
JSLIM – Computational Morphology in the Framework
of the SLIM Theory of Language

Johannes Handl, Besim Kabashi, Thomas Proisl, and Carsten Weber

Friedrich-Alexander-Universität Erlangen-Nürnberg
Department Germanistik und Komparatistik

Professur für Computerlinguistik
Bismarckstr. 6, 91054 Erlangen

{jshandl,kabashi,tsproisl,cnweber}@linguistik.uni-erlangen.de

Abstract. JSLIM is a software system for writing grammars in accordance with
the SLIM theory of language. Written in Java, it is designed to facilitate the
coding of grammars for morphology as well as for syntax and semantics. This
paper describes the system with a focus on morphology. We show how the sys-
tem works, the evolution from previous versions, and how the rules for word
form recognition can be used also for word form generation.1 The �rst section
starts with a basic description of the functionality of a Left Associative Grammar
(LAG) and provides an algebraic de�nition of a JSLIM grammar. The second
section deals with the new concepts of JSLIM in comparison with earlier imple-
mentations. The third section describes the format of the grammar �les, i. e. of
the lexicon, of the rules and of the variables. The fourth section broaches the sub-
ject of the reversibility of grammar rules with the aim of an automatic word form
production without any additional rule system. We conclude with an outlook on
current and future developments.

Introduction

The NLP system JSLIM is the latest in a sequences of implementations within the
framework of the SLIM2 theory of language, which was introduced in [2]. The theory
models the cycle of natural language communication, consisting of the hearer mode, the
think mode, and the speaker mode. Providing the basis for human-machine communi-
cation, it uses the data structure of �at (non-recursive) feature structures called proplets
and the time-linear algorithm of Left Associative Grammar (LAG)[3].

1 The aim of the paper is to give a gentle introduction to the way grammars are written in JSLIM.
The more technical aspects of the system, i. e. its scalability, the time required for analysis and
generation, an evaluation of the system based on corpora, and a comparison of JSLIM to other
existing systems, are the topic of a forthcoming paper.

2 SLIM is an acronym for Surface compositional Linear Internal Matching, i. e. for the basic
principles on which the theory is based [1, p. 30].

C. Mahlow and M. Piotrowski (Eds.): SFCM 2009, CCIS 41, pp. 10–27, 2009.
c� Springer-Verlag Berlin Heidelberg 2009

JSLIM – Computational Morphology in the Framework of the SLIM Theory 11

JSLIM builds on the experiences made in the earlier systems Malaga and JLAG.3 The
present implementation is designed to free the grammar writer from all unnecessary
work, thus simplifying development and upscaling. This is achieved by a declarative
syntax for writing the rules. Implicit category value checks render the explicit inser-
tion/deletion of values by means of imperative statements obsolete.

Currently, rules can be applied at different levels of the grammar. This allows an
easier encapsulation of paradigmatic morphologic phenomena, e. g. in�ection. The lex-
icon entries are �at, i. e. the nesting of feature structures as in Malaga is not permitted,
though nesting can be simulated by means of symbolic references. These changes al-
low the extensive use of templates which considerably reduce the size of the lexicon and
which improve its performance, readability and maintainability. The declarative syntax
for in�ectional and derivational combinations is bidirectional in that it may be used not
only for the analysis of in�ectional and derivational forms, but also for their generation.

1 Foundations

This section brie�y describes the fundamental principles on which the system is built.
First we explain the way an LAG works and on which principles it is based. Then we
give the algebraic de�nition of a JSLIM grammar, because it works slightly different
from the de�nition of an LAG given in [2, pp. 186–187].

1.1 LAG and SLIM

Grammar does not tell us how language must be constructed in order to ful�l
its purpose, in order to have such-and-such an effect on human beings. It only
describes and in no way explains the use of signs. [6, p. 138]

The purpose of a grammar is therefore not to understand language but to �nd means by
which to describe it. One of the most evident properties of natural language is its lin-
earity in time. Therefore, LA-grammar uses a strictly time-linear derivation order.4 [3]
describes LAG as a bottom-up left-associative parsing scheme as illustrated in �gure 1.
In each derivation step, the sentence start, i. e. the part of the input already parsed, is
combined with the next word, which in the case of morphological analysis corresponds
to the next allomorph of the input. The number of combination steps required to suc-
cessfully parse an input therefore corresponds to the number of allomorphs of the input
minus one.
3 The system Malaga [4] is quite elaborate and allows the construction of a grammar. Written in

C, it provides a language for grammar rules and a single lexicon with nested feature structures.
However, the style of the code requires programming experience. Also, the complexity of the
lexicon entries makes the grammar less readable and upscaling more dif�cult. The next system,
called JLAG, was implemented by [5] as an attempt to apply the paradigm of object-oriented
programming to NLP. Coding became even more dif�cult and it never left the prototype state.
As in Malaga the main problem was that the grammar writer was burdened with too much
work and too little work was done by the system.

