.
The newly generated sentences are not grammati-
cally perfect but understandable by humans. More
importantly, after training our ICR model, gen-
erated descriptions capture more distinct details
of images and describe more aspects of the im-
ages. The ranking performance was increased by
a large margin, surpassing previous image search
approaches.

This work has strengthened our belief that lan-
guage generation and comprehension learning can
benefit from implicit objectives in a joint learning
setup as opposed to learn them from explicit su-
pervision separately. Language offers a mapping
from a high dimensional to discrete space. It of-
fers the exchange of complex information in an
equally complex but agreed-upon system. If in-
formation exchange is a major goal, more effort
should be placed in implicitly modeling, with ob-
jectives like information exchange in order to solve
tasks, requiring content that can only be transferred
by language. The proposed language game in this
work builds one of the most basic language games:
describing and finding an image.

More sophisticated games, like solving riddles,
answering questions, walking through a maze or
executing commands can all be implemented based
on language instructions. These games all have
to be designed in a way that succeeding is a di-
rect implication of information exchange. If this
approach is used, while language grounding and
correct grammar are enforced and guaranteed for,
we will have a chance of optimizing language gen-
eration and comprehension directly on target tasks,
which should result in more targeted and better-
suited systems as opposed to training on auxiliary
objectives.

In future work, conversation generation can also
be targeted. The challenge there is that conversa-
tion should only be as informative as required in a
given situation to not distract or cause an unneces-
sarily high cognitive load.
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Abstract

While automatic speech recognition is an
important task, freely available models are
rare, especially for languages other than
English. In this paper, we describe the pro-
cess of training German models based on
the Mozilla DeepSpeech architecture using
publicly available data. We compare the re-
sulting models with other available speech
recognition services for German and find
that we obtain comparable results. Accept-
able performance under noisy conditions
would, however, still require much more
training data. We release our trained Ger-
man models and also the training configu-
rations.

1 Introduction

Automatic speech recognition (ASR) is the task of
translating a spoken utterance into a textual tran-
script. It is a key component of voice assistants like
Google Home (Li et al., 2017), in spoken language
translation devices (Krstovski et al., 2008), or for
automatic transcription of audio and video files
(Liao et al., 2013). For any language beyond En-
glish, readily available pre-trained models are still
rare. For German, we are only aware of the model
by Milde and K6hn (2018) for the Kaldi framework
(Povey et al., 2011). For the recently introduced
Mozilla DeepSpeech framework, a German model
is still missing. This is a serious obstacle to ap-
plied research on German speech data, as available
web-services by Google, Amazon, or Microsoft are
problematic due to data privacy reasons. We thus
use publicly available speech data to train a Ger-
man DeepSpeech model. We release our trained
German model and also publish the code and con-
figurations enabling researchers to (i) directly use
the model in applications, (ii) reproduce state-of-
the-art results, and (iii) train new models based on
other source corpora.
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2 Speech Recognition Systems

Due to the underlying complexity of recogniz-
ing spoken language and the wish of the service
provider to keep the model private, many systems
are offered as web services. This includes com-
mercial services like Google Cloud Speech-to-Text
(He et al., 2018), Amazon Alexa Voice Services',
IBM Watson Speech to Text (Saon et al., 2017) or
Speechmatics? as well as academic services like
BAS.? While web services are convenient, there

are many situations where they cannot be used:

e sending data to a web service might violate
data privacy protection laws

e as the data throughput of a web service is
limited; it might rule out batch processing of
large amounts of speech data

o the user cannot control (or change) the func-
tionality of a remotely deployed web service

e research results based on web service calls
are not easily replicable, as services might
change without notice or become unavailable
altogether.

For this work, we therefore consider only frame-
works that can be used locally and without restric-
tions. One such framework is Kaldi (Povey et al.,
2011) which was found to be the best perform-
ing open-source ASR system in a previous study
(Gaida et al., 2014). It is open-source toolkit writ-
ten in C++ that supports conventional models (e.g.
Gaussian Mixture Models) as well as deep neu-
ral networks. Recently, end-to-end neural systems
like wav2letter++ (Pratap et al., 2018) provided by
Facebook, or DeepSpeech* provided by Mozilla
have been introduced. To our knowledge, there is

1 https://developer.amazon.com/alexa/science
2https://www.speechmatics.com
3https://clarin.phonetik.uni—muenchenAde/BASWebServices/interface/ASR
4https://github.com/mozilIa/DeepSpeech
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Figure 1: DeepSpeech architecture (adapted from
Mozilla Blog®)

only one German model for any of these frame-
works that is publicly available, which is the one
by Milde and Kohn (2018) for Kaldi. Other Ger-
man models, e.g. a Kaldi model from Fraunhofer
IAIS (Stadtschnitzer et al., 2014), rely on in-house
datasets and are not publicly available.

In this work, we focus on Mozilla’s DeepSpeech
framework, as it is an end-to-end neural system
that can be quite easily trained, unlike Kaldi, which
requires more domain knowledge or wav2letter++,
which is not yet widely tested by the community.

Mozilla DeepSpeech DeepSpeech (v0.1.0) was
based on a TensorFlow (Abadi et al., 2016) imple-
mentation of Baidu’s end-to-end ASR architecture
(Hannun et al., 2014). As it is under active devel-
opment, the current architecture deviates from the
original version quite a bit. In Figure 1, we give
an overview of the architecture of version v0.5.0,
which we also used for our experiments in this
paper.’

DeepSpeech is a character-level, deep recurrent

5 https://hacks.mozilla.org/2018/09/speech-recognition-deepspeech
6ht'tps://github.com/mozilIa/DeepSpeech/reIeases/tag/vO.5.0
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neural network (RNN), which can be trained end-
to-end using supervised learning.” It extracts Mel-
Frequency Cepstral Coefficients (Imai, 1983) as
features and directly outputs the transcription, with-
out the need for forced alignment on the input or
any external source of knowledge like a Grapheme
to Phoneme (G2P) converter. Overall, the network
has six layers: the speech features are fed into three
fully connected layers (dense), followed by a uni-
directional RNN layer, then a fully connected layer
(dense) and finally an output layer as shown in Fig-
ure 1. The RNN layer uses LSTM cells, and the
hidden fully connected layers use a ReLLU activa-
tion function. The network outputs a matrix of
character probabilities, i.e. for each time step the
system gives a probability for each character in the
alphabet, which represents the likelihood of that
character corresponding to the audio. Further, the
Connectionist Temporal Classification (CTC) loss
function (Graves et al., 2006) is used to maximize
the probability of the correct transcription.

DeepSpeech comes with a pre-trained English
model, but while Mozilla is collecting speech sam-
ples® and is releasing training datasets in several
languages (see paragraph on Mozilla Common
Voice in Section 3), no official models other than
English are provided. Users have reported on train-
ing models for French’? and Russian (Iakushkin et
al., 2018), but the resulting models do not seem to
be available.

3 Model Training

In this section, we describe in detail our setup for
training the German model in order to ease subse-
quent attempts to train DeepSpeech models.

3.1 Datasets

To train the German Deep Speech model, we utilize
the following publicly available datasets:

The Voxforge'® corpus, which is about 35 hours
of German speech clips. Nearly 180 speakers have
read aloud sentences from German Wikipedia, pro-
tocols from the European Parliament, and some
individual commands. The clips vary in length,
ranging from 5 to 7 seconds.

The Tuda-De (Milde and K6hn, 2018) corpus,
is similar to Voxforge. It uses the same sources

7https://hacks.mozilla.org/201 7/11/a-journey-to-10-word-error-rate/
8 https://voice.mozilla.org/
9 http://bit.ly/discourse-mozilla-org

1 Ohttp://www.voxforge.org/home/forums/other» languages/german/

open-speech-data-corpus-for-german



Dataset Size Median Length # Speakers Condition Type

Voxforge 35h 4.5s 180 noisy read

Tuda-De 127h 7.4s 147 clean read

Mozilla Common Voice = 140h 3.7s >1,000 noisy read

Table 1: Overview of German datasets

(Wikipedia, parliament speeches, commands), but Hyperparameter ~ Value
the recordings are under more controlled condi- Batch Size 24
tions. The final data was also curated “to reduce Dropout 0.25
Learning Rate 0.0001

speaking errors and artefacts”. Each recording was
made with 4 different microphones at the same
time. This means that while the overall size of
the dataset is larger than Voxforge and a model
based on this dataset is supposed to be more robust,
the actual amount of unique speech hours in both
datasets are about the same.

The Mozilla Common Voice project'! aims to
make speech recognition open to everyone. The
multilingual dataset currently covers 18 languages -
including English, French, German, and Mandarin.
The German corpus contains clips with lengths
varying from 3 to 5 seconds. However, the corpus
is recorded outside controlled conditions as per the
comfort of the speaker. The utterances have back-
ground noise, and users have varied accents. There-
fore we expect this dataset to be relatively challeng-
ing. Speakers in this dataset are relatively young,
and the male/female ratio is about 5:1, which might
result in a severe bias when trying to transfer the
model.'? The version used in our experiments has
140 hours of recordings, but as Mozilla aims at
adding more recordings, there might already be a
larger dataset available.

3.2 Preprocessing

DeepSpeech expects audio and transcription data
to be prepared in a specific format so that they can
be read directly by the input pipeline (see Figure 2
for an example). We cleaned the transcriptions
by removing commas as well as punctuation and
converting all transcriptions to lower case. We
further ensured all audio clips are in .wav format.
The pruned results were split into training (70%),
validation (15%), and test data (15%).

For more details on data preprocessing parame-
ters, we refer the reader to the code release.!?

1 https://voice.mozilla.org/de/datasets

128peaker Information is based on the self-reported statis-
tics provided on the project homepage for each dataset.
13ht'tps://github.com/AASHISHAG/deepspeech-german
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Table 2: Hyperparameters used in the experiments

3.3 Hyperparameter Setup

We searched for a good set of hyperparameters
as shown in Figure 3. In the first iteration, we
select learning rate and train batch-size and plot
the graph showing the relationship of dropout and
word-error rate, to determine the dropout with the
lowest WER. We then used the best dropout (0.25)
from the above iteration and kept the train batch
size, to identify the best learning rate. Finally,
we took the best dropout (0.25) and learning rate
(0.0001) to determine the effect on batch size which
shows that our initial choice of 24 was reasonable,
even if somewhat better results seem possible using
smaller batches.

