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Abstract

EmotiKLUE is a submission to the Implicit
Emotion Shared Task. It is a deep learning
system that combines independent represen-
tations of the left and right contexts of the
emotion word with the topic distribution of
an LDA topic model. EmotiKLUE achieves
a macro average F1 score of 67.13%, signifi-
cantly outperforming the baseline produced by
a simple ML classifier. Further enhancements
after the evaluation period lead to an improved
F1 score of 68.10%.

1 Introduction

The aim of the Implicit Emotion Shared Task
(IEST; Klinger et al., 2018) is to infer emotion
from the context of emotion words. The work-
ing definition of emotion for the shared task im-
plies that emotion is triggered by the interpretation
of a stimulus event (Scherer, 2005, 697), i. e. the
cause of the emotion. Consequently, the data for
the shared task have been compiled with the aim
of including a description of the cause of the emo-
tion. This has been accomplished by using distant
supervision: The organizers collected tweets that
contain exactly one of 21 emotion words belong-
ing to six emotions (anger, fear, disgust, joy, sad-
ness, surprise), where the emotion word has to be
followed by that, because or when as likely indi-
cators for a description of the cause of the emo-
tion. The corpus collected this way comprises
more than 190.000 tweets and is split into three
data sets: 80% training, 5% trial and 15% test.
The emotion words in the tweets are masked and
participants of the shared task have to predict the
emotion of the masked emotion word from its con-
text.

EmotiKLUE, our submission to the shared task,
is a deep learning system that learns independent
representations of the left and right contexts of

the emotion word, similar to Saeidi et al. (2016),
who use n-gram representations for both the right
and the left context around triggerwords in aspect-
based opinion mining. Our intuition is that the
distribution of the emotions is dependent on the
topics of the tweets, therefore we train a Twitter-
specific LDA topic model and explore different
ways of combining the topic distributions with the
left and right contexts in order to predict the emo-
tions. EmotiKLUE is available on GitHub.1

2 Related Work

Emotion detection has been an important topic
in natural language processing, particularly in the
subfield of opinion mining, for several years. The
shallowest approaches deal with sentiment polar-
ity detection, either classifying utterances into cat-
egories ranging from negative via neutral to posi-
tive, or regressing towards a score typically rang-
ing from −1 to 1 (see, for example, Proisl et al.,
2013; Evert et al., 2014). Further tasks involve the
automatic computation of stances (in favor of vs.
against) towards pre-specified topics (Mohammad
et al., 2017). Predicting more sophisticated cate-
gories of emotion than in the task at hand has been
a more recent phenomenon. Generally, the ap-
proaches can be classified into two groups, namely
rule-based approaches on the one hand and the
far more common machine learning approaches on
the other.

We give a short list of related work here, for a
more comprehensive listing see the task descrip-
tion (Klinger et al., 2018). A survey of emo-
tion detection from text and speech is given by
Sailunaz et al. (2018). For a linguistic analy-
sis of implicit emotions see Lee (2015). An ap-
proach to implicit emotion detection based on tex-
tual inference is presented by Ren et al. (2017).

1https://github.com/tsproisl/EmotiKLUE

https://github.com/tsproisl/EmotiKLUE
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As an example for rule-based emotion detection
we mention Udochukwu and He (2015), who use
a pipeline approach based on the OCC-Model
(Ortony et al., 1988), without emotion-bearing
words.

More recent work deals with ML and deep
learning approaches. Rout et al. (2018) use both
unsupervised and supervised approaches with dif-
ferent machine learning algorithms such as multi-
nomial naive bayes, maximum entropy, and sup-
port vector machines on unigram feature matrices
and report F1-scores of above 99% when disam-
biguating tweets according to seven emotion cate-
gories. However, since their text data are selected
via a keyword-filter containing exactly the words
representing the emotion which in turn can be used
as features by the machine learner at hand, their
high accuracy values are unsurprising.

Other tasks, such as detecting the emotion stim-
ulus in emotion-bearing sentences are more chal-
lenging; Ghazi et al. (2015) e. g. use a condi-
tional random fields classifier and report F1-scores
of up to 60% for finding the stimulus in their self-
constructed data set. Finally, Firdaus et al. (2018)
use different latent features such as emotion and
sentiment as input to predict user behaviour (e. g.
the act of retweeting).

3 System Description

3.1 Data Preprocessing and Additional Data

The data sets released by the organizers of the
shared task contain the full text of the tweets, with
the emotion word, usernames and URLs being
substituted by placeholders. We tokenize the text
with the web and social media tokenizer SoMaJo2

(Proisl and Uhrig, 2016) and convert it to lower-
case.