4 It is the topic of the SLIM theory of language to model a real understanding of language.

12 J. Handl et al.

�

������

sur: Sommer
cor: Sommer
cat: (m-gp-d)
sem: (m sgpl)
�x: CAdler

�

					

�

������

sur: nacht
cor: nacht
cat: (f)
sem: (f sg)
�x: CHand

�

					

��

������

sur: Sommer | nacht
cor: Sommernacht
cat: (f)
sem: (f sg)
�x: CHand

�

					

�

������

sur: s
cor: s
cat: (fug)

�

					

��

������

sur: Sommer | nacht | s
cor: Sommernachts
cat: (stem)
sem: ()
�x:

�

					

�

������

sur: träum
cor: traum
cat: (pstem)
sem: (m pl)
�x: CBach

�

					

��

������

sur: Sommer | nacht | s | träum
cor: Sommernachtstraum
cat: (pstem)
sem: (m pl)
�x: CBach

�

					

�

������

sur: e
cor: e
cat: (�x)

�

					

�
Result of morphological analysis:�

������

sur: Sommer | nacht | s | träum | e
cor: Sommernachtstraum
cat: (p-d)
sem: (m pl)
�x: CBach

�

					

.

.

������������
e

�����������

.

������������
träum

�����������

.

�����������
s

�����������

Sommer

�����������
nacht

�����������

Fig. 1. The bottom-up left associative analysis and derivation order of an LA-grammar

1.2 The Algebraic Description of a JSLIM Grammar

According to [7, p. 4] a JSLIM grammar G’ is de�ned as an 8-tuple

(W �,A�,C�,LX �,CO�,RP�,ST �
S,ST �

F)

Thereby

1. W � is a �nite set of surfaces
2. A� is a �nite set of attribute names
3. C� is a �nite set of category segments
4. LX � �W �× (A�×C��)+ is a �nite set called the lexicon
5. CO� = (co�0, . . .co�n�1) is a �nite set of total recursive functions called categorical

operations of the form

P(FS)×FS � P(FS) (1)

Thereby, FS � (A�×C��)+ and P(FS) is the function to generate the power set for
a given set. Let co 	CO� and co({ f s0, . . . , f sn�1}, f sn) 	P(FS) with f si 	 FS for
i � 0 < n. Let FSc = {M
 P(FS) : |M| = c}. There exists an m < n,k < n with

JSLIM – Computational Morphology in the Framework of the SLIM Theory 13

co

�
k�1�

i=0

{ f si}�
n�1�

i=k

{ f si}, f sn

�
=

m�1�

i=0

{ f s�i}�
n�1�

i=k

{ f si} (2)

0 � k < ck = const (3)

1 � m � k + 1 (4)

�(M 	 FSn�1�k) : co(
k�1�

i=0

{ f si}�M, f sn) =
m�1�

i=0

{ f s�i}�M (5)

where f s�i 	 FS for i � 0 < m.
6. RP� = (rp�0 . . . rp�n�1) is a sequence of the same length

with rp�i
 {i|0 � i < n}, called rule packages
7. ST �

S
 (A�×C��)�×RP�� is a �nite set called start states
8. ST �

F
 (A�×C��)�×RP�� is a �nite set called �nal states

The de�nition is in accordance with the de�nition given in [2, p. 187]. However, feature
structures are used instead of a category list to represent sentence start and next word.
An LAG which works on feature structures was already de�ned in [8, pp. 37–38], but
the concept of categorical operations has changed. One of the recent innovations re-
garding LAGs was to postulate a sentence start which is no longer coded in the form
of a hierarchical data structure, but in the form of a set of �at feature structures. As
a consequence, it is possible to access single values not only by using the underlying
hierarchy of the data structure but also by using various – mainly syntactic-semantic –
relations between the feature structures.5

Although those changes are fundamental as far as syntax is concerned they have little
impact on morphological analysis where the sentence start is still coded into one single
feature structure. I. e. in morphology we have the special case that both sets, sentence
start and resulting set, always have a cardinality of one.

2 Applied Techniques

In this section, the newer concepts of JSLIM are presented. One of those concepts is the
idea of undirected programming.6 The idea is to specify rules as bijective functions, so
that they can be executed in either direction. Here we only brie�y cover the declarative
syntax used in JSLIM, but we will go into more detail in section 4. We then investigate
the techniques of indirection7 and common subtree sharing, as they have an impact on

5 This facilitates the way rules can be written and provides the grammar developer with new
means of how to express constraints in the rules. [9] showed that rules for sentences with
gapping and coordination can be modelled more accurately by exploiting word order.

6 The most famous example of a programming language which allows undirected programming
is Prolog. It is widely known among linguists for allowing easy coding of natural language
grammars by using the de�nite clause grammar (DCG) notation. Although it is not the in-
tention of the developers to create a new logic programming language, Prolog had a certain
in�uence on the design of the rule syntax.

7 Indirection has been widely used before, e. g. for constraint parsers, but never in combination
with an LAG.

14 J. Handl et al.

the storage and design of the lexicon.8 The technique of common subtree sharing is also
applied to the parsing process, e. g. for the internal representation of the parsing state.