Since Deep Speech employs early stopping,
which stops the training of a neural network early
before it overfits the training data, we did not ex-
periment much with the number of epochs. The re-
maining hyperparameters were set to be the same as
those pre-configured in Mozilla Deepspeech. The
best results are obtained with the hyper-parameters
mentioned in Table 2. We train the network using
the Adam optimizer (Kingma and Ba, 2014).

Language Model We apply a probabilistic lan-
guage model using KenLLM toolkit (Heafield, 2011)
to train a 3-gram model on the pre-processed cor-
pus provided by Radeck-Arneth et al. (2015). It
consists of eight million filtered sentences compris-
ing 63.0% Wikipedia, 22.0% Europarl, and 14.6%
crawled sentences. MaryTTS'# has been used to
canonicalize the corpus, i.e. normalized to a form
that is close to how a reader would speak the sen-
tence, especially changing numbers, abbreviations,
and dates. Additionally, punctuations were dis-
carded, as it is usually also not pronounced. We

14 tp:/mary.dfii.de/



wav_filename,wav_filesize, transcript

[voxforge/Manu-20100324-m25/wav/deM25-07.wav,156156,gartensaal wo der vater sie erwartete
[voxforge/anonymous-20130211-ehr/wav/dell-073.wav,156044,dadurch wird die zugriffszeit reduziert
[voxforge/Manu-20100324-m25/wav/deM25-18.wav,136732,ehrlich was sie eben dachten
[voxforge/b166er-20090404-hgj/wav/ded-27.wav,100044,welche obersten bundesorgane gibt es
[voxforge/AdrianTovar-20080727-xjh/wav/de11-145.wav,152962,zur bewdhrung ausgesetzt werden
fvoxforge/Manu-20140331-m48/wav/deM48-25.wav,203584, er lief die treppe hinauf sie folgte langsam
[voxforge/Thomas-20120913-trl /wav/de11-009.wav,104836,die gegendarstellung ist offensichtlich
Jvoxforge/1337ad-20170321-ufl/wav/de3-39.wav,132044, sondern um die datenmenge

Figure 2: Screenshot of the input file format
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Figure 3: Hyperparameter search space
Dataset WER Our model only trained on Tuda-De yields a com-
Mozilla 79.7 parable WER of 26.8%.
Voxforge 72.1 Results for the other datasets are much lower, but
Tuda-De 26.8 1 bini | datasets i th
TudaDe + Moxilla 573 apparently combining several datasets improves the
TEda—D ¢ + Voxforge 151 results. While the combination of Tuda and Mozilla
Tuda-De + Voxforge + Mozilla ~ 21.5 yields a WER of 57.3%, the combination of Tuda,

Table 3: German DeepSpeech results

used the unpruned Language Model that has a
rather large vocabulary size of over 2 million types,
but we expect pruning would only affect runtime,
not recognition quality.

3.4 Server & Runtime

We trained and tested our models on a compute
server having 56 Intel(R) Xeon(R) Gold 5120
CPUs @ 2.20GHz, 3 Nvidia Quadro RTX 6000
with 24GB of RAM each. Typical training time on
a single dataset under this setup was in the range
of 1 hour.

4 Results & Discussion

Table 3 shows the word error rates (WER) obtained
when training and testing DeepSpeech on the avail-
able German datasets and their combinations. The
best configuration in Milde and K6hn (2018) using
only the Tuda-De corpus yields a WER of 28.96%.

Voxforge, and Mozilla gives a WER of 21.5%.
Combining the very similar Tuda-De and Voxforge
yields a WER of 15.1%, which is a remarkable im-
provement over using only a single dataset. Note
that this is the black-box performance, as we used
DeepSpeech as is and only slightly tuned hyper-
parameters. See Section 6 for ideas on how to
improve over these results.

To put our results into perspective, in Table 4,
we present results in other languages for training
different versions of the DeepSpeech architecture.
Our best results are in the same range as for the
other languages, but cross-dataset comparisons are
hard to interpret. However, it is safe to say that
training a DeepSpeech model can result in accept-
able in-domain word error rates with considerably
less training data than previously considered.

4.1 Influence of Training Size

Figure 4 depicts the relation between the amount of
training data and its impact on the word-error-rate.
To plot the learning curve, we split the training
data into 10 subsets containing each 10% of the
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Figure 4: Learning curves for single datasets
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Figure 6: Order effects when combining datasets
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Language DeepSpeech version Training Set Size Test Set WER
Switchboard
. Baidu Fisher
English (Hannun et al., 2014) WSJ 7,380h  Hub5 (LDC2002S23) 16.0
Baidu
Switchboard
English Mozilla v0.3.0 Fisher 3,260h  LibriSpeech (clean test) 11.0
LibriSpeech
Switchboard
English Mozilla v0.5.0 Fisher 3,260h  LibriSpeech (clean test) 8.2
LibriSpeech
. Mozilla v? Yt-vad-1k .
Russian (Iakushkin et al., 2018)  Yt-vad-650-clean 1,650h  Voxforge (Russian) 18.0
German 1(\(/53:)1 llav0.5.0 Tuda-De + Voxforge 162h  Tuda-De + Voxforge (test) 15.1
Table 4: Comparison with previous results in other languages
training data. Then the model is trained on one Train Test WER
subset and WER is calculated on a separate test Voxforge 72.1
dataset. Next, we introduce the new subset with Tuda-De Voxforge 208
more data, re-train the model, and compute its ef- Mozilla 731
g » and.comp Tuda-De, Mozilla 66.2
fect on the error rate. The model is trained on each
. . Tuda-De 26.8
subset for a maximum of 10 epochs and sometimes
Voxforge Tuda-De 98.5
less when the model starts to overfit the training Mozilla 84.9
data, and early stopping is triggered. We observe Voxforge, Mozilla 83.8
that the rather noisy datasets Voxforge and Mozilla Mozilla 79.7
converge rather slowly, while the clean Tuda-De %ﬁ?&%ﬁ Moxzilla 2471'?
reaches much better results. This might also be Tuda-De, Voxforge 80.5

a result of the different microphones that add in-
creased robustness (not unlike other data augmen-
tation strategies).

Figure 5 present the same learning curves when
combining datasets showing that we can reach even
better WER in this setting. Mixing the datasets
seems to force the model to converge more quickly.
However, combining the similar dataset Tuda-De
and Voxforge yields a bit better performance than
combining all three datasets.

We also tested against a mix of all datasets in
combination, but add training data one dataset at
a time. Thus, the order in which datasets are in-
troduced into the training process might influence
performance. Figure 6 shows the results for dif-
ferent order in which the datasets are introduced
into the training process. Adding the noisy Mozilla
dataset too early in the process seems to slow down
convergence, while it adds a little bit of improved
performance when added in the end.

4.2 Cross-dataset Performance

So far, we used training and testing data either from
the same dataset or a mix of the available datasets,
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Table 5: Results across datasets

while of course keeping train and test data separate.
To get a more realistic estimate of performance
when used in a general setting, we assess Cross-
dataset performance, i.e. we train and develop on
one or two datasets and test on a third one.

Table 5 shows the resulting word error rates. Ap-
parently, the cross-domain results are much worse
than in the in-domain setting in Table 3. For exam-
ple, training on Mozilla or Voxforge and Mozilla
and testing on Tuda-De yield unacceptable word
error rates of 84.9 and 83.8 compared to 26.8 when
training on Tuda-De. Interestingly, in this case, as
we have seen already above, adding Voxforge in
the mix does not help much, even if it is similar to
Tuda-De. We see a similar picture for the other test
datasets, transferring from a single dataset does not
work at all, as in the training process the model is
never forced to generalize beyond its properties.

However, training on the Tuda-De and Mozilla
combination yields WER of 66.2 on Voxforge,



Model WER Example

original - der bandbreitenverbrauch wird erheblich verringert

Tuda-De 60 diese zeiten tonwoche erheblich verringert

Voxforge 80  zeiten epoche erheblich in

Tuda-De + Mozilla 160 es sind endete suche den ist es in

Tuda-De + Voxforge 60  der pen zeiten verprach wird erheblich verringert

Tuda-De + Voxforge + Mozilla 40  der bandbreiten verbrauch wird erheblich verringert

original - ferner gibt es moglicherweise eine gewisse anonymitdt und sicherheit
Tuda-De 78  weites mogliche welche in glichen unitét und sicherheit

Voxforge 100  zitierweise sich entsichert

Tuda-De + Mozilla 100  hunde titisee gelten die die mitte zum

Tuda-De + Voxforge 44 den gibt es moglicherweise eine gewisse mietsicherheit

Tuda-De + Voxforge + Mozilla 11  er gibt es moglicherweise eine gewisse anonymitit und sicherheit
original - die einwilligung des schuldners war nicht erforderlich

Tuda-De 100 ideen

Voxforge 86 die angebliche natacha vollich

Tuda-De + Mozilla 57  die einwilligung des schutzmacht erfordern

Tuda-De + Voxforge 86  die ein eigenes schuldnersicht erfordern

Tuda-De + Voxforge + Mozilla 43  die einigung des schuldner zwar nicht erforderlich

original - die geschwindigkeit fiir die kunden kann erhoht werden

Tuda-De 75  die geschwindigkeit und unterteilten

Voxforge 100  schinkelpreise

Tuda-De + Mozilla 88  wie die schmiede den trennendes

Tuda-De + Voxforge 38 die geschwindigkeit fiir die kunden kenterte

Tuda-De + Voxforge + Mozilla 0 die geschwindigkeit fiir die kunden kann erhoht werden

original - mehrere arbeitgeberverbinde sind zu einem dachverband zusammengeschlossen
Tuda-De 114 der see aufweitungen des in einem tatorten samen erschossen
Voxforge 100  es recognitionszeichen

Tuda-De + Mozilla 100  in den sitzungen des entstandenen schaden

Tuda-De + Voxforge 29  mehrere arbeitgeberverbinde sind zu einem tachodaten geschlossen
Tuda-De + Voxforge + Mozilla 14 der arbeitgeberverbédnde sind zu einem dachverband zusammengeschlossen

Table 6: Recognition results on random Voxforge test instances

which is even lower than using the training por-
tion of Voxforge (which yields 72.1). Thus forcing
the model to generalize over topics, recording con-
ditions, speakers, etc. seem to be a crucial point.