In addition to the official data sets, we use two
resources: ENCOW143 (Schäfer and Bildhauer,
2012; Schäfer, 2015) and an in-house collection
of 114 million deduplicated English tweets (see
Schäfer et al. (2017) for the deduplication algo-
rithm), collected between February 2017 and June
2018.4 We tokenize the tweets with SoMaJo (but
not ENCOW14, which is already tokenized), mask

2https://github.com/tsproisl/SoMaJo
3http://corporafromtheweb.org/encow14
4The overlap of the released data sets with our in-house

collection of tweets is negligible. Our collection contains less
than 0.6% of the tweets from the released data sets: 775 from
the training set (0.51%), 49 from the trial set (0.51%) and 163
from the test set (0.57%).

usernames and URLs and convert the text to low-
ercase.

3.2 Representations derived through
unsupervised methods

We use our in-house collection of tweets to create
Twitter-specific word embeddings and topic mod-
els.

Using the Gensim5 (Řehůřek and Sojka, 2010)
implementation of word2vec (Mikolov et al.,
2013a,b), we create four sets of embeddings for all
words with a minimum frequency of 5: 100- and
300-dimensional vectors using the skip-gram ap-
proach and 100- and 300-dimensional vectors us-
ing the CBOW approach.

Our intuition is that the distribution of the emo-
tion words depends on the topics of the tweets. To
capture these topics, we use Gensim and create
an LDA topic model (Blei et al., 2003) with 100
topics based on the most recent 10 million tweets
in our collection (ignoring words that only occur
once).

3.3 Additional Data for Pretraining
We compile an additional data set from EN-
COW14 and our collection of tweets that we use
to pretrain our model. To this end, we select
tweets and ENCOW14 sentences with a maximum
length of 110 words that contain a single emotion
word from the following set of emotion words:
afraid, angry, disgusted, disgusting, happy, sad,
surprised, surprising. This list of emotion words
was determined by a cursory glance at the offi-
cial training data and happens to be a subset of
the 21 emotion words used by the task organizers
(which were only revealed after the evaluation pe-
riod). Note that we do not restrict the contexts in
which the emotion words occur, i. e. the emotion
words do not have to be followed by that, because
or when. After balancing the data, we have ap-
proximately 159.000 items per class.

3.4 Network Architecture
We experiment with three variants of a neural
network architecture implemented using Keras6

(Chollet et al., 2015) and visualized in Figure 1.

The word-level representations for the left and
right contexts of the emotion word that are re-
turned by the embedding layers are fed into

5https://radimrehurek.com/gensim
6https://keras.io

https://github.com/tsproisl/SoMaJo
http://corporafromtheweb.org/encow14
https://radimrehurek.com/gensim
https://keras.io
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Figure 1: Architecture of the three model variants

two unidirectional LSTM layers (Hochreiter and
Schmidhuber, 1997; Gers et al., 2000): A left-to-
right layer for the left context from the beginning
of the tweet to the masked emotion word, and a
right-to-left layer for the right context from the
end of the tweet to the masked emotion word. The
hidden states of the two LSTM layers are concate-
nated. Now, we explore three variants of incorpo-
rating the 100-dimensional LDA topic distribution
into the model:

1. We do not use LDA topics. The output of the
LSTMs is fed to a dense layer, followed by
a dropout layer and finally a softmax output
layer.

2. We use LDA topics as features alongside the
LSTM output. The LDA topic distribution
and the output of the LSTMs are concate-
nated. The result is fed to a dense layer, fol-
lowed by a dropout layer and finally a soft-
max output layer.

3. We use LDA topics as filter. The output of
the LSTMs is fed to a dense layer to reduce
dimensionality. The LDA topic distribution
is fed to a softmax layer. The output of the
two layers is combined using element-wise
multiplication. The result is fed to the final
softmax output layer.