2.1 Undirected Programming and Declarative Syntax

In JSLIM, a declarative syntax can be used to code in�ection. Listing 1 illustrates the
declension table of the German noun ‘Bach’ (creek) as it is coded in JSLIM. A table
de�nition starts with the keyword table and the table name. The �rst letter of the
table name must be an upper case letter. The table name is followed by a colon and the
signature of the table. The signature de�nes, which attributes9 of the combined feature
structures are changed by one of the combination rules de�ned within the table body.
The body comprises several rows with implication arrows. The left side of the arrow
speci�es the category values of sentence start and next word, whereas the right side
speci�es the resulting category values. The signature helps to investigate the attributes
and the feature structure to which the values belong. To avoid the repetitive speci�cation
of the same category values for the sentence start, a semicolon can be put at the end of
the last combination de�nition to indicate that the next de�nition will reuse the missing
values from the current. A full stop, in contrast, indicates that the category values of the
current de�nition are not reused.

table C_Bach: [cat ,sem] [sur] => [cat ,sem]
(m-g) (m sg) es => (mg) (m sg) ; # Baches

s => (mg) (m sg) ; # Bachs
e => (md) (m sg) . # Bache

(pstem)(m pl) e => (p-d)(m pl) . # Bäche
(p-d) (m pl) n => (pd) (m pl) . # Bächen

Listing 1. A morphological rule in JSLIM

Hence, the above table de�nition de�nes the following combination steps illustrated
in �gure 2. This de�nition is declarative as it does not enforce by any means in what
way the modi�cations have to be performed, but merely describes them.

2.2 Indirection

When developing a morphology for a natural language one of the �rst tasks of the de-
veloper is to somehow code the conjugation and declension tables. Although it is quite
a simple task for an experienced traditional linguist to do so on a sheet of paper, it is not
so clear at �rst sight how to perform this task within the framework of Left Associative

8 The techniques of common subtree sharing, DAGs and suf�x trees have been frequently used
to reduce the size of lexica, inter alia in the �eld of chart parsers. The elegance of the approach
of using templates as presented here is that the grammar developer bene�ts directly from the
compact storage, as the continuous support through all the stages of parsing eases the building
and maintenance of the lexicon.

9 A description of the used attributes can be found in [1, p. 335]. The values of the attributes are
coded using a distinctive (instead of an exhaustive) categorization [2, p. 244] [1, pp. 335–337].

JSLIM – Computational Morphology in the Framework of the SLIM Theory 15

cat: (m-g)
sem: (m sg)

�
�

sur: es
�
�

cat: (mg)
sem: (m sg)

�
Baches

cat: (m-g)
sem: (m sg)

�
�

sur: s
�

�

cat: (mg)
sem: (m sg)

�
Bachs

cat: (m-g)
sem: (m sg)

�
�

sur: e
�

�

cat: (md)
sem: (m sg)

�
Bache

cat: (pstem)
sem: (m pl)

�
�

sur: e
�

�

cat: (p-d)
sem: (m pl)

�
Bäche

cat: (p-d)
sem: (m pl)

�
�

sur: n
�
�

cat: (pd)
sem: (m pl)

�
Bächen

Fig. 2. A morphological rule in JSLIM

Grammar. An in�ectional form is a combination of a stem with an in�ectional af�x. To
restrict possible combinations of stems and �exives, the agreement conditions have to
be coded into the category values of the combined parts. There are four possibilities to
achieve this.

1. A naive approach would be to store a paradigm feature �ag in the stem as well
as in the in�ectional suf�x. This would reduce the in�ectional check to a simple
agreement check based on those two �ags. The disadvantage of this approach is
that, though agreement checks could be realized very ef�ciently, e. g. via a bitmap,
the suf�xes would become rather complicated, as suf�xes are normally used in
more than one paradigm, and dif�cult to code and to maintain. E. g. changing the
paradigm feature of one paradigm also requires the paradigm feature �ag of the
in�ectional endings of this paradigm to be changed which may in�ict side-effects
on other paradigms. Creating suf�x entries for each paradigm is also no satisfactory
solution, as this has a negative impact on the runtime.

2. The stem approach tries to restrict the combination of stem and in�ectional af�x
mainly by focusing on the category of the stem. The disadvantage of this approach
is obvious. As in�ectional properties of the whole paradigm are coded into every
single lexicon entry, storage is extremely redundant.

3. The af�x approach tackles the problem from the other end. Instead of storing the
in�ectional properties of the paradigm in the stems, those properties are coded into
the af�xes. This avoids redundant storage of information but unnecessarily compli-
cates the af�x entries. A possible solution would be to multiply the lexicon entries
of the af�xes to simplify their categories. However, this has a noticeable negative
impact on the run-time, as all these lexicon entries must be matched for a single
combination with this af�x.

4. Like the stem approach, the indirection approach accesses in�ectional properties
of the paradigm via the stem. However, the indirection approach is an improvement
over the stem approach in so far as the information is only referenced, but not stored
directly. The information itself is coded into a table, which is de�ned externally.

16 J. Handl et al.

JSLIM supports all three approaches. However, the grammar developer is encouraged
to use the indirection approach. In the next paragraph that approach is described in
more detail.

�

���

sur: Bach
cat: (m-g)
sem: (m sg)
�x: CBach

�

		

�

���

sur: Bäch
cat: (pstem)
sem: (m pl)
�x: CBach

�

		

Fig. 3. Allomorphs of the German noun ‘Bach’ (creek)

We code the allomorphs of a word as illustrated in �gure 3. The lexicon entries con-
tain an attribute for the surface (sur), attributes for the syntactic and semantic categories
(cat and sem), and an attribute for in�ection (�x). The value of the latter is a reference
to the table de�ned earlier in listing 1. When the parser tries to combine the stem with
an in�ectional af�x,10 this trial is redirected to the table CBach which can be accessed
via the attribute �x. Stem and in�ectional af�x become the so-called arguments of the
table, i. e. a lookup in the table is performed, if an applicable combination rule can be
found. In the case of a successful lookup the combination rule is applied, otherwise the
table lookup fails and, as a consequence, the rule application also fails. Therefore, it
is much easier to handle in�ection by means of indirection, as matching is reduced to
a simple test of whether the in�ectional af�x is allowed in the paradigm. No complex
category checks are required.