5 Error Analysis

Table 6 shows the recognition results on randomly
selected test instances from the Voxforge dataset.
The models trained on only one dataset are surpris-
ingly bad, resulting in rather poetic utterances that
sometimes are quite far from the expected source.
An example is the Tuda-De model recognizing
tatorten samen erschossen instead of dachverband
zusammengeschlossen.

As is to be expected for German, compounds
are especially challenging as exemplified by band-
breitenverbrauch that is recognized as bandbreiten
verbrauch or even pen zeiten verprach, where ver-
prach is probably only in the language model as a
common misspelling of versprach.

The models often fail in interesting ways, e.g.
all models sometimes return very short results like
schinkelpreise that should actually have low prob-
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ability. We currently have no explanation for this
behaviour and need to explore the issue further.

In cases like des schuldners war being recog-
nized as des schuldner zwar, the phonetic ambigu-
ity should have been resolved by a better language
model.

6 Summary

In this paper, we presented the first results on
building a German speech recognition model using
Mozilla Deep Speech. Our best performing model
reaches an in-domain WER of 15.1%, which is in
line with the performance for other languages us-
ing the DeepSpeech framework. Our results thus
support the idea that Mozilla Deep Speech can
be easily transferred to new languages. Learning
curve experiments highlight the importance of the
amount of training data, but also quite strong order
effects when mixing the datasets.

We publish our trained model along with con-
figuration data for all our experiments in order to
enable replicating all results. The model can eas-
ily be re-trained and optimised on new datasets by



referring the code-release.'> No specific hardware
is required to run the trained model, and it works
even on a normal desktop computer or laptop.

Future Work Our experiments only scratch the
surface of possible approaches, and our analysis
recommends several avenues for further explo-
ration.

We mainly treated DeepSpeech as a black-box
and only performed a light hyper-parameter search.
The model can probably still be fine-tuned by ex-
ploring other hyper-parameters. We also did not
experiment much with the language model, but
used a simple 3-gram model.

Since the amount of publicly available training
data is limited, it could be interesting to consider
data augmentation strategies.'® Another approach
to improve recognition quality could be to use
transfer learning by taking an English model (pre-
trained with the larger English datasets) and re-
training with the German data (Kunze et al., 2017;
Bansal et al., 2018). In the light of recent discus-
sions on the CO2 footprint of training deep learning
models (Strubell et al., 2019), using re-training and
providing trained models is desirable. Additionally,
more research is needed to find neural architectures
that perform equally well, but require less compute.

Finally, the training process described here could
be easily used to train speech recognition models
for other languages, where currently no pre-trained
models are available.

Acknowledgments

We want to thank Andrea Horbach for her many
helpful comments that significantly improved the
paper. We also thank the developers at Mozilla
DeepSpeech, who provided insight and expertise
that greatly assisted the research.

References

[Abadi et al.2016] Martin Abadi, Paul Barham, Jianmin
Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. 2016. Tensorflow: A system
for large-scale machine learning. In /2th USENIX
Symposium on Operating Systems Design and Imple-
mentation OSDI 16, pages 265-283.

[Bansal et al.2018] Sameer Bansal, Herman Kamper,
Karen Livescu, Adam Lopez, and Sharon Goldwater.

15 https://github.com/AASHISHAG/deepspeech-german
16 https://ai.googleblog.com/2019/04/
specaugment-new-data-augmentation.html

2018. Pre-training on high-resource speech recog-
nition improves low-resource speech-to-text transla-
tion. CoRR, abs/1809.01431.

[Gaida et al.2014] Christian Gaida, Patrick Lange, Rico
Petrick, Patrick Proba, Ahmed Malatawy, and David
Suendermann-Oeft. 2014. Comparing open-source
speech recognition toolkits.

[Graves et al.2006] Alex Graves, Santiago Ferndndez,
Faustino Gomez, and Jiirgen Schmidhuber. 2006.
Connectionist temporal classification: Labelling un-
segmented sequence data with recurrent neural 'net-
works. volume 2006, pages 369-376, 01.

[Hannun et al.2014] Awni Y. Hannun, Carl Case, Jared
Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen,
Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta,
Adam Coates, and Andrew Y. Ng. 2014. Deep
speech: Scaling up end-to-end speech recognition.
CoRR, abs/1412.5567.

[He et al.2018] Yanzhang He, Tara N. Sainath, Rohit
Prabhavalkar, Ian McGraw, Raziel Alvarez, Ding
Zhao, David Rybach, Anjuli Kannan, Yonghui Wu,
Ruoming Pang, Qiao Liang, Deepti Bhatia, Yuan
Shangguan, Bo Li, Golan Pundak, Khe Chai Sim,
Tom Bagby, Shuo-Yiin Chang, Kanishka Rao, and
Alexander Gruenstein. 2018. Streaming end-to-
end speech recognition for mobile devices. CoRR,
abs/1811.06621.

[Heafield2011] Kenneth Heafield. 2011. KenLM:
Faster and smaller language model queries. In Pro-
ceedings of the Sixth Workshop on Statistical Ma-
chine Translation, pages 187—-197, Edinburgh, Scot-
land.

[Takushkin et al.2018] Oleg Iakushkin, George Fe-
doseev, Anna S. Shaleva, Alexander Degtyarev,
and Olga S. Sedova. 2018. Russian-language
speech recognition system based on deepspeech. In
Proceedings of the VIII International Conference
on Distributed Computing and Grid-technologies in
Science and Education (GRID 2018).

[Imail983] Satoshi Imai. 1983.  Cepstral analy-
sis synthesis on the mel frequency scale. In
ICASSP’83. IEEE International Conference on
Acoustics, Speech, and Signal Processing, volume 8,

pages 93-96. IEEE.

[Kingma and Ba2014] Diederik P. Kingma and Jimmy

Ba. 2014. Adam: A Method for Stochastic Op-
timization. arXiv e-prints, page arXiv:1412.6980,
Dec.

[Krstovski et al.2008] Kriste Krstovski, Michael De-
cerbo, Rohit Prasad, David Stallard, Shirin Saleem,
and Premkumar Natarajan. 2008. A wearable head-
set speech-to-speech translation system. In Proceed-
ings of the ACL-08: HLT Workshop on Mobile Lan-
guage Processing, pages 10-12, Columbus, Ohio,
June. Association for Computational Linguistics.

118



[Kunze et al.2017] Julius Kunze, Louis Kirsch, Ilia
Kurenkov, Andreas Krug, Jens Johannsmeier, and

Sebastian Stober. 2017. Transfer learning
for speech recognition on a budget. CoRR,
abs/1706.00290.

[Lietal.2017] Bo Li, Tara Sainath, Arun Narayanan,
Joe Caroselli, Michiel Bacchiani, Ananya Misra,
Izhak Shafran, Hasim Sak, Golan Pundak, Kean
Chin, Khe Chai Sim, Ron J. Weiss, Kevin Wil-
son, Ehsan Variani, Chanwoo Kim, Olivier Siohan,
Mitchel Weintraub, Erik McDermott, Rick Rose,
and Matt Shannon. 2017. Acoustic modeling for
google home.

[Liao et al.2013] Hank Liao, Erik McDermott, and An-
drew W. Senior. 2013. Large scale deep neural net-
work acoustic modeling with semi-supervised train-
ing data for youtube video transcription. In ASRU,
pages 368-373. IEEE.

[Milde and K6hn2018] Benjamin Milde and Arne
Kohn.  2018.  Open source automatic speech
recognition for german. CoRR, abs/1807.10311.

[Povey et al.2011] Daniel Povey, Arnab Ghoshal, Gilles
Boulianne, Lukas Burget, Ondrej Glembek, Nagen-
dra Goel, Mirko Hannemann, Petr Motlicek, Yanmin
Qian, Petr Schwarz, Jan Silovsky, Georg Stemmer,
and Karel Vesely. 2011. The kaldi speech recogni-
tion toolkit. In IEEE 2011 Workshop on Automatic
Speech Recognition and Understanding, December.

[Pratap et al.2018] Vineel Pratap, Awni Hannun,
Qiantong Xu, Jeff Cai, Jacob Kahn, Gabriel Syn-
naeve, Vitaliy Liptchinsky, and Ronan Collobert.
2018.  wav2letter++: The fastest open-source
speech recognition system. CoRR, abs/1812.07625.

[Radeck-Arneth et al.2015] Stephan  Radeck-Arneth,
Benjamin Milde, Arvid Lange, Evandro Gouvéa,
Stefan Radomski, Max Miihlhduser, and Chris
Biemann. 2015. Open source german distant
speech recognition: Corpus and acoustic model. In
Text, Speech, and Dialogue, pages 480—488, Cham.

[Saon et al.2017] George Saon, Gakuto Kurata, Tom
Sercu, Kartik Audhkhasi, Samuel Thomas, Dim-
itrios Dimitriadis, Xiaodong Cui, Bhuvana Ram-
abhadran, Michael Picheny, Lynn-Li Lim, Bergul
Roomi, and Phil Hall. 2017. English conversa-
tional telephone speech recognition by humans and
machines. CoRR, abs/1703.02136.

[Stadtschnitzer et al.2014] Michael Stadtschnitzer,
Jochen Schwenninger, Daniel Stein, and Joachim
Koehler. 2014. Exploiting the large-scale German
Broadcast Corpus to boost the Fraunhofer IAIS
Speech Recognition System. In Proceedings of
LREC 2014, pages 3887-3890, Reykjavik, Iceland.

[Strubell et al.2019] Emma Strubell, Ananya Ganesh,
and Andrew McCallum. 2019. Energy and policy
considerations for deep learning in nlp. In Proceed-
ings of ACL.

119



Proceedings of the 15th Conference on Natural Language Processing (KONVENS 2019)
Distributed under a CC BY-NC-SA 4.0 license.