model trial test

train-skip100-nolda 64.06 65.14
train-skip100-ldafeat 64.46 65.10
train-skip100-ldafilt 64.56 65.03
train-skip300-nolda 65.93 66.33
train-skip300-ldafeat 66.05 66.35
train-skip300-ldafilt 65.18 65.79
add-skip100-nolda 52.01 52.12
add-skip100-ldafeat 52.49 52.84
add-skip100-ldafilt 51.29 51.88
add-skip300-nolda 55.28 55.49
add-skip300-ldafeat 55.22 55.11
add-skip300-ldafilt 52.76 52.68
add+train-skip100-nolda 65.19 66.55
add+train-skip100-ldafeat 65.71 66.02
add+train-skip100-ldafilt 65.67 65.94
add+train-skip300-nolda 67.05 67.50
add+train-skip300-ldafeat 67.17 67.08
add+train-skip300-ldafilt 66.43 67.00

add+train+trial-skip300-ldafeat (subm.) 67.13

Table 1: Results for models using skip-gram-based em-
beddings (macro F1)

We train each model for a maximum of 20
epochs with a batch size of 160, using the Adam
optimizer (Kingma and Ba, 2014) to minimize cat-
egorical crossentropy. If the validation loss (deter-
mined on the trial data) fails to improve for two
consecutive epochs, training stops early.

4 Results and Error Analysis

4.1 Experiments

We have three different network architectures that
differ in the way they use LDA topic distributions.
We have four sets of embeddings that differ in size
and training objective. And we have three options
for the training data (only the official training data,
only our additional data, or training on the latter
and retraining on the former). In order to quantify
the impact of the individual choices, we train and
evaluate all 36 possible models. Results for mod-
els using skip-gram-based embeddings are shown
in Table 1 and results for models using CBOW-
based embeddings in Table 2. The evaluation met-
ric used is the macro average of the F1 scores of
the six classes.

The exact numbers listed in Tables 1 and 2
should not be taken too seriously as they are sub-
ject to some small amout of random variation due
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model trial test

train-cbow100-nolda 63.75 64.07
train-cbow100-ldafeat 62.81 63.20
train-cbow100-ldafilt 63.39 63.24
train-cbow300-nolda 64.09 63.91
train-cbow300-ldafeat 64.00 63.94
train-cbow300-ldafilt 63.61 63.49
add-cbow100-nolda 49.64 50.14
add-cbow100-ldafeat 48.16 48.55
add-cbow100-ldafilt 48.69 48.81
add-cbow300-nolda 51.26 50.70
add-cbow300-ldafeat 51.25 51.48
add-cbow300-ldafilt 49.31 49.01
add+train-cbow100-nolda 63.10 64.03
add+train-cbow100-ldafeat 64.46 64.08
add+train-cbow100-ldafilt 63.42 63.60
add+train-cbow300-nolda 64.34 64.74
add+train-cbow300-ldafeat 64.26 64.66
add+train-cbow300-ldafilt 63.83 63.64

Table 2: Results for models using CBOW-based word
embeddings (macro F1)

to differences in the initialization of the weights
and the shuffling of the training data.7 However,
since all the individual options have been used at
least nine times, we can still make some fairly re-
liable claims about their usefulness.

The most obvious observation is that the offi-
cial training data lead to much better results than
our additional data (+12.97 on average). This is
probably due to two reasons: We only use a subset
of the emotion words that have been used in the
official data sets and, more importantly, we use all
instances of the emotion words and not only those
that are followed by something that is likely to be
a description of the cause of the emotion. How-
ever, first training the model on the additional data
and then retraining it on the official training data
is benefitial (+1.96).

We can also see that word embeddings based
on the skip-gram approach consistently outper-
form those based on the CBOW approach (+2.55).
300-dimensional embeddings are notably better
than 100-dimensional embeddings (+1.19), an ef-
fect that is more pronounced for the skip-gram-
based embeddings (+1.57) than for the CBOW-
based ones (+0.80).

7The 95%-confidence interval for the performance of the
add+train-skip300-ldafeat model on the test data is 67.12±
0.34, for example (estimated from 20 instances of the model).

The LDA topic distributions only have a posi-
tive effect when used as additional features along-
side the LSTM output – and even then the effect
is small and only positive for models using skip-
gram-based embeddings (+0.08) and negative for
models using CBOW-based embeddings (−0.24).
Using the LDA topic distribution as a filter usually
has a negative effect (−0.76).

Consequently, for our submission to the shared
task, we chose the second network architecture
(LDA topic distribution as feature), used 300-
dimensional skip-gram embeddings and trained
the model first on our additional data and retrained
it on the official training and trial data. That model
achieved a macro average F1 score of 67.13 on the
test data and took the tenth place in the shared task.
For comparison, Klinger et al. (2018) report that
human performance on this task is approximately
45%, the MaxEnt uni- and bigram classifier used
as a baseline system achieved 59.88% and the best
submission (Rozental et al., 2018) 71.45%.