2.3 Common Subtree Sharing

Reducing the memory needed by a system can be critical when trying to improve its
performance. If a simple value requires much space and has to be stored multiple times,
the easiest method to reduce the amount of memory needed is to store the value only
once and then reference it. Though this may drastically reduce the amount of memory
needed, still much memory is wasted for the pointers. Better results can be achieved by
applying this principle of single storage to compound values. As illustrated in �gure 4
and �gure 5, most of the data structures used in JSLIM can be regarded as directed
acyclic graphs. Those data structures bear a close resemblance to trees, with few nodes
at the upper layers and almost all the nodes at the bottom layers. Besides, the co-domain
of the values at the lower levels is quite restricted.11 Therefore, the technique of com-
mon subtree sharing can be applied.

To allow the sharing of common values in the lexicon, values can be marked ex-
plicitly in the base lexicon and in the allo12 lexicon. We will go into more detail in the
next section. The notation re�ects the way lexicon entries are stored internally. A lexi-
con entry is stored in the form of a 3-tuple which consists of the surface, the base form

10 In�ectional af�xes can easily be marked as such by an adequate category value.
11 An exception are the values of the surface and base form attributes, which of course are spe-

ci�c.
12 Following a tradition of former systems, JSLIM uses an allo lexicon and allo rules [10].

JSLIM – Computational Morphology in the Framework of the SLIM Theory 17

state

ss.1 ss.2

sur noun cat sem mdr wrd sur ad j cat sem mdd wrd

der @1 1 jung|e jung e pos 2

e� m� s3 de f

Fig. 4. Inclusion hierarchy of a parser, cf. [7, p. 55]

n0
1 2

n1

surnoun cat sem mdrwdr

n4

sur ad j
cat sem

mdd

wrd

der @1 n2
1

2
3

n3

1

1 jung|e jung n5

1

n6

1

2

e� m� s3 de f e pos

Fig. 5. Graph of a parsing state, cf. [7, p. 55]

�

������

sur : der
noun : @1
cat : (e’ m’ s3)
sem : (def)
mdr : (jung)
wrd : 1

�

					

�

������

sur : jung | e
adj : jung
cat : (e)
sem : (pos)
mdd : @1
wrd : 2

�

					

+

�

������

sur : Mann
noun : Mann
cat : (m-g)
sem : (m sg)
mdr : ()
wrd : 3

�

					

�

�

������

sur : der
noun : Mann
cat : (s3)
sem : (m sg def)
mdd : (jung)
wrd : 1

�

					

�

������

sur : jung | e
adj : jung
cat : (e)
sem : (pos)
mdd : Mann
wrd : 2

�

					

Fig. 6. Parser state when executing DET+N, cf. [7, p. 54]

n0
1

n�0
1

n1 n�1

der @1 n3 n4 1 n�3 n�4

e� m� s3 de f

Fig. 7. Flat copy of a parser state, cf. [7, p. 56]

18 J. Handl et al.

and a reference to a template which contains the additional values, normally shared with
other entries.13

Sharing of common values of parser states is advisable, in so far as during a deriva-
tion ambiguity arises in (almost) every parsing algorithm from time to time. Ambigui-
ties are normally handled by creating a new branch for each reading. The drawback of
this approach is that it might not be possible to copy the temporary result of the deriva-
tion in constant time if it is coded in the current state. This, however, can be guaranteed
if just �at copies are created and the depth of the graph is limited by a constant. How-
ever, the parser has to take care that no side effects are created. An example of copying
a state in constant time is shown in �gure 7. All values which will be modi�ed by the
action described in �gure 6 are copied.

3 The JSLIM Grammar Files

In this section, the grammar �les of a JSLIM grammar are brie�y described. The focus
lies on showing the differences to earlier and different implementations.14

3.1 The Lexicon

There are several ways of coding lexicon entries due to the following reasons:

– Depending on the state of a project the priorities may vary. While developing a
grammar, the main focus might be the fast creation of a lexicon. Later on, it will
probably shift to the readability, maintainability and space ef�ciency of the lexicon.

– Normally, a lexicon is not constructed by hand but by scripts which migrate existing
lexica, or �ll a lexicon with data extracted from corpora. Depending on the struc-
ture of the original data, conversion into one format might be easier to accomplish
than into another possible format. And as long as the different formats are easily
interchangeable, there is no reason why to restrict the lexicon to a single format.

– Normally, constructing a morphology component is a bottom-up process. First, a
lexicon with a representative of each paradigm is needed to test in�ection. Then,
the lexicon is �lled. Therefore it may be easiest, to start with a rather simple lexicon
as long as it can also be automatically converted into a template based lexicon.

The different types of lexicon entries are described below.
Plain old lexicon entries are the simplest kind of lexicon entries. They are mainly

used for lexicon prototyping. Their structure reminds us of the style used in [13]. All
entries are coded separately. Although at �rst sight this might seem to be the best and
easiest choice, plain old lexicon entries render the lexicon de�nition highly redundant
as common values are not shared. An example for plain old lexicon entries is given in
listing 2.

[sur: lern , cor: lernen , cat: (n’ v), sem: (pres), ...]