Label Propagation of Polarity Lexica on Word Vectors

Harald Koppen
cellent GmbH
Lehrer-Wirth-Str. 2
81829 Miinchen
haraldkoppen@gmail.com

Abstract

The Semi-supervised learning (SSL) is an
important research area in machine learn-
ing where both labeled and unlabeled data
is used to build a model. One of the
big advantages of semi-supervised meth-
ods is that they are transparent and easy to
comprehend for humans, unlike most deep
learning techniques which are black box. In
this paper, we design a graph-based semi-
supervised learning framework to detect
sentiment polarity in word vectors trained
on a German corpus. We study theoretical
aspects of the task, empirically analyze a
seminal label propagation algorithm (Zhu
and Ghahramani, 2002) and suggest vari-
ants to improve classification performance.
Additionally, we review the literature of
graph construction for SSL and propose
new methods to avoid hubs, i.e., vertices of
high degree, which are harmful as outlined
by Ozaki et al. (2011).

1 Introduction

Among the most ubiquitous techniques for label
enrichment and transfer learning in sentiment anal-
ysis, in particular for classification tasks, are sen-
timent lexica and word vectors. The use of such
lexica is a classical approach which has been used
for several decades before the advent of deep learn-
ing (Taboada et al., 2011). The training of word
vectors from large unlabeled text corpora is a com-
paratively more recent method dating back to the
seminal paper by Mikolov et al. (2013).

For sentiment analysis, it is common to focus on
supervised methods (Gamon, 2004; Matsumoto et
al., 2005; Pang et al., 2002; dos Santos and Gatti,
2014). Usually, large unlabeled text corpora are
easily available, whereas labeled lexica are harder
to come by and often involve exorbitant labeling
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costs. Thus, given an unlabeled dataset at the outset,
this approach is expensive as it takes both time and
labor to annotate a sufficiently large training set.
Typically, word vectors have a vocabulary of size
0(10%) (Mikolov et al., 2013) while lexica contain
O(10*) (Waltinger, 2010a) words, thus resulting in
a poor ratio of labeled to unlabeled points.

In recent years, semi-supervised learning (SSL)
methods, particularly graph-based approaches
based on label propagation (Zhu and Ghahramani,
2002) attracted attention (Goldberg and Zhu, 2006;
Rao and Ravichandran, 2009; Ren et al., 2012). As
a consequence, graph construction for these meth-
ods emerged as a relevant field of study (Ozaki
et al., 2011; de Sousa et al., 2013; Vega-Oliveros
et al., 2014) as well as approaches minimizing a
cost function derived from such a graph (Ravi and
Diao, 2016). Note that label propagation and its
variations are equivalent to certain minimization
problems (Bengio et al., 2000).

Giulianelli (2017) used SSL on a word embed-
ding obtained via a layer of a long short term mem-
ory (LSTM) recurrent network instead of using
word vectors. However, training an LSTM is a
supervised task, i.e. the method requires a large
amount of labeled data in the first place, which
defeats the purpose and is going against the main
motivation behind SSL techniques.

A major challenge with high dimensional data
is the curse of dimensionality, a well-known phe-
nomenon particularly affecting methods based
on nearest neighbour graphs. Radovanovié et
al. (2010) and subsequently Ozaki et al. (2011)
showed that hubs, i.e. vertices of high degree, have
a negative effect on classification results due to the
fact that they are among the nearest neighbours of
a large subset of the dataset.

We introduce the k nearest neighbor (KNN)
graph, consider different variants of it and propose
a trimming and a normalization procedure in order
to combat hubs.
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2 Contributions

To the best of our knowledge, there is no previ-
ous work carrying out a detailed theoretical and
empirical study of SSL as described above, that is
label propagation of a German sentiment lexicon
on word vectors trained on a German corpus.

Our contributions are as follows:

o A study of theoretical challenges of label prop-
agation on a polarity lexicon of word vectors.

e Benchmarking the performance of label prop-
agation on different word vector models of
varying dimensionality, including contextual
language models.

e Extensive experiments to study the perfor-
mance of label propagation empirically with a
variety of parameter configurations and graph
construction techniques.

e Proposition of 2 new methods to avoid the
negative effect of hubs during label propaga-
tion.

The rest of this paper is organized in the fol-
lowing way. We introduce the SSL setting, label
propagation and its problems in section 3. Our
new methods for graph regularization are explained
in section 4. Further motivation, analysis of the
dataset used, the set-up and the results of our ex-
periments are given in section 5. We conclude with
section 6.

3 Graph-based SSL

We begin with a definition of SSL, then define the
similarity function. Afterwards, we move on to
graph construction and label propagation before
discussing the challenges faced by these methods.

3.1 Similarity and Semi-Supervised Learning

Assuming the data is already given as a finite set of
points in R4, d €N, let I € N denote the number
of labeled points, u € N the number of unlabeled
points and n = [ + u the total number of points. We
are considering . = {x1,...,x;} C R, the set of
labeled points, and % = {x;.1,...,%,} CR?, the
set of unlabeled points, where x; # x; for every
i # j, i.e. the points are pairwise distinct. The label
of x; is denoted by y; € {0,...,p}, p € N. In this
paper, we study binary classification, i.e. p = 1.
Given {yi,...,y}, the goal of SSL is to predict
{Y1+1,---,yu} as accurately as possible.
The similarity function is a map

0: LUUXLUIU — R, (x,xX) — o(x,x),
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for instance

GY(x’x/) = fY(x _x,)a

where
Ix113

friRY R xise 27

denotes the radial basis function and y > 0.

Another example makes use of the k nearest
neighbors of x in .Z U %, defined as follows. Let
ke{l,....,n—1}, x € R? and x;,...,x, be a
reordering of . U % such that

by =l < - < =l
Then the k nearest neighbors of x in . U % are
kNN()C,gU%> = {X(l),. .o ,X(k)}.
Now, we can define

Gk(x7x,):{1 X €ANN(r, 2 V%) -

0 otherwise

Note that for every i € {1,...,n} and every k we
have that x; € kNN(x;, 2 U % ). To avoid this, one
can define ANN(x, ZU% ) = {x(2), -, X(k41)} - In-
cluding the distance of x and x’ is possible by using

61y (.) = { o) & NN, LU%)

0 otherwise

3.2 Construction of the Underlying Graph

The vertices of the underlying graph are given by
Z U7 . Consider the adjacency matrix A € R"*"
which is derived from the similarity matrix defined
as W = (0 (xi,xj))1<i,j<n-

The easiest choice for A is W itself, where o =
Oy yields a dense, undirected and weighted graph.
As A is usually heavily involved in the classification
of 7/ it is desirable to use a sparse matrix to save
computation time. In particular, a sparse adjacency
matrix results in higher classification accuracy as
noise and spurious relationships are reduced (Zhu,
2008; Ozaki et al., 2011).

Taking ¢ = o} leads to a sparse, directed and
unweighted graph, 6 = oy 4 to a sparse, directed
and weighted graph known as a kNN graph. Usu-
ally, it is transformed into an undirected graph by
choosing the adjacency matrix

Winax = (max(o(x;,x;)), 0 (xj,%:)))1<i,j<n-
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Figure 1: SNN graph on UCI glass data set, where
vertices with degree larger than 5 are drawn red
and accordingly bigger.

Ozaki et al. (2011) study the mutual kNN graph
which is given by the adjacency matrix

Winin = (min(o(x;,x;)), 0(x;,%;)))1<i,j<n-

Note that Wi,x and particularly Wy, may yield to
a disconnected graph, harming the classification if
there are connected components with few or abso-
lutely no labeled points.

In any case, the use of oy results in self-loops
as oy (x;,x;) = 1 for every i € {1,...,n}. These
can be removed by using the modified version
of kNN mentioned below (x). Note further that
Ok y(x,x) = 0 for every x € R?, ie. for fixed
i € {1,...,n} there are not k, but kK — 1 non-zero
entries in (Oy y(Xi,X;))1<j<n. Again, the modified
version of kNN prevents this behaviour.

3.3 Label Propagation

For the moment, let us assume y; € {—1,1}, i.e.
we replace the label 0 by —1. Given an adjacency
matrix A, the algorithm is given as follows (Bengio
et al., 2006).

Algorithm 1 Label Propagation

Compute A
Compute diagonal D by D;; < Yj_ A;;
Initialize ¥ < (y,...,,,0,...,0)
Iterate

1Y+ « p=lay®

2.7 yifor1<i<lI
until convergence criterion is satisfied

Denote the result by Y ()
(W))

Set y; = sgn(Y,

Consequently, the algorithm propagates the in-
formation along the edges of the underlying graph,
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Figure 2: Trimmed version of Figure 1, o¢ = 5.

typically until an equilibrium state is reached. The
nodes initially labeled serve as the source of infor-
mation.

A classical assumption in SSL is the cluster as-
sumption: if points are in the same cluster, they
are likely to be of the same class (Chapelle et al.,
2009). Of course, for high-dimensional data, it is
hard to check if this assumption is fulfilled, espe-
cially given that only a small proportion of the data
is labeled. Strictly speaking, this problem should
be overcome by the word embedding algorithm,
not the label propagation algorithm.

4 Improvements to the Graph

Let us now consider the undirected unweighted
kNN graph without self-loops, that is, the graph
G = (L U ,Wnax) with similarity function oy
using the modifed version of kNN.

4.1 e-Sparsification

Let € > 0. The g-sparsification of G is the graph G*
which is obtained by deleting every edge {x;,x;}
in G where Hxi —xjH2 > €. Therefore, using G®
instead of G reduces the influence of outliers on
the classification.

4.2 Edge Normalization

Firstly, we propose to transform G into a weighted
graph G" by performing edge normalization, i.e.
by assigning every edge {u,v} in G the weight

Wiy = (degq(u) + degg (1) .

Note that w,, is small if # and v have high de-
gree and vice versa, thus counterbalancing the high
amount of edges between vertices with high degree.

Let Ng(u) denote the set of neighbors of u in G.



For every vertex u € G, we have

0< Z Wiy
)

VENG(u

< Z (degg(u) + min degG(v))*l
VENG () VENG(u)

_ degg(u)
degg (1) +min, ey, () degg(v)

<1,

i.e. the weighted degree in G" is concentrated on
the unit interval (0, 1).