4.2 Error Analysis
We present detailed error analyses in Table 3 in
form of an extensive confusion matrix including
label confusion per triggerword in the test data.
We downloaded all available tweets used in the
shared task via the Twitter API8 to gain access
to the actual triggerwords. For reasons of inter-
pretability we report absolute marginal frequen-
cies and relative frequencies of predicted label per
real label and triggerword.9 This corresponds to
recall (true-positive-rate) for those cases where the
prediction equals the true label and false-negative-
rate (FNR) per class for all other cases.

Recall is rather similar across labels: The high-
est rate can be achieved for joy (78%), the lowest
is achieved for sad (59%). High FNRs have to
be reported for confusing anger, disgust, and fear
with surprise (11% and 10%), as well as sad with
anger and disgust (each 11%).

Looking at the recall values per triggerword, ex-
planations for the macro-values are not far to seek:

1. Performance is generally higher for those
triggerwords that have been manually se-

8https://developer.twitter.com/en/docs/
tweets/post-and-engage/api-reference/
get-statuses-lookup

9The difference in absolute numbers between label-based
confusions and triggerword-based confusions are due to the
fact that not all tweets can be retrieved from the API – once
a tweet is e. g. deleted by a user, it is no longer accessible for
others either.

https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/get-statuses-lookup
https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/get-statuses-lookup
https://developer.twitter.com/en/docs/tweets/post-and-engage/api-reference/get-statuses-lookup


239

anger disgust fear joy sad surprise total

anger 0.61 0.09 0.08 0.06 0.06 0.11 4794
angry 0.62 0.07 0.08 0.07 0.06 0.09 2893

furious 0.57 0.11 0.06 0.04 0.05 0.18 1292

disgust 0.08 0.67 0.04 0.03 0.07 0.11 4794
disgusted 0.14 0.53 0.06 0.05 0.03 0.19 2065

disgusting 0.03 0.79 0.01 0.01 0.10 0.05 2398

fear 0.08 0.04 0.69 0.05 0.04 0.10 4791
afraid 0.05 0.02 0.76 0.04 0.03 0.08 1693
fearful 0.10 0.03 0.69 0.05 0.03 0.10 315

frightened 0.11 0.11 0.49 0.05 0.04 0.20 324
scared 0.10 0.05 0.62 0.06 0.05 0.12 1648

joy 0.06 0.02 0.04 0.78 0.04 0.06 5246
cheerful 0.09 0.05 0.05 0.64 0.07 0.09 56

happy 0.06 0.02 0.04 0.79 0.04 0.06 4215
joyful 0.05 0.04 0.08 0.61 0.09 0.12 97

sad 0.11 0.11 0.06 0.07 0.59 0.06 4340
depressed 0.21 0.08 0.09 0.10 0.46 0.06 642

sad 0.09 0.12 0.05 0.06 0.62 0.06 2751
sorrowful 0.00 0.12 0.00 0.50 0.25 0.12 8

surprise 0.08 0.09 0.07 0.05 0.03 0.68 4792
astonished 0.08 0.13 0.07 0.04 0.01 0.66 350
astounded 0.07 0.17 0.09 0.03 0.01 0.63 263

shocked 0.12 0.06 0.08 0.06 0.03 0.65 1021
startled 0.10 0.06 0.22 0.04 0.01 0.57 228
stunned 0.12 0.10 0.08 0.07 0.01 0.62 500

surprised 0.07 0.05 0.06 0.06 0.01 0.74 1223
surprising 0.02 0.11 0.01 0.01 0.12 0.74 805

total 4841 4801 4633 5305 3732 5445 28757

Table 3: Confusion Matrix for the six predicted emotion categories (columns) for each real emotion and each
triggerword (rows) in the test data

lected by us for producing additional training
data (see Section 3.3): angry (62%) shows
higher recall than furious (57%), afraid
(76%) and happy (79%) perform best in the
fear and joy categories, respectively, and sur-
prised and surprising (each 74%) are the best
predictors for surprise.

2. Rare triggerwords generally lead to worse re-
sults. The most obvious example is sorrow-
ful, which we only observed 28 times in the
training data (8 times in the test data) and
which yields 25% recall for predicting cate-
gory sad, confusing it in half of the cases with
joy. Additionally, cheerful and joyful (361
and 536 observations in the training data, re-

spectively) perform lower than happy (22348
observations) – although admittedly happy
had already been pre-selected for additional
training as mentioned above.