Listing 2. A plain old lexicon entry for ‘lernen’ (to learn)

13 By applying that technique, the amount of required memory can be considerably reduced, as
was shown by the Italian morphology implemented by [11].

14 A more detailed explanation of the grammar �les can be found in [12].

JSLIM – Computational Morphology in the Framework of the SLIM Theory 19

The purpose of the instance notation is to avoid the above mentioned redundancy of
categorical value. This aim is achieved with the help of templates. A template looks like
an ordinary feature structure but is pre�xed by the string !template. A feature struc-
ture can be marked as an instance of the last de�ned template by pre�xing it with !+. A
template followed by three instances is illustrated in listing 3. It is possible to override
attribute values speci�ed in the template by specifying them again in an instance. This
style may be helpful for small to medium sized lexica, but only to a lesser extent for
very large lexica.

!template [cat: (n’ v), sem: (pres), ...]
!+[sur: lern , cor: lernen]
!+[sur: erb , cor: erben]
!+[sur: schenk , cor: schenken] ...

Listing 3. The instance notation for ‘lernen’, ‘erben’ (to inherit), ‘schenken’ (to make a gift)

The sequence notation can be used if feature structures differ in only one attribute
value. Instead of specifying instances, the attribute to be added and the list of corre-
sponding values are speci�ed. For each value in the list an entry is added to the lexicon
consisting of all the values speci�ed by the last template in addition to the indicated
attribute value pair. This style, however, is only possible if the entries belonging to
a certain template differ in only one attribute value. This may be the case for a base
form lexicon, but certainly not for the allo lexicon. In the latter, surface and base form
attributes are word form speci�c and will differ in the majority of cases.

!template [flx: C_lernen , all: A_lernen]
!+ sur cor: lernen erben ...

Listing 4. The sequence notation

A variant of the sequence notation is the regexp notation. It can be used in the
case of instances differing in more than one attribute while all the attribute values are
derivable from one value by means of regular expressions. This notation allows attribute
names to be followed by regular expressions (see listing 5).

!template [cat: (n’ a’ v), sem: (pres), ...]
!+ sur /(.+)en/\$1/ cor: lernen erben ...

Listing 5. The regexp notation

The column notation is the most compact one. It avoids the repeated declaration of
attribute names and thus not only reduces the lexicon size but also increases processing
speed: This kind of entry can be read in very ef�ciently as number and type of the
attributes to be added is known in advance. Therefore, this is the preferred style for
very large lexica.

!template [cat: (n’ a’ v), sem: (pres), ...]
![sur cor]
lern lernen
erb erben ...

Listing 6. The column notation

20 J. Handl et al.

3.2 The Allomorph Method

Like the previous implementations of the LAG system (see [10, pp. 103–104]) JSLIM
uses the allomorph method presented in [14, pp. 255–256]:

The allomorph method uses two lexica, called the elementary lexicon and the
allomorph lexicon, whereby the latter is automatically derived from the former
by means of allo-rules before run-time. [...] During run-time, the allomorphs of
the allomorph lexicon are available as precomputed, fully analyzed forms [...],
providing the basis for a maximally simple segmentation: the unknown surface
is matched from left to right with suitable allomorphs - without any reduction
to morphemes.

Hence, the lexicon of the base forms coded in the above described notations merely
serves as input for the allo rules to create the allo lexicon. Though, we will show in
the next section, that the structure of the base form lexicon is preserved within the allo
lexicon.

3.3 Allo Rules

Allo rules are coded in a declarative manner using the afore mentioned table notation
(see section 2.1) and indirection. I. e. a reference to the allo rule is coded within the lex-
icon entry of the base form. Listing 7 shows the allo rule for the German noun ‘Bach’.
Allo rules are executed before run-time to create the allo lexicon [10]. The approach
presented here is an improvement over earlier systems in which the allomorphs of a
base form had to be generated by applying all allo rules.15

!template [cat: (n’ a’ v), sem: (pres), ...]
![sur cor]
lern lernen
erb erben ...
table A_Bach: [cor] => [sur ,cor ,cat ,sem]
/(.*?)([AOUaou])(u?[^aouäöü]*)/ => /$0/ /$0/ (m-g) (m sg) ;

=> /$1$2"$3/ /$0/ (pstem) (m pl) .

Listing 7. Allo rule for the German noun ‘Bach’

3.4 Allo Lexicon

In previous implementations the template structure of the lexicon �les could not be
maintained by the allo generator. The allo generator expanded the templates and the
corresponding template instances. The output of the generator was a sequence of com-
plete feature structures. Hence, templates were merely used to ease the coding of lexi-
con entries. This way of proceeding, however, is inef�cient a) as far as the execution of
the allo rules is concerned and b) with respect to further parser passes, e. g. the loading
of the allo lexicon. An advantage of storing the allo table as an attribute value is that
the allo rules which are needed can be called directly from the feature structure of the

15 The generated allomorphs still contain a reference to the allo table. The purpose of this will be
explained in section 4.

JSLIM – Computational Morphology in the Framework of the SLIM Theory 21

base form (indirection). It is therefore clear before run-time which allo rules have to be
applied to which lexeme. What is more, the expansion of the templates can be avoided.
The allo generator processes templates as follows: If a template contains an attribute
all, the semantics of the allo rule is split into two parts: One affects the template and
the other merely affects the template instance. The result of the generation therefore
consists of one or more modi�ed templates, one for every allo rule, each followed by a
sequence of (probably) modi�ed instances (see listing 8).