4.3 Edge Trimming

Secondly, one can apply edge trimming to G in
order to obtain G, i.e. one deletes edges in G by
the procedure given as follows:

1. Choose a threshold o > k and define
H ={uecG|degs(u) > o}

2. For every uin JZ, let vy, ... ’VSegG(u)

be a reordering of Ng(u) such that

degG(v‘f) > > degG(VﬁegG(u))

3. For every u in J¢ remove the edges
{u, v}, ..., {u,v}'} from G (if possible) where
I = deg(u) — [ klog;(degg (u))

Figures 1 and 2 illustrate the usefulness of trim-
ming for the regularization of kNN graphs using
the UCI glass data set (Dua and Graff, 2017).

4.4 Computational Efficiency

Jebara et al. (2009) and Ozaki et al. (2011) reported
that so-called b-matching graphs, a special case of
b-regular graphs, achieve higher classification ac-
curacy than kNN graphs. However, constructing
the b-matching graph takes O(bn’) time (Huang
and Jebara, 2007) which is too long to be useful in
practice when having large amounts of data. There-
fore, regularizing G within a reasonable amount of
time is desirable.

Fredman and Tarjan (1987) showed that the com-
plexity of building G is O(n* +knlogn). As the
number of edges in G is bounded by kn, the con-
struction time of G%, G" or G' given G is O(kn).
Hence the overall construction time is dominated
by the term O(n? 4 knlogn).

Note that approximate kNN graphs can be con-
structed in O(kn) time (Beygelzimer et al., 2006;
Chen et al., 2009; Ram et al., 2009; Tabei et al.,
2010). Combining these with the modifications dis-
cussed above yields a graph construction algorithm
having time complexity O(kn).
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NN \AY% AD  Other Total
polar 4028 1810 3621 102 9561
neutral 642 253 254 61 1210

Table 1: Absolute frequencies of POS-tags among
the labeled word vectors.

Figure 3: T-SNE plot (perplexity = 40) of the neu-
tral (green), polar (blue) and unlabeled (red) word
vectors. For sake of clarity, only 20000 red dots
are shown.

Figure 4: Figure 3 rotated around the x-axis.



Figure 5: Balanced accuracy for label propagation
on the kNN graph.

5 Experiments

In this paper, we use the lemmatized sentiment lex-
ica introduced in (Waltinger, 2010a) and (Waltinger,
2010b) and label propagation for word-level polar-
ity lexicon expansion.

We compare the label propagation algorithm
given above on various graphs in a sentiment po-
larity detection task. More precisely, we consider
G as in section 4 and its modifications as well as
the undirected weighted kNN graph without self-
loops, i.e. the graph Gy = (LU % ,Wnax) With
similarity function oy y using the modified version
of kKNN. The convergence criterion is given by
|y e+ —y @], <0.001.

5.1 Dataset and Resources

As there was no public FastText model (Bo-
janowski et al., 2016; Joulin et al., 2016) trained
on a proprietary German news corpus, we trained
our own model. The resulting vocabulary size was
196972 word vectors of dimension 60. The reason
for choosing FastText was the ability of the trained
model to deal with out of vocabulary (OOV) words,
as it is using subword character information.

The labeled word vectors are given by the lem-
matized dictionaries used in (Waltinger, 2010a;
Waltinger, 2010b). We assign the label 1 to the
words annotated positive or negative, i.e. polar,
and O to the words annotated neutral, where we
removed the digits and the punctuation symbols
from the neutral dictionary.

We prefer this lexicon over SentiWS (Remus et
al., 2010) and PolArt (Klenner et al., 2009) as it is
the largest one - 10771 words compared to approx-
imately 3450 and 9380, respectively. Furthermore,
SentiWS measures sentiment using the full interval
[—1,1], i.e. first, one has to categorise the senti-
ment value before one can apply label propagation.

In particular, polarity is sparsely embedded in
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language, i.e. a model accurately determining po-
larity can be used to extend sentiment dictionaries.

We choose to learn neutral vs. polar as the usu-
ally treated three-way case is significantly harder
on word-level. For instance, the sentiment of ’rise’
is polar, but the precise value depends heavily on
the context (e.g. compare wealth is rising and
poverty is rising).

5.2 Description of Dataset

The ability to embed OOV words is an integral part
of our method as the labeled words are not necessar-
ily contained in the corpus mentioned above. Fig-
ures 3 and 4 show a three-dimensional t-SNE plot
(Maaten and Hinton, 2008; Van Der Maaten, 2014)
of the word vectors, indicating that the dataset is
lying on a low-dimensional manifold.

In total, we have 9561 data points with label
1 and 1210 data points with label 0. Only 163
(= 1.5%) of these words have a Part-Of-Speech-
tag (POS-tag) that is not noun (NN), verb (VV) or
adjective (AD) (see Table 1). Therefore we only
consider unlabeled words whose POS-tag is one
of these three, reducing the amount of unlabeled
points to 85759.

We randomly draw a test set of 3000 words from
the set of unlabeled points. The test set is labeled
by one of the authors. 362 words (= 12.1%) were
assigned “polar”.

Comparing with an independent annotator, we
have an inter-annotator agreement of Cohen’s Kk =
0.4682 showing that word-level sentiment analysis
is a very hard to perform task, even for humans.
Consequently, one cannot expect a model predict-
ing sentiment to be performing as well as prediction
models in different areas of Machine Learning.

This is probably due to the fact that sentiment is
subjective and thus influenced by the emotional as-
sociation of words to experiences of the individual
annotator. There are even studies that suggests that
the voice and audio signal is as important as the text
for semantic purposes. A more fundamental fact is
that sentiment in human language is better identi-
fied given the context, thus rendering the analysis
of word-level sentiment even harder.

5.3 Dimensionality and Information Content
of the Embedded Data

Given the ever increasing dimensionality of em-
beddings, from about 300 in the early Word2Vec
models to more than 3000 in the most recent con-
textualized embeddings like ELMo (Peters et al.,
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Figure 7: Distribution of degree in G', a = 13.

2018), we study the cumulative explained variation
of the word embeddings given by Principal Compo-
nent Analysis (PCA) (Pearson, 1901) and examine
it for decreasing dimension of the target space.

In every case, there is a decay starting out slowly,
followed by a very sharp drop suggesting that most
of the critical information content of the given word
embedding is lying on a low-dimensional manifold.

5.4 Class Balancing and Parameters

Instead of transforming our labels to —1 and 1
(recall section 3.3), we normalized the labels by
class size, i.e. we used —1/1210 for the neutral

\

Figure 8: Cumulative explained variation of PCA
on our data embedded using GloVe.

PCA output dimension

Figure 9: Cumulative explained variation of PCA
on our data embedded using ELMo.

words and 1,/9561 for the polar words.

For all experiments, we use the same 9NN graph
G as k =9 maximizes the balanced accuracy (see
Figure 5). Given the near linear time complexity
of modifying G, we obtained an optimal parameter
configuration using binary search.

Note that word vector models trained on a very
large vocabulary, OOV words almost never occur.
Hence, we also compare our self-trained embed-
ding with different pre-trained ones.

5.5 Comparison of Word Vector Embeddings
and Classification Results

Training a word vector model on the corpus at hand
is usually an expensive and rewarding step at the
same time. We compare our model with three pre-
trained word embeddings:

e FastText,

e ELLMo and

e GloVe (Pennington et al., 2014).

Note that ELMo is a contextualized representation
model embedding a word within its sentence. As
we are working on word-level, each sentence is the
word itself. The results are shown in table 2.

Despite being the lowest-dimensional, our self-
trained model captures the nuances of our corpus
better than the other pretrained models. Further,
we can see that ELMo, one of the most recent con-
textualized word embedding models, clearly out-
performs FastText and GloVe, whereas the latter
two roughly score the same.

Table 3 shows the result for Gy, G and its modi-
fications using the parameters maximizing the F1
score. We can see that G is performing worse than
G and its modifications. In particular, removing
hubs via edge normalization or trimming is improv-
ing classification performance.
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Embedding Dimension F1 Recall Precision Bal. Acc.
FastText (self-trained) 60 0.3405 0.6381 0.2322 0.6743
GloVe 96 0.2084 0.4199  0.1386 0.5308
FastText (pre-trained) 300 0.2016  0.2376  0.1752 0.5420
ELMo 3072 0.2602 0.6492 0.1627 0.5954

Table 2: F1 score and balanced accuracy for G with different word embeddings to transform our data into

high-dimensional vectors.

Underlying Graph F1 Recall Precision Bal. Acc.
Gy, y=14 0.3317 0.6630  0.2212 0.6713
G 0.3405 0.6381  0.2322 0.6743
Gt e=110 0.3410 0.6381  0.2326 0.6746
G" 0.3437 0.6575  0.2326 0.6799
(GH)", e =110 0.3449 0.6602 0.2334 0.6813
G,a=13 0.3428 0.6685  0.2305 0.6811
(G5, e =120,a=12 0.3437 0.6740 0.2306 0.6827

Table 3: F1 score and balanced accuracy for Gy, G and G with different combinations of the modifications
discussed in section 4. (G?)" indicates that edge normalization was applied after €-sparsification.
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Figure 10: Distribution of weighted degree in G".

5.6 Improvement of Graph Construction

In Figure 6 we can see that G not only contains
vertices of degree 9, but also of degree 20 times
as large. After trimming the edges, the graph is
close to a 9- or 10-regular graph (see Figure 7). In
particular, the maximum degree is 22, a little more
than twice the most frequent degree arising in G'.

Figure 10 shows the distribution of the weighted
degree in G", the normalized version of G. Again,
the maximum degree is a little more than twice
the most frequent degree arising, whereas the mini-
mum degree is comparatively small, i.e. the graph
is not close to a regular weighted graph. However,
the shape of the distribution is quite similar to the
shape seen in Figure 7.

Figure 11 shows the balanced accuracy for G’

0.675

Balanced accuracy
3
o
g

0.665

Figure 11: Balanced accuracy for G', 9 < a < 224.
The dotted line shows the balanced accuracy for G.

where ( is ranging from 9, the minimum degree in
G, to 224, the maximum degree. For small o, G’ is
close to a regular graph, i.e. hubs were successfully
eliminated yielding a good result. Furthermore, for
large o, G' is very similar to G and hence the result
is approximately the same. However, there is a no-
table global minimum around & = 35, suggesting
that hub removal should be done either completely
or not at all.