3. Many confusions can also be explained from
a psycho-linguistic point of view when look-
ing at the actual corpus. Instances involving
the triggerword disgusted e. g. are frequently
categorized as anger by our system. Corpus
evidence shows that these words are hard to
disambiguate:

• Hindu women should be [#TRIGGER-
WORD#] when Law Panel says Father-
In-Law should pay alimony, what next



240

model trial test

add2-skip300-ldafeat 56.66 56.98
add2+train-skip300-ldafeat 67.34 67.47
300-train-skip300-ldafeat 66.14 66.68
300-add-skip300-ldafeat 57.10 57.29
300-add+train-skip300-ldafeat 67.89 68.06
300-add2-skip300-ldafeat 58.35 58.49
300-add2+train-skip300-ldafeat 67.98 68.10

Table 4: Results for the post-analysis experiments
(macro F1)

women are property of Father-In-Law?
• I wake up [#TRIGGERWORD#] be-

cause I know you doin me wrong but u
dont think its nothing wrong with being
in a verbal relationship with another gal

It is hard to see how one could reliably pre-
dict the “real” emotion (disgust) in the above
examples, since anger – as predicted by our
system – seems to be an equally sensible
guess. Similar instances can be found for
other confusions, most notably when pre-
dicting anger in case of the triggerword de-
pressed.

4.3 Post-analysis experiments

The analysis in the previous section has shown that
our system performs better on the more frequent
words that we used for compiling our additional
data than on the less frequent words. Therefore,
we recompile our additional data as described in
Section 3.3 but for all of the 21 emotion words
that occur in the official data. After balancing the
data, this results in approximately 163.000 items
per class.

We take the model versions from Section 4.1
that are the basis for our submission and replace
the additional data with the updated version. The
new models (prefixed with “add2” in Table 4) im-
prove on the old ones both when using only the
additional data (+1.66) and when retraining on the
official training data (+0.28).

It is also worth pointing out that so far we have
not fine-tuned the hyperparameters of our model.
As a first step in that direction, we try to use more
units in the hidden layers and increase the size
of all hidden layers to 300 units (models prefixed
with “300-add” in Table 4). This boosts the per-
formance both when using only the additional data

(+2.03) and when retraining on the official training
data (+0.85).

Combining the recompiled additional data and
the larger hidden layers yields further improve-
ments (models prefixed with “300-add2” in Ta-
ble 4). The retrained model is approximately 1
point better than our submission and would have
taken the eighth place in the shared task.

A further error analysis shows that the addi-
tional training data indeed yield the desired effect:
Recall for category angry improves from 61% to
66%, largely due to better recall in the case of
the triggerword furious (rising from 57% to 65%).
Further improvements can be found in almost all
categories, namely for fear (69% to 72%, espe-
cially frightened: 49% to 53%), joy (78% to 79%,
with recall for joyful rising from 61% to 65% and
for cheerful from 64% to 70%), and sad (59% to
62%, triggerword depressed up two points from
46% to 48%). However, the additional training
data had an adverse effect on category surprise;
here recall falls from 68% to 65%, with almost
all triggerwords dropping a couple of points, the
worst being surprised, falling from 74% to 69%.

Finally, we want to take a closer look at the
contribution of the LDA topic distribution. To
this end, we have trained 20 instances of the 300-
add2+train-skip300-ldafeat and 300-add2+train-
skip300-nolda models and have calculated the
means and 95%-confidence intervals. As it turns
out, both model variants perform identically on
the trial data. On the test data, there are some
minor differences but the performance means lie
within one standard deviation of each other. This
means that our choice of concatenating the LDA
topic distribution of the tweet to the LSTM does
not have a statistically significant result..

5 Conclusion

We presented EmotiKLUE, a topic-informed
deep learning system for detecting implicit emo-
tion. Our experiments showed that for this
task skip-gram-based word embeddings outper-
form CBOW-based embeddings. Additional data,
that – on their own – yield rather poor results, im-
prove the performance when used for pretraining
the model. LDA topic models, that we initially be-
lieved to have a small positive effect, turned out to
not contribute significantly.

The error analysis shows that the objective as set
in the shared task at hand is rather difficult: With
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many instances of tweets showing prima facie am-
biguous emotions, it is unsurprising that even per-
fectly trained classifiers will not be able to achieve
100% accuracy when using the textual data alone.

Future work could nonetheless involve more ex-
perimentation with the hyperparameters of the net-
work, e. g. number, size and activation of the hid-
den layers, choice of regularization strategy and
optimizer, etc.

The software is available on GitHub.10
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