!+[all: A_Bach , flx: C_Bach]
!+ cor: Aalkorb Abbrand Abbruch Abdampf ... Bach ...

� � �

!+[all: A_Bach , flx: C_Bach , cat: (m-g), sem: (m sg)]
!+ sur cor: Aalkorb Abbrand Abbruch Abdampf ... Bach ...

!+[all: A_Bach , flx: C_Bach , cat: (pstem), sem: (m pl)]
![sur cor]
Aalkörb Aalkorb
Abbränd Abbrand
Abbrüch Abbruch
Abdämpf Abdampf
...
Bäch Bach
...

Listing 8. Generation of the allo lexicon

3.5 Combi Rules

Combi rules de�ne when two allomorphs can be combined. Normally, combi rules del-
egate most of the work to the tables which are referenced by the combined parts.16

Figure 9 illustrates the rule used for in�ection. A rule starts with its rule name, here
STEM+FLX, followed by its rule package, i. e. by the set of follow-up rules. The sen-
tence start pattern asserts that the sentence start is a stem. This is enforced by the
declaration of the attribute �x. That the next word is an in�ectional af�x is ensured by
the category value (flx) in the next word pattern. The value *F of the attribute flx
triggers a table look-up with the feature structure which matches the sentence start and
the feature structures which matches the next word as its argument.

STEM +FLX {STEM +FLX}

[cat: _, flx: *F] [cat: (flx)] => [...] [-]

Listing 9. Morphology rule for in�ection

The rule is only applied, if the table look-up succeeds. The result of the look-up
de�nes the way the two features structures are changed. The result patterns after the

16 This is an example of indirection as described in section 2.2.

22 J. Handl et al.

implication arrow can also be used to specify the way the two feature structures are
changed. The pattern [...] indicates, that the features structure which matches the
sentence start pattern remains unchanged within the sentence start. The pattern [-]
means, that the feature structure which matches the next word pattern is excluded from
the resulting sentence start.

3.6 Variables

For the patterns to become more abstract, variables can be used. For example, the rule
in listing 9 contains the prede�ned anonymous variable _, which can be the placeholder
for an arbitrary value. A variable can have a prede�ned data type and a co-domain as is
illustrated in �gure 10. The variable CAT has the data type string and may be bound
to the values {s1’, s13’, ...}.17

string CAT <- {s1 ’ s13 ’ s2 ’ s3 ’ s3p2 ’ p13 ’ p2 ’ m-g mg md ...}

Listing 10. De�nition of the variable CAT

4 Word Form Generation

Word form generation deals with the creation of word forms from various inputs, be
it a direct human request or the parameter values of the internal and external sensors
of a robot. The application spectrum ranges from providing suggestions within a spell
checker to the creation of a speaking robot. It is our goal to reuse the rules used for word
form analysis for word form generation. This requires that the allowed combinations of
lexicon entries are de�ned as a bijective function. The tables used in JSLIM can be seen
as bijective functions in so far as they map a sequence of attribute values to another
sequence of attribute values and are therefore reversible. If in�ection is coded by means
of tables, the code for the analysis can also be used for generation. As there is ongoing
research in this �eld [15]. we cannot present a complete word form generation system
with conceptualization and linearization. But we show that it is possible to generate
a surface form for a given lemma and a given category – a process that is sometimes
referred to as surface generation.

4.1 Surface Generation

We distinguish two cases of surface generation: a) the generation of a complete
paradigm and b) the generation of a single word form. The �rst case may be of in-
terest to check the correctness of a grammar, whereas the second case is needed for
natural language production in the speaker mode.

17 The grammar developer can also de�ne constraints between pairs of variables. This feature is
particularly expedient for specifying the agreement conditions in a syntax but is rarely used in
morphology.

JSLIM – Computational Morphology in the Framework of the SLIM Theory 23

4.2 Generation of a Paradigm

To generate a complete paradigm for a base form, only an allomorph of the stem is
needed.18 To generate the complete paradigm the following steps are performed.

1. Look up the lexicon entry of the provided allomorph.
2. The allomorphy of the base form is speci�ed in the attribute all of the lexicon entry,

the value of which is a reference to a table. Apply that table to the allomorph. The
circumstance that the rules in the table are applied to the allomorph and not to the
base form, is negligible due to the fact that the application of the rules only depends
on the base form of an entry. That base form is the value of the attribute cor and
is the same for all allomorphs of a given stem. Besides, the category values are all
changed by the applied rule, hence their particular values are insigni�cant.

3. Each allomorph has an attribute �x with an in�ection table as its value. For each
rule in the table, we look up the in�ectional af�x and execute the combination rule
with the stem and the af�x as its arguments. As it is possible to combine a stem with
more than one in�ectional af�x, we repeat this step until no rule matches anymore.

We provide an example to illustrate the process of generating all word forms of a
paradigm in more detail.

Example. Let ‘geb’ be the allomorph of a word form for which the paradigmatic forms
shall be generated. The four allomorphs of the morpheme are ‘geb’ (Präsens), ‘gib’
(Präsens), ‘gab’ (Imperfekt) and ‘gäb’ (Konjunktiv 2). The �rst trivial step is to per-
form a lexical look-up for the allomorph ‘geb’, which returns the corresponding feature
structure as illustrated in �gure 8a.