5.7 Towards the Fully Connected Graph

Due to the high amount of memory needed, we can-
not construct the fully connected weighted graph
proposed by Zhu and Ghahramani (2002), that is
the graph given by taking the similarity matrix W
along with the similarity function 6y as adjacency
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—— k=190
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Balanced accuracy

Figure 12: Bal. Accuracy for Gy, 1 < % < 10, and
multiple values for k.

matrix A. However, the weighted kNN graph G,
with large & is a good approximation as oy (x;,x;)
is strictly decreasing in Hxi —X J'Hz and hence, only
the edges having small weight are missing.

As an example, Figure 12 shows the balanced
accuracy for k € {9,99,199,499} (k = 499 is very
close to the maximum value possible on our hard-
ware). We can see that large k& harms the clas-
sification, thus confirming the results on sparse
adjacency matrices mentioned in section 3.2.

We do not rule out the fact that there could be a
state change as k ~ n where the information flow
improves drastically and causes the SSL classifi-
cation performance to spike. We leave this as an
open question for future work.

6 Conclusion

In this paper, we study label propagation for senti-
ment detection on word vectors obtained by train-
ing a FastText model as well as by using pre-trained
models, which clearly perform worse. We showed
empirically that the unweighted 9NN graph per-
forms better on the given task than its weighted
counterpart and the approximation of the fully con-
nected weighted graph.

Furthermore, we propose improvements to state-
of-the-art methods for the construction of the un-
derlying graph. and show that properly chosen anti-
hub routines and mild &-sparsification improves
the result. In particular, edge trimming is a fast
algorithm to transform a kNN graph into a more
regular one.

7 Future Work

Possible directions for future research include the
development of an online label propagation algo-
rithm based on entropy and data quantization (in
the spirit of (Valko et al., 2012)). The goal is to

improve classification performance for situations
where the word vector embedding of the given data
does not fulfill the cluster assumption perfectly.
Furthermore, the ability of being able to deal with
streaming data is a highly attractive add-on for
practical applications of SSL models.

Another interesting idea is the search for metrics
quantifying the cluster assumption for the embed-
ded data, as discussed above. This can be sup-
plemented by an analysis of the performance of
label propagation conditioned on the scores pro-
vided by the metrics found above and hence, by the
relevance of the word embedding.

Datasets which can be used to examine the per-
formance of the given SSL algorithm include the
annotations on polarity shifters by (Schulder et al.,
2018) and the domain-specific corpora for compu-
tational social science by (Hamilton et al., 2016).
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Abstract

Automatic division of spoken language
transcripts into sentence-like units is a chal-
lenging problem, caused by disfluencies,
ungrammatical structures and the lack of
punctuation. We present experiments on di-
viding up German spoken dialogues where
we investigate the impact of task setup and
data representation, encoding of context
information as well as different model ar-
chitectures for this task.

1 Introduction

Being able to structure natural spoken discourse
into sentence-like units (SLUs) is desirable not only
from a theoretical point of view, but is also a key
requirement for enabling research in corpus linguis-
tics as well as the application of Natural Language
Processing tools (e.g. POS-tagging and parsing) to
transcripts of spoken language. While various pro-
posals have been made for how to divide spoken
language in corpora into smaller units, typically
these divions were not guided by syntactic consid-
erations. Instead, division into inter-pausal units is
common (e.g. Hamaker et al. (1998) for the Switch-
board corpus). Until recently, for most languages
no well-established system existed for detecting
boundaries between sentence-like units that is both
theoretically well-founded and practically opera-
tionalizable for large and diverse corpora of spoken
interaction.

For German, the SegCor project (Westpfahl
and Gorisch, 2018; Westpfahl et al., 2019) de-
veloped guidelines for dividing transcibed speech
into sentence-like units using the topological field
model of German surface syntax. Schmidt and
Westpfahl (2018) subsequently presented a corpus-
based study on how well the length of gaps between
utterances can predict the syntactic boundaries an-
notated in the SegCor corpus.
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In this work, we take up the challenge of auto-
matically detecting boundaries between SLUs on
the spoken German of the SegCor transcripts. Fur-
ther, we apply our system not only to the question
whether a gap, a long silence, coincides with a syn-
tactic boundary but to all boundaries in general,
including the ones that occur in continuous speech,
such as interruptions and aborted utterances.

This paper proceeds as follows. We discuss re-
lated work in section 2 and present our dataset in
sesction 3. In sections 4 and 5 we discuss the task
formulations we employ and the features we use.
Our experiments and their results are described in
section 6, followed by a conclusion in section 7.

2 Related Work

In the realm of medially written language, the most
closely related task is sentence boundary detection
(SBD). Typically, this has been framed as decid-
ing for a closed class of interpunctuation symbols
(mainly °.’,’?’,’!”) whether they represent the end of
a sentence or not, with abbreviations constituting
one of the key sources of error. While tradition-
ally very high accuracies were reported, Read et
al. (2012) show in their overview of SBD that per-
formance can be significantly worse on text other
than news, with machine learning-based systems
often being less robust than rule-based or hybrid
sytems. Comparing Wikipedia pages to topically
related blogs, they also show that within the same
domain, sentence-boundary detection performs less
well the more informal the text type is. Read et al.
(2012) observe that the traditional framing of the
problem overlooks all the cases where sentences
or rather sentence-like units, text sentences in the
sense of Nunberg (1990), end without a punctua-
tion symbol: on the ‘standard’ texts in their collec-
tion, this affects 12.3% of sentences. Read et al.
(2012) therefore argue for a more general approach
‘which considers the positions after every character
as a potential boundary point’.


https://creativecommons.org/licenses/by-nc-sa/4.0/

In the domain of medially spoken language,
the detection of sentence-like units may use both
textual and prosodic features. Gotoh and Renals
(2000) performed experiments with HMMs on ref-
erence transcripts from BBC radio and tv programs
which included repeated and incorrect speech as
well as disfluencies. They also constructed an
alternative pause duration model alone based on
speech recogniser output aligned with the tran-
scripts. The pause duration model outperformed
the language modelling approach, while a combi-
nation of the two models provided further perfor-
mance gains. Precision and recall scores of over
70% were attained for the task of deciding for each
word whether it represents the last word of a sen-
tence. In his work on sentence boundary detec-
tion on Czech radio news and discussion programs,
Kolér (2008) similarly finds that combining several
models works best.

Liu et al. (2005) evaluate the performance of a
CRF-model on two English corpora (conversational
telephone speech and broadcast news speech) on
both human transcriptions and automatic speech
recognition output. Their experiments show that
the use of prosody improves performance over the
use of word n-grams alone and that the addition of
further features e.g. on pos-tags provides another
improvement.

Roark et al. (2006) use a re-ranking approach to
the detection of SLU boundaries. In a two stage
approach, they first fix a subset of the word bound-
aries as points of division, yielding subsequences
betwen fixed points, which they call fields. In
the second stage, candidate boundaries within the
fields are generated and then ranked.

In our own experiments, we will experiment with
various features and task paramaters used by prior
work such as e.g. POS, gap/pause-length, use of
left and/or right context etc. In addition, we also
explore extra features available with our dataset.

3 Dataset

The data used here is unlike most of the material
used in related work in that it represents conver-
sational speech that was furthermore recorded in
non-laboratory settings. Also, it is characterized by
interactions between two or more speakers. Since
tools based on the automatic processing of the au-
dio signal do not work all that well on our data, we
instead work with the transcripts only. Our dataset
consists of 33 documents with more than 54,000
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lexical tokens originating from the FOLK corpus
(Schmidt, 2014) that were divided into sentence-
like units by the SegCor project. This data set was
doubly annotated and disagreements were adjudi-
cated (Westpfahl and Gorisch, 2018). Note that
to avoid confusion, we reserve the term “’segment”
and related forms for the division of speech into
chunks by the transcribers that was guided by si-
lences in the speech signal. For the division of the
material into sentence-like units we will use the
term “SLU boundary detection”.

The raw FOLK transcripts, which we take as our
input and which lack SLU-boundaries, follow the
cGAT conventions (Schmidt et al., 2015). Accord-
ingly, the data uses “contributions” and ’segments”
as the fundamental units in the data structure. Seg-
ments of speech are the original units of transcrip-
tion: transcribers are instructed to select them as
chunks that can be transcribed in one go given cog-
nitive load and useability of the transcription en-
vironment. Crucially, segment boundaries should
be placed at word boundaries or at the beginning
or end of pauses. Like segments, contributions are
defined without any reference to syntactic consid-
erations (Schmidt et al., 2015, 8):

‘A contribution in a cGAT transcript com-
prises all immediately consecutive seg-
ments attributed to a speaker. Contribu-
tions should not be confused with sen-
tences, which are units of written lan-
guage. Instead, they are to be understood
as dialogue contributions.

Pauses (silences up to 0.2s) may occur between
separate contributions but also within a contribu-
tion. Gaps, silences longer than 0.2s, always sepa-
rate contributions in cGAT.

The relation between the input representation
in terms of contributions and the intended output
representation in terms of sentence-like units is
not always one to one. Common deviations are as
follows. First, a contribution may correspond to
several SL.Us as illustrated by (1).

() 1 contribution : n SLUs

a. < ¢ >hich weil net ich glaub eher
nichhh< /¢ >

b. < s>hich weil net< /s >
< s > ich glaub eher nich h h< /s >

c. ‘Idon’t know. I rather think not.’



Second, several contributions may jointly corre-
spond to one SL.U.

2) n contributions : 1 SLU

a. < c >der beschiftigt sich< /¢ >
<c¢>(0.85) < /e >
< ¢ >zwei minuten mit dem< /¢ >
b. < s > der beschiftigt sich (0.85)
zwei minuten mit dem < /s >

c. ‘He occupies himself with that one
for two minutes.’

Both situations may also occur in combination
so that we get n : m-relations between contributions
and SLUs.

To decide on SLU boundaries, we can use not
only the transcribed word forms but also some fur-
ther kinds of information about the tokens, which
we will use as features (cf. section 5). Further,
while we do not use acoustic features such as word
durations and pitch contours, the transcript does
give us access to temporal information that has
proved useful in previous work (Gotoh and Renals,
2000). We encode pause length and, since we know
which tokens are produced by which speaker, we
also introduce turn boundaries into our representa-
tion.

4 Task formulations

We can approach the SLU boundary detection prob-
lem in various different ways. We discuss the major
points of variation in what follows.