Listing 11 shows the allo table which is used to create the allomorphs of the mor-
pheme ‘geb’.

table A_geben : [cor] => [sur ,cat ,sem]
/(.+)e(.+) en/ => /$1e$2/ (n’ v) (pres) ; # geb

=> /$1i$2/ (i’ v) (pres) ; # gib
=> /$1a$2/ (s13 ’ v) (ipf) ; # gab
=> /$1ä$2/ (n’ v) (k2) . # gäb

Listing 11. The table for the allomorphy of the German verb ‘geben’ (to give)

The application of the table is shown in �gure 8b. The four allomorphs of the mor-
pheme ‘geb’, namely ‘geb’, ‘gib’, ‘gab’ and ‘gäb’, are created on the basis of the allo-
morph ‘geb’. It is evident from the syntax of the rule that applying the table to different
allomorphs of the same morpheme will not change the result, as the attribute values of
the resulting feature structures are set by the respective applied rule. Listing 12 shows
the in�ection table of the generated allomorphs.19

18 The stem morpheme is accessed via the surface of one of its allomorphs as an allo lexicon is
used.

19 Normally, only one in�ection table is used for one paradigm. This, however, is solely a design
decision and by no means obligatory.

24 J. Handl et al.

a) Lookup b) Generation of the allomorphs

geb
��

�������

sur: geb
cor: geben
cat: (n’ v)
sem: (pres)
all: A_geben
�x: C_geben

�

						

�

�������

sur: geb
cor: geben
cat: (n’ v)
sem: (pres)
all: A_geben
�x: C_geben

�

						

�

�

�������

sur: geb
cor: geben
cat: (n’ v)
sem: (pres)
all: Ageben
�x: Cgeben

�

						

�

�������

sur: gib
cor: geben
cat: (i’ v)
sem: (pres)
all: Ageben
�x: Cgeben

�

						

�

�������

sur: gab
cor: geben
cat: (n’ v)
sem: (ipf)
all: A_geben
�x: C_geben

�

						

. . .

c) Execution of the combi rules

table C_geben: [cat,sem] [sur] => [cat,sem]
...
(i’ v)(ipf) st => (s2’ v)(ipf)
...

�

�������

sur: gab
cor: geben
cat: (n’ v)
sem: (ipf)
all: A_geben
�x: C_geben

�

						

�

�������

sur: st
�

						

�

�

�������

sur: gab|st
cor: geben
cat: (s2’ v)
sem: (ipf)
all: A_geben
�x: C_geben

�

						

Fig. 8. Generation of a paradigm

table C_geben: [cat ,sem] [sur] => [cat ,sem]
(n’ v) (pres) e => (s1’ v) (pres) ; # geb -e

en => (p13 ’ v) ; # geb -en
t => (p2’ v) . # geb -t

(i’ v) (pres) st => (s2’ v) (pres) ; # gib -st
t => (s3’ v) . # gib -t

(s13 ’ v)(ipf) st => (s2’ v) ; # gab -st
en => (p13 ’ v)(ipf) ; # gab -en
t => (p2’ v) . # gab -t

(n’ v) (k2) e => (s13 ’ v)(k2) ; # gäb -e
est => (s2’ v) ; # gäb -est
en => (p13 ’ v) ; # gäb -en
t => (p2’ v) . # gäb -t

Listing 12. The table for the conjugation of the verb ‘geben’

For each generated allomorph the attribute values are matched with the left sides
of the rules. In case of a match, we append the surface of the in�ectional af�x to the
surface of the allomorph and perform the category changes de�ned by the rule.

4.3 Conditions for the Approach to Work

For surface generation to work, the following conditions must hold:

1. All categorical values are created by allo rules based on the value of the attribute of
the base form.

JSLIM – Computational Morphology in the Framework of the SLIM Theory 25

2. The allo tables are stored as attribute values of the allomorphs. The alternative
would be to read in the base form lexicon which would be impractical.

3. The in�ection tables are stored as attribute values of the allomorphs. The alternative
would be to try all in�ection rules on a stem which would be impractical.

4. Allomorphy and in�ection are coded only by means of tables. This is necessary as
the tables allow different access orders as needed for generation.

These conditions must also hold for generating a single word form. However, they can
easily be ful�lled without losing generative capacity and they rather facilitate lexicon
design than hamper it. Hence, generation based on the rules for analysis is always
possible.

Algorithm 1. generate(A ,F ,v)
1: for all a in A do
2: if matches(rightside(a),v) then
3: return �a�
4: end if
5: end for
6: for all f in F do
7: if matches(rightside(f ,v)) then
8: if � �= (r = generate(A ,F ,leftside(f))) then
9: return r + �a�

10: end if
11: end if
12: end for
13: return �

4.4 Generation of a Single Word Form

If all forms of a paradigm can be generated, it is possible to generate a single form by
�rst generating the paradigm and then using a �lter. The obvious disadvantage, however,
is a lot of overhead. By using the following algorithm it is possible to use the tables to
generate only a single word form of a given category:

1. Indicate the word form to be generated by providing an allomorph of the stem and
one or more attribute values of the word form to create, e. g. geb and [cat: (s2’
v), sem: (ipf)].20

2. Look up the lexicon entry for the provided allomorph. This step is exactly the same
as when generating a complete paradigm in �gure 8a.