4.1 Granularity

In one line of experiments (coarse), we predict
only whether a token is followed by some type of
syntactic boundary (B) or not (O). In another line
(fine), we also distinguish between several types of
boundaries. From Westpfahl and Gorisch (2018),
we adopt the following B(oundary) types.

S Simple sentential units consist of exactly one
clause. In terms of word order, the clause may
be of any of the types V1 (verb initial), V2
(verb second), V1/2 (cases that are unclear
between V1 and V2) or in rare cases VL (verb
last). The clauses may not have any dependent
clauses.

C Complex sentential units consist of several
clauses that are dependent on one another:
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Main clauses with subordinate clauses or rel-
ative clauses, conditional sentences, reported
speech, and matrix-clause with sentient-verbs,
complex pre-pre-fields with main clause, dis-
continuous sentences, and coordinated sen-
tences if and only if the second sentence
shows subject or verb ellipsis.

N Non-sentential units are all units that are not
structured by a finite verb.

A An utterance which is disrupted, i.e. it opens a
projection that subsequently goes unfilled.

U Tokens at the end of a unit whose status could
not be categorized as one of the previous four
cases.

Since in the context of sequence labeling we
need to have a label on every token, we add several
further categories of non-boundary labels. In the
binary setting, these categories are merged into the
non-boundary class (O).

O Words spoken by one of the speakers that are
not followed by a boundary.

X is used for different types of non-verbal infor-
mation: a) speaker turns, and b) pauses. We
distinguish between pauses shorter than 0.2
sec and longer pauses. According to cQGat,
longer pauses always occur between two adja-
cent contributions and are not assigned to any
speaker while shorter pauses are considered to
be part of one speaker’s contribution. For in-
stance, the pause in (i) is part of speaker RD’s
contribution as they are just pausing speech
for the purposes of word finding. By con-
trast, the pause in (ii) is not assigned to either
speaker: it is clear that speaker RD has fin-
ished their turn, but speaker LH has not yet
taken the floor.

i RD: ich konnte es ja dariiber 16sen dass
ich das nicht auf das <pause> ko auf die
konten der seefahrer buch sondern auf
ein verrechnungskonto
‘Well, I could fix it in this way that I don’t
book it on the acc on the accounts of the
sailor but instead to a clearing account’

ii RD: ich versthe nichts davon
‘l don’t know anything about it’
<pause>
LH: okay. ...

In our experiments, both pause types are as-
signed the tag “X”.



4.2 Views

Since our data comes from multi-party conversa-
tion it lends itself to two views. On the one hand,
we can think of it as an integrated conversation,
where contributions of speakers alternate, with oc-
casional overlaps. The intuition behind adopting
this view on the data is that a speaker’s productions
do depend on / respond to what the other speaker
says. For instance, responses to questions are of-
ten not complete sentential units whether simple or
complex but rather consist of non-sentential mate-
rial. For that reason, it seems important to take into
account what interlocutors are saying.

A second, complementary view of the data treats
it as a set of tracks of speech, each by one spe-
cific person. The intuition behind this view is
that the sentence-like units are local only to the
given speaker’s utterances. For instance, whether
a sentence is simple or complex depends only on
what the current speaker produces. In adopting a
track view (track), we completely ignore the other
speaker’s productions.

Both views potentially have problems handling
certain kinds of so-called split utterances (Purver
et al., 2009). On the conversation view, utterances
that are distributed across multiple contributions
of the same speaker may be interrupted by con-
tributions of other speakers. On the track view,
utterances that are distributed across speakers (that
is, co-constructed turns begun by one speaker but
finished by another) cannot be recovered.

4.3 Instance creation

We define instances for the classifier either in terms
of word windows of varying size or in terms of N
merged contributions. !

4.4 Model type

As demonstrated by the related work, one estab-
lished way to approach the SLU boundary detection
problem is in terms of sequence labeling. The task
consists in algorithmically assigning a categorical
label to each item in a sequence of observed val-
ues. In our task, a token is labeled either as being
followed by a boundary or not.

As a baseline approach, we adopt a classical
Conditional Random Fields (Lafferty et al., 2001)
tagger, using the CRFsuite implementation by

1Other variations are possible such as creating overlapping
instances. For instance, with word windows we could create
one instance from words 1-10 and the next from words 2-11
etc. We could proceed similarly in the case of contributions.
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Okazaki (2007), for which we provide our own
feature engineering.

We compare this system with two more recent
neural architectures. The first system is an imple-
mentation of the model of Lample et al. (2016),
using biLSTMs for input encoding, based on word
and character-based embeddings, followed by a
CREF layer on top (Reimers and Gurevych, 2017).>
The second model, the flair sequence tagger (Ak-
bik et al., 2019), has a similar architecture that also
combines biLSTMs and a CRF layer on top. In
addition, flair uses contextual string embeddings
(Akbik et al., 2018) which model words as con-
textualized sequences of characters, resulting in
different embeddings for the same string, depend-
ing on its surrounding context.

5 Features

The data encodes the following information that
we can use as features in our experiments.

Tokens The simplest feature are the raw tran-
scribed tokens.

POS The SegCor data includes automatically pre-
dicted POS tags.

Normalization The normalization layer contains
the canonicalized form for the raw tokens. For
instance, when an instance of the first per-
son present form of the verb verstehen ‘under-
stand’ is pronounced as two syllables, without
its final weak syllable, it is transcribed as ver-
steh. The normalization of the token will be
the expected canonical form verstehe. Also
while all noun tokens appear lowercased in
the transcription, they are written with initial
capitals on the normalization layer.

Lemma The lemma forms for the transcribed data.

6 Experiments

At the highest level, we divide our experiments
depending on the granularity, coarse or fine. Within
these high-level groups, we discuss the experiments
in sets that address a common research question.
We use 70, 10 and 20% of the data for train-
ing, development and testing, respectively. We do
not split up individual transcriptions but put them
whole into either train, dev or test. This makes
the task slightly harder as we test on data from
new speakers that have not been seen during train-
ing, and on new topics that are not included in

Zhttps://github.com/UKPLab/
emnlp2017-bilstm-cnn-crf/



ID View Instances Macro Acc MacroF1l FI1B F10O Description

1 track single 83.75 45.58 0.00 91.16 majority class, i.e. no boundaries
2 track single 89.98 74.99 55.63 94.35 boundary at end of contribution

Table 1: Results for rule-based baselines (coarse-grained, track: track-view; singe: single contributions)

ID View Instances Macro Acc MacroF1 F1B F1O context features

3 track single 94.20 87.25 77.84 96.67 +/-2 word,pos
4 track single 93.66 86.04 75.73 96.36 +/-1 word,pos

3 g 5 track merged 94.69 88.33 79.71 96.95 +/-2 word,pos

§ :;3 6 track merged 93.99 86.74 76.93 96.54 +/-1 word,pos

85 7 track window 9401 8658 7659 9657 +/-2  wordpos
8 conv. window  93.54 85.42 74.54 96.30 +/-2 word,pos

g 9 track merged 94.78 88.56 80.13 97.00 +2 word,pos

g 10 track merged 93.53 85.60 7490 96.29 +1 word,pos

£ 11 track merged 89.21 73.25 52.58 9391 -1 word,pos

S 12 track merged 88.75 72.86 52.09 93.63 -2 word,pos

s 13 track merged 93.86 85.87 7525 96.50 +/-2 word

& 14 track merged 93.86 86.46 76.46 9647 +/-2 pos

%:’0 15 track merged 93.76 85.89 75.36 96.43 +/-2 lemma

@ 16 track merged 94.16 86.88 77.10 96.66 +/-2 normalization

g 17 track single 94.14 87.15 77.68 96.63 +/-2 norm, pos

S 18 track merged 94.78 88.52 80.05 97.00 +/-2 norm, pos

§ 19 track merged 92.56 84.38 73.07 95.68 +/-2 word, pos; no turns

Table 2: Results for sequence labeling with CRFsuite (coarse-grained, track-view; conv.: conversation;
merged: 5 merged contributions; window: 10-word windows)

ID View Instances Macro Acc MacroF1 F1B F10 Embeddings Schema

20 track merged 94.14 87.06 77.48 96.63 Reimers2017 word
21 track merged 94.36 87.69 78.63 96.75 Reimers2017 norm

Table 3: Results for biLSTM-CRF sequence tagger (Lample et al., 2016) (coarse-grained, track-view)

ID View Instances Macro Acc MacroF1 F1B F10O Embeddings

22 track mergedS 95.07 89.59 82.05 97.14 fasttext+flair

23 track merged5 9228 8342 7130 9554 fasttext
24 track mergedS 94.83 89.28 81.56 97.00 fasttext+custom
25 track mergedS 95.43 90.23 83.11 97.36 fasttext+flair+custom

Table 4: Results for flair’s sequence tagger with contextual string embeddings (coarse-grained, track-view)
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Figure 1: F1 B-score for word windows of various
sizes (dots: conversations; x’s: tracks; step size=5;
CRFsuite)

the training set. Thus, the classifier cannot adapt
to speaker-specific features and might encounter a
larger amount of unknown words. However, this
setting is more realistic and will give us a better es-
timate of what to expect when applying our models
to new data.

For all non-deterministic models, we report re-
sults averaged over three runs for each configura-
tion.

6.1 Coarse-grained classification

Baselines In addition to using CRFsuite as a
baseline, we calculated the following two rule-
based baselines (table 1). Baseline 1 always assigns
the majority class (no boundary) while baseline 2
predicts a boundary at the last token in each contri-
bution. Recall that the contributions are not gold
sentences but can also cross syntactic boundaries,
which is shown by the less-than-perfect results for
baseline 2 (89.98% acc. and 55.63% F1 for the
Boundary class). As will be shown by the experi-
ments to follow, machine-learning based systems,
unsurprisingly, can yield much better results.

Views and instance creation First, we investi-
gate the impact of view and instance creation on
the performance for varying window sizes. Fig-
ure 1 plots the F1 scores for Boundaries relative to
growing sizes of word windows used to construct
instances. The results are very similar regardless
of whether we use the conversational view or the
track view.

Figure 2 shows the development of the F1 B-
score in relation to the number of contributions that
are assembled into one instance. We observe that,
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Figure 2: F1 B-score for track view in relation to
contributions merged (CRFsuite) (dots: conversa-
tions; Xx’s: tracks)

here too, the results hardly differ between the track
view and the conversational view.