3. Determine the set of in�ection rules for the allomorphs of the stem. If the allo rule
does not change the in�ection table (normal case), it can be taken directly from
the lexicon entry. Otherwise, it can be investigated by looking at the right side of
the rules of an allo table, as this is where they may be set. As the signature of
the table A_geben in �gure 11 does not contain the attribute flx, the referenced
in�ection table will not change when generating the allomorphs of the stem geb
and can therefore be taken from an arbitrary allomorph.

20 A �lter can be used to allow a more �exible input which map more general user inputs to
attribute values used in the paradigm.

26 J. Handl et al.

4. For all allo rules, check if the result of one of these allo rules matches the provided
category values. If it matches, the word form can be generated by applying the allo
rule. E. g. if the provided attribute values were [cat: (s13’ v), sem: (ipf)],
a matching form of geben could be created by executing the third row of the table
speci�ed in �gure 11.

5. If the provided category values do not match any right hand side of an allo rule,
check the in�ection rules. If the right hand side of one of the in�ection rules
matches, the word form can be generated by applying that rule. Other in�ection
rules and at least one allo rule must be applied and the result of those applications
must match the left side of the matching in�ection rule. Therefore, we continue
recursively with step 3, but use the values of the left side of the in�ection table
instead of the provided category values. E. g. let the speci�ed attribute values of the
verb geben be [cat: (s2’ v), sem: (ipf)]. As these values do not occur on
the right side of any rule in the table A_geben, the desired word form cannot be
created by merely applying an allo rule. However, the values would match the right
side of the fourth row in the table C_geben (cf. �gure 12). Hence, we memorize
that this rule has to be applied and try to �nd a way to generate the word form with
the category values [cat: (s13’ v), sem: (ipf)], i. e. with the values of the
left side of the applicable row.

Let A be the set of allo rules of the word form, F the set of in�ection rules, and v
the speci�ed values. Let leftside be a function which returns the values of the left
side of a combination rule except the next word, and rightside be the function which
returns the right side of the combination rule. The algorithm is illustrated more formally
in Alg. 1.

5 Conclusion

In this article, we presented the JSLIM system of automatic word form recognition and
production. It has been shown how the current implementation uses techniques bor-
rowed from computer science, e. g. common subtree sharing, undirected programming,
and indirection. The combination of indirection and undirected programming in the
form of tables seems to be an elegant approach for handling word form recognition as
well as word form generation.

Currently, the morphological system is evaluated on the basis of a multitude of
medium-scale grammars for different languages21 and optimized for an increased per-
formance. Further development will include extensive tests on corpora and a tighter
integration of the morphology with the syntactic-semantic components.

References

1. Hausser, R.: A Computational Model of Natural Language Communication: Interpretation,
Inference, and Production in Database Semantics. Springer, Heidelberg (2006)

2. Hausser, R.: Foundations of Computational Linguistics. Springer, Heidelberg (1999)

21 This comprises the building of grammars with an average lexicon size of about 80000–100000
entries for languages like German, Italian, French and Polish.

JSLIM – Computational Morphology in the Framework of the SLIM Theory 27

3. Hausser, R.: Complexity in left-associative grammar. Theoretical Computer Science 106,
283–308 (1992)

4. Beutel, B.: Malaga 7.12. User’s and Programmer’s Manual. Technical report, Friedrich-
Alexander-Universität Erlangen-Nürnberg (1995),
http://home.arcor.de/bjoern-beutel/malaga/malaga.pdf (June 4, 2009)

5. Kycia, A.: Implementierung der Datenbanksemantik für die natürlichsprachliche Kommu-
nikation. Master’s thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2004)

6. Wittgenstein, L.: Philosophical Investigations. Basil Blackwell Ltd., Oxford (1953)
7. Handl, J.: Entwicklung einer abstrakten Maschine zum Parsen von natürlicher Sprache. Mas-

ter’s thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2008)
8. Schulze, M.: Ein sprachunabhängiger Ansatz zur Entwicklung deklarativer, robuster LA-

Grammatiken mit einer exemplarischen Anwendung auf das Deutsche und das Englische.
PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2004)

9. Kapfer, J.: Inkrementelles und ober�ächenkompositionales Parsen von Koordinationselipsen.
PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2009)

10. Schüller, G., Lorenz, O.: LA-Morph - Ein linksassoziatives Morphologiesystem. In: Linguis-
tische Veri�kation, pp. 103–119 (1994)

11. Weber, C.: Implementierung eines automatischen Wortformerkennungssystems für das
Italienische mit dem Programm JSLIM. Master’s thesis, Friedrich-Alexander-Universität
Erlangen-Nürnberg (2007)

12. Weber, C., Handl, J., Kabashi, B., Proisl, T.: Eine erste Morphologie in JSLIM (in progress).
Technical report, Friedrich-Alexander-Universität Erlangen-Nürnberg (2009),
http://www.linguistik.uni-erlangen.de/clue/fileadmin/docs/jslim/
morphology_docu.pdf (June 4, 2009)

13. Lorenz, O.: Automatische Wortformenerkennung für das Deutsche im Rahmen von Malaga.
Master’s thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (1996)

14. Hausser, R.: Modeling natural language communication in database semantics. In: Proceed-
ings of the APCCM, vol. 96, Australian Computer Science Inc. CIPRIT (2009)

15. Kabashi, B.: Sprachproduktion im Rahmen der SLIM-Sprachtheorie. PhD thesis, Friedrich-
Alexander-Universität Erlangen-Nürnberg (in progress, presumably 2009)