While it should not matter much in practice, we
choose to mainly work with the combination of
merging segments on the track view for the remain-
der of the paper since the highest F1-score that
we obtained in these experiments come from this
combination.

Importance of Context We now focus on the
question where in the context the relevant informa-
tion for boundary detection is. Thus, the second
block of experiments varies the context relative to
our reference experiments 5 and 6 (Table 2), using
either only the left or the right context, or no con-
text at all. The contrast between the results for the
experiments with one-sided context shows that the
right context is clearly more important than the left
one and that the left context by itself does not hold
very much information to begin with.

Individual features Experiments 13—16 present
results for runs with individual features. The results
show that not all forms of generalizing over the con-
crete tokens work equally well. The automatically
assigned lemmatization probably is worst because
on our data it is also often wrong. POS-tags are bet-
ter but the normalized text representation, though
also automatically assigned, is best.

Normalization Following on the observation
about the utility of normalization, in experiments
17 and 18, we use the normalization layer instead
of the transcribed tokens in combination with POS
tags. When contrasting the results of these exper-
iments with those of exp. 3 and 5, we see that



normalization gives slightly better results only in
the second setting. Given that normalization is
also time-consuming, in later experiments we will
not use the normalization layer but instead use the
transcribed speech as input.

Importance of Sequencing Information In ex-
periment 19, we use a version of the data from
which, unlike for all other track view-based ex-
periments, the representation of turns has been
eliminated. Compared to the matched basic ex-
periment 5, we see a significant drop in Macro F1
and the F1 for the B(oundary) class, which under-
scores the importance of including information on
turns.

Classical CRF vs. biLSTM-CRF Recent ad-
vances in NLP have shown the expressive power of
neural networks. We thus compare the performance
of the classical CRF sequence tagger to two neural
systems, the one of (Lample et al., 2016; Reimers
and Gurevych, 2017) and the flair sequence tagger,
as described in Section 4.4.

Table 3 shows that the neural biLSTM-CRF does
not always improve results over the classical CRF.
The first system uses word and charcter-based em-
beddings as features and predicts the binary labels
{B,0}. This configuration does not outperform
CRFsuite configurations such as 5 where we also
use POS tags as features, in addition to the word
tokens.

The biLSTM-CRF can make better use of the
normalization, as shown in experiment 21. Com-
pared to experiment 16, we gain 1.5% in perfor-
mance. Both systems, however, are outperformed
by the flair sequence tagger with contextual string
embeddings (Table 4, exp 22).

Embeddings used Given that flair outperforms
the model of Lample et al. (2016) despite their sim-
ilar architecture, we now explore variation around
the embeddings used in flair. Experiment 23 shows
the value of flair’s contextual string embeddings:
without them performance decreases by more than
10% for F1 B (see exp. 22).

In our next experiment, we want to test whether
we can increase performance by training our own
contextual string embeddings on text that is more
similar to our data. For this, we train flair embed-
dings for 20 epochs on ca. 11 million ‘sentences’
extracted from the open subtitles corpus (Lison and
Tiedemann, 2016) and an in-house twitter dataset.
These sentences were filtered to be at most 60 char-
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acters long and to contain no more than one comma
and one period, question mark or exclamation mark.
The punctuation marks were removed before train-
ing and the data was lowercased. In experiment 24
we use these custom embeddings in combination
with fasttext only without the default forward and
backward embeddings provided by the flair library.
The results show that the custom embeddings are
quite good on their own (exp. 24). Combining them
with flair’s pretrained embeddings further improves
results, showing that our custom embeddings con-
tain complementary information (exp. 25). While
the results suggest that the use of more domain-
similar contextual string embeddings is beneficial,
we cannot be sure that the improvements are really
due to domain similarity. To test this in future work,
we will need to compare our results to another type
of custom embeddings trained on a corpus of equal
size but with different properties that are less simi-
lar to spoken language, such as newspaper text.

6.2 Fine-grained classification

We now turn to the fine-grained setting which
distinguishes between five kinds of boundary la-
bels. For ease of presentation and since the non-
boundary labels are not important to us, we will
report F1 scores for each boundary label with the
exception of the U(ninterpretable) class, which is
conceptually ill-defined since by definition it is un-
clear whether, and what kind of, a boundary occurs.
As well as the global Macro F1 and Macro Ac-
curacy scores, we also report a score “Macro F1
B’ which constitutes the macro average over the
boundary labels, including U.

As a reference for the flair sequence tagger, Ta-
ble 5 shows results for CRFsuite for the trackwise
view and instances formed by merging contribu-
tions.> As shown by the difference in Fl-scores
between the fine-grained and the coarse-grained
settings from Table 2, the fine-grained task is much
harder. Again, using word windows of size 10 for
instance creation is worse than merging contribu-
tions.

The gap between CRFSuite and the neural sys-
tem shows the potential of the contextual string
embeddings: Flair outperforms CRFSuite susbtan-
tially (cf. exp. 29 vs. 27). Focusing on the flair
results, we see that the performance on the individ-
ual boundary types strongly depends on their fre-

3For lack of space we do not report results for the biLSTM-
CRF model of (Lample et al., 2016; Reimers and Gurevych,
2017) which again was outperformed by flair.



Id View Instances MacroF1 MacroAcc F1A FIC FIN F1S MacroFlB

26 track window 58.51 97.61 2279 2632 73.55 51.01 43.42

27 track merged 58.15 97.65 25.30 2624 7392 52.20 44.20
Table 5: Results for fine-grained sequence labeling with CRFsuite

Id View Instances MacroF1 MacroAcc FIA FIC FIN F1S MacroFlB

28 track window 68.59 98.10 42.82 4576 80.16 66.34 56.69

29 track merged5S 70.24 98.22 4293 5049 81.59 68.95 58.98

Table 6: Results for fine-grained sequence labeling with flair

quency: results for the rarer classes A(borted) and
C(omplex) are substantially lower than the ones
for the more frequent classes N(on-sentential) and
S@imple).

6.3 Error analysis

To get a sense of what the flair sequence tagger is
able to learn, in Table 7 we take a look at the confu-
sion matrix for the best fine-grained experiment 29.
Among the boundary classes, A(borted) segments
are mostly not recognized as having any kind of
boundary, i.e. they receive the label O; smaller
subsets of true A’s are mistaken for non-sentential
units or simple sentences. When A’s get confused
for O’s, this often seems to be due to the boundary
token being an incomplete, partial word such as a
or we.

For C(omplex) segments, being mistaken for a
simple sentence (S) is the most common error, be-
fore not being recognized as any kind of bounded
segment. One class of C-S confusions arises when
subordinate complement clauses lack a comple-
mentizer and verb-second word order is used, as in
example (3).

3) < ¢ > ich wiederhole das sind tonsteine
(.) mit eingelagerten kalksandsteinbinke

A C N (0] S U X Total
A 57 3 12 93 20 0 O 185
cC 0 98 5 61 75 1 0 150
N 5 6 584 78 36 0 0 709
O 12 26 102 8836 8 2 0 9062
S 7 24 17 128 439 0 O 615
u1l1 0 4 6 2 9 0 22
X 0 0 O 0 0 0 2105 2105

Table 7: Confusion matrix for best fine-grained run
(exp. 29; across: predicted; down: gold)
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< Jc>
‘I repeat [that] these are mudstones with
embedded banks of sand-lime brick.’

Finally, for S(imple) sentences not being recog-
nized as a bounded segment is the most common
error. One subtype of this error that we recognize
are cases where the final token is an unlikely one.
Consider example 4, whose true labeling is given.
The error that flair makes is to include all the to-
kens in a single S(imple) sentence, even though
this means that the resulting simple sentence incor-
rectly has two finite verbs. Potentially, the error
occurs because the adverb angeblich ‘supposedly’
is an unlikely sentence ending token. In example
5, the initial complex sentence is correctly recog-
nized but the following simple sentence receives
no boundary label even though it is followed by a
change of turn. Again, the problem seems to be that
the subject pronoun er ‘he’ is an unlikely sentence-
final token. Other instances concern elliptical cases
where modal verbs occur sentence-finally without
an infinitival complement (e.g. die miissen ‘They
must’). A second subtype of error consists of infre-
quent sentence types. Consider the example in 6.
This is an unusual case because it is a free-standing
subordinate clause, which gets treated as a simple
sentence according to the SegCor guidelines. Flair
marks no boundary here, which results in the main
clause of the following complex sentence having
two finite verbs.

4) < s >da war des doch fast die dlteschte
mutter angeblich< /s >< s >mit siebe-
nungsechzig hat se s kind gekriegt oder
so< /s >
‘She was almost the oldest mother there
supposedly. She had the child at sixty-
seven or thereabouts.’



) < ¢ > was ich gelesen hab (.) muss immer
derjenige dh zu lebzeiten schon seine ein-
verstiandnis abgegben< ¢/ > < s >nur die
nimmt er< /s >
‘From what I have read that person al-
ways has to give their consent during their
lifteime. Only those ones he accepts.’

(6) < s > ob ich des hinkriech < /s >
‘[I am wondering] if I can manage that.’

Finally, we want to note that sentence boundary
labeling cannot be done perfectly by humans and
that its diffculty is variable across text types. Westp-
fahl and Gorisch (2018) report an average kappa
of 0.69 across 8 transcripts. Across the transcripts,
the kappa value ranges from 0.53 for a conflict-
ual interaction to 0.76 for a reading child. While
Westpfahl and Gorisch (2018) give no breakdown
of which confusions among boundary types are
most frequent for their human annotators, they do
show a further complication of the task: the differ-
ent sentence types are distributed differently across
different text types and their specific properties also
vary by text type. For instance, in so-called expert
talk, simple sentences are longer than in other texts.
Taken together, these considerations underline the
challenge in the task we tackle.

7 Conclusions and Future Work

We have investigated the problem of detecting
SLUs in spoken German. We found that the choice
of data representation for the classifier is important:
small word windows perform worse than larger
ones but the merging of contributions performs
well in a robust way, no matter the size. Further,
we found that the main challenge of the task is to
recognize sentence beginnings: the right context
is much more important than the left context. We
also verified that using information on turns